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Background: Vaccination history may confound estimates of influenza vaccine effectiveness (VE) when
two conditions are present: (1) Influenza vaccination is associated with vaccination history and (2) vac-
cination modifies the risk of natural infection in the following seasons, either due to persisting vaccina-
tion immunity or due to lower previous risk of natural infection.
Methods: Analytic arguments are used to define conditions for confounding of VE estimates by vaccina-
tion history. Simulation studies, both with accurate and inaccurate assessment of current and previous
vaccination status, are used to explore the potential magnitude of these biases when using different sta-
tistical models to address confounding by vaccination history.
Results: We found a potential for substantial bias of VE estimates by vaccination history if infection- and/
or vaccination-derived immunity persisted from one season to the next and if vaccination uptake in indi-
viduals was seasonally correlated. Full adjustment by vaccination history, which is usually not feasible,
resulted in unbiased VE estimates. Partial adjustment, i.e. only by prior season’s vaccination status, sig-
nificantly reduced confounding bias. Misclassification of vaccination status, which can also lead to sub-
stantial bias, interferes with the adjustment of VE estimates for vaccination history.
Conclusions: Confounding by vaccination history may bias VE estimates, but even partial adjustment by
only the prior season’s vaccination status substantially reduces confounding bias. Misclassification of
vaccination status may compromise VE estimates and efforts to adjust for vaccination history.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Seasonal influenza viruses, in particular influenza A viruses,
rapidly evolve antigenically, forcing frequent reformulation of the
seasonal vaccine components [1]. The closeness of the antigenic
match between vaccine viruses and influenza viruses circulating
in the human population affects vaccine effectiveness (VE) [2],
which therefore needs to be assessed seasonally to inform public
health policy and the formulation of next season’s vaccine.

Natural influenza virus infection elicits an immune response
that modifies susceptibility to influenza viruses, possibly for years
[3]. Similarly, some protection due to seasonal influenza vaccina-
tion has been shown to persist beyond the season in which it
was administered [4]. Vaccination history may thus, independently
of current vaccination status, be associated with the risk of influ-
enza infection. On the other hand, influenza vaccination status is
associated with influenza vaccination history [5]. Sullivan et al.
[6] pointed out that, therefore, VE estimates may be confounded
by vaccination history. In addition, vaccination history might also
act as effect modifier [16,17].

Here, we develop a theoretical argument demonstrating how VE
estimates may be confounded by vaccination history. We present
results from a simulation study that explores the magnitude of
the resulting bias in VE estimates under a range of assumptions.
We also examine the effect of misclassification on the attempt to
adjust VE estimates for confounding by vaccination history.

2. Theoretical considerations

2.1. Basic assumptions

Let vk represent influenza vaccination status for the season k
years in the past from the current season, where vk ¼ 1denotes
receipt of influenza vaccine before the start of the season k years
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in the past and vk ¼ 0 represents being unvaccinated in that sea-
son. For simplicity, we let v � v0 (vaccination status in current sea-
son) and �v ¼ vH;vH�1; � � � ;v1ð Þ is the vaccination history over the H
past seasons, preceding the season under investigation. Assuming
that H ¼ 5, i.e. a total of six seasons are considered, including the
current season, a subject might have vaccination history
�v ¼ 0;0;0;0;1ð Þ, i.e. she/he was only vaccinated in the previous
season.

Vaccination uptake is determined by a time-invariant personal
trait that might be referred to as ‘‘health care-seeking behavior”,
n, here assumed to be categorical. We assume independence of
vaccination uptake from infection and vaccination history, condi-
tional on n. A given level of n may, e.g., be associated with a sea-
sonal vaccination uptake probability of 75%.

The event of becoming infected with influenza virus in the cur-
rent season is i ¼ 1, remaining uninfected is i ¼ 0 and the influenza
history up to the prior season is �i. Although seasonal risk of influ-
enza is driven by an incidence process, that process will not be
modeled, but will be given as a seasonal attack rate for those sus-
ceptible to infection.

Finally, we assume vaccination to act in an ‘‘all-or-none” man-
ner [7] which means that susceptible subjects become, after vacci-
nation, fully immune to the target agent with a given probability
(=VE) or remain fully susceptible.
2.2. Vaccination history-associated bias in VE estimates from test-
negative design studies

In the absence of confounding, VE is defined [8] as

/ ¼ 1� Pr i ¼ 1jv ¼ 1ð Þ
Pr i ¼ 1jv ¼ 0ð Þ ð1Þ

Estimating Pr i ¼ 1jv ¼ 1; � � �ð Þ and Pr i ¼ 1jv ¼ 0; � � �ð Þ using a
cohort study design would require a large study with expensive
follow-up of study subjects to ensure capturing of all relevant
events. A more economical approach is a case-control design, in
which the risk ratio of interest is estimated using an odds ratio.
For post-licensure studies of influenza VE, the test-negative variant
of the case-control design is widely used [6,9–11]. In a test-
negative design (TND) study, subjects are enrolled based on a case
definition, usually acute respiratory infection (ARI) or influenza-
like illness (ILI). Cases are those who show evidence of influenza
infection (=‘‘test-positive”), usually from polymerase chain
reaction-based tests; controls are those without such evidence
(=‘‘test-negative”). Under the assumption of an ‘‘all-or-none”
Fig. 1. DAG representing a TND study of influenza VE. The bold red edge between
vaccination (v) and influenza infection (i) represents the association of interest. See
text for explanation.
vaccination effect, the ‘‘rare disease” assumption is not
necessary for the odds ratio to be an unbiased estimator of the risk
ratio [10].

Fig. 1 depicts a directed acyclic graph (DAG) [12] representation
of a TND study of influenza VE: The influenza infection, i, may
cause a syndrome that fulfills a case definition, such as acute res-
piratory infection,a ¼ 1. That syndrome may lead to study inclu-
sion, s ¼ 1, which also entails the administration of a diagnostic
influenza test. The variable j represents non-influenza etiologies
of a. Conditioning on the collider s ¼ 1 (study inclusion) opens
the backdoor path

v  n��� a i

where the dashed line between n and a represents an undirected
edge [6]. However, that backdoor path is blocked by also condition-
ing on the case definition a ¼ 1. Two backdoor paths, however,
remain open:

v  n! �v ! i

and

v  n! �v ! �i! i

These backdoor paths result in confounding by vaccination his-
tory, i.e

E b/� �
–/; ð2Þ

where / is the true VE and b/ is an estimate.
As both paths pass through �v , adjusting for vaccination history

is sufficient (see Appendix A), such that, under usual regularity
conditions, the odds ratio

Pr i ¼ 1jv ¼ 1; �vð Þ � Pr i ¼ 0jv ¼ 0; �vð Þ
Pr i ¼ 0jv ¼ 1; �vð Þ � Pr i ¼ 1jv ¼ 0; �vð Þ ð3Þ

equals the causal risk ratio and VE is

/ ¼ 1� Pr i ¼ 1jv ¼ 1; �vð Þ � Pr i ¼ 0jv ¼ 0; �vð Þ
Pr i ¼ 0jv ¼ 1; �vð Þ � Pr i ¼ 1jv ¼ 0; �vð Þ ð4Þ

For notational convenience, the conditional terms s ¼ 1
anda ¼ 1, representing study inclusion and fulfillment of the case
definition, respectively, have been omitted from (3) and (4).

2.3. VE estimates adjusted for vaccination history

If VE is not affected by vaccination history (no effect modifica-
tion), it could be estimated from TND data using the following
logistic regression model:

logitðPrði ¼ 1jv ; �vÞÞ ¼ b0 þ bvv þ
XK
m¼2

amtm; ð5Þ

where tm are dummy variables representing K distinct vaccination
histories. Note that, for simplicity, we omit the term bc�x, which is
the dot product of a covariate vector x and the associated coefficient
vector bc. The adjusted VE estimate is given by

/̂ ¼ 1� expðb̂vÞ ð6Þ
If VE is modified by vaccination history, valid VE estimates

could still be obtained by adding interaction terms between cur-
rent vaccination and vaccination history to model (5) (see Online
Supplement S1).

As the number of vaccination histories K grows exponentially
with the total number of seasons H þ 1 as K ¼ 2H , adjusting for
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the full vaccination history is, in most cases, unfeasible. Adjusting
the analysis of current season’s VE only by the vaccination status in
the prior season can be considered as partial adjustment for vacci-
nation history. The corresponding model is

logitðPrði ¼ 1jv; �vÞÞ ¼ b0 þ bpriorv1 þ bvv ð7Þ

The partially-adjusted VE estimate is obtained from (6).
2.4. Simulation study

The simulation model is described in detail in Online Supple-
ment S2. Briefly, this is a discrete time (one season time steps)
stochastic model. People of five different levels of ‘‘health care-
seeking behavior” (n), with their implied probabilities to get vacci-
nated each season and to seek medical care with acute respiratory
infection (Online Supplement S2, Table S2.1). Influenza risk is
determined by susceptibility to infection at the beginning of the
season and the assumed seasonal attack rate. Susceptibility is a
function of current and past vaccination status, infection history
and the assumptions regarding vaccination- and infection-
derived immunity carry-over. This is not a transmission model as
seasonal attack rates are provided as an input to the simulation.
This is also true for the seasonal attack rates of non-influenza acute
respiratory illness. Subjects with acute respiratory illness (influ-
enza or non-influenza) are recruited into a TND study and VE is
estimated from the simulated study data as described below. This
is typically repeated 10,000 times per parameter combination. The
simulation was implemented in R [13] as were the analyses of the
simulated data (see Online Supplement S2 and exemplary R code).
We generated data from TND studies using different levels of
season-to-season persistence of vaccine- and infection-derived
immunity, q and x, respectively. This was modeled as probability
of ‘‘all-or-none” immunity (see [7]) to persist from one season to
the next. Persistence of immunity was therefore modeled as a pro-
portion of subjects with infection- or vaccine-derived immunity in
one season who remained immune in the following season. Persis-
tence of vaccine-derived immunity was assumed to be always as
strong as or weaker than infection derived immunity; this led to
missing values in the subdiagonals of all figures representing sim-
ulation results. Finally, we assumed that immunity from either
source did not wane during an influenza season and that no other
covariates were present.
2.5. Data analysis

Simulated data sets were analyzed using the following logistic
regression models:

1. logitðPrðcase ¼ 1jvÞÞ ¼ b0 þ bvv (model 1–unadjusted; VE esti-
mate, see (6))

2. logitðPrði ¼ 1jg2; g3; g4ÞÞ ¼ b0 þ
P4

k¼2ckgk (model 2–categorical),
using dummy variables gk to represent a categorical variable
encoding prior season’s and current season’s vaccination status:
This will give rise to three effect estimates, with the unvacci-
nated (both in previous and current season) as reference cate-
gory: VE for the newly vaccinated, VE for the previously
vaccinated and effectiveness of previous season’s vaccination
for preventing influenza illness in the current season:

/̂k ¼ 1� expðĉkÞ;8k 2 2; � � � ;4ð Þ ð8Þ
Note that the comparison of the previously vaccinated with

the never vaccinated is an invalid measure of current season’s
VE because it is confounded by prior season’s vaccination.
3. logitðPrði¼ 1jv;�vÞÞ ¼ b0 þ bpriorv1 þ bvv (model 3–partially
adjusted; see also (7)); VE estimate, see (6).

4. logitðPrði¼ 1jv;�vÞÞ ¼ b0 þ bpriorv1 þ bvv þ bintv1v (model 4–par-
tially adjusted with interaction); two VE estimates: One for
those unvaccinated in prior season as in (6); one for those with
prior vaccination:

b/2 ¼ 1� expðbbv þ bbintÞ
5. logitðPrði ¼ 1jv;�vÞÞ ¼ b0 þ bvv þ
PK

m¼2amtm (model 5–fully
adjusted; see also (7)); VE estimate, see (6).

2.6. Misclassification of current and prior vaccination status

It is well known that assessment of vaccination status is inaccu-
rate, even if corroborated by vaccination registries or other data
sources, in addition to self-report [14]. We therefore also generated
data that was misclassified with respect to current and prior vacci-
nation status (see Online Supplement S2), using sensitivity
r ¼ 95% and specificity f ¼ 90% for both seasons. These numbers
were analyzed like the original numbers using models 1, 2, 3 and
4. We also conducted a sensitivity analysis of misclassification of
current and prior vaccination status, by varying both parameters
independently from 80% to 98% and using a subset of the parame-
ter values for vaccination- and infection-induced immunity carry-
over and calculated crude (model 1) and partially vaccination
history-adjusted (model 3) VE estimates (Online Supplement S5).
3. Simulation results

3.1. Vaccination status and history assessed with perfect accuracy

VE estimates that were unadjusted for vaccination history
(model 1) were biased, unless neither vaccine- nor infection-
derived immunity persisted or if negative and positive biases neu-
tralized each other (Fig. 2, left panel). The stronger the carry-over
of infection-derived immunity (larger x), the larger the bias
towards too low values of VE. The opposite was true for longer per-
sistence of vaccine-derived immunity (higher values of q) (Fig. 2,
left panel). If VE estimates were partially adjusted for vaccination
history by including in the past season’s vaccination status as
covariate, biases were generally much reduced (Fig. 2, right panel).
In rare instances, however, the unadjusted VE estimates fared bet-
ter than the partially adjusted ones, e.g. with x ¼ 0:8 and q ¼ 0:3.

If VE was estimated such as to identify modification of VE by
prior season’s vaccination status, despite the lack of such effect
modification–-VE was assumed to be unaffected by prior
vaccination–- estimates for the ‘‘newly vaccinated” (no vaccination
in previous season) from both models 2 and 4 (VE estimates are
mathematically identical) showed a pattern of bias similar to the
unadjusted estimates, but somewhat less pronounced (Fig. 3, left
panel). If VE for those vaccinated in the prior season was estimated
by the use of a categorical vaccination status/history variable
(model 2), massive bias resulted, similar to the unadjusted analy-
sis, but even more pronounced (Fig. 3, middle panel). If, on the
other hand, VE in that group was estimated using an interaction
term between prior and current season’s vaccination status
(v1 � v; model 4), bias was largely eliminated (Fig. 3, right panel).
In a study with 1000 cases and 2000 controls, differences in VE
estimates by prior vaccination status would only rarely be statisti-
cally significant (Type I error), regardless of model, unless both
vaccination- and infection-induced immunity persisted across sea-
sons with high probability (Online Supplement S3, Fig. S3.1).



Fig. 2. Comparing absolute bias in VE estimates from model 1 (left panel), unadjusted for prior vaccination and model 3 (left panel), adjusted for prior season’s vaccination
status with shades of blue indicating positive bias and shades of red negative bias. Displayed values are based on 10,000 simulations, for different levels of infection-derived
(x) and vaccine-derived (q) immunity carry-over (to next season). The true VE is 60% and current and prior season’s vaccination status are measured with perfect accuracy.

Fig. 3. Comparing absolute bias in VE estimates from models 2 and 4 (estimates identical) for those without prior vaccination (left panel); from model 2 for those with prior
vaccination (middle panel); and model 4 for those with prior vaccination (right panel). Displayed values are based on 10,000 simulations, for different levels of infection-
derived (x) and vaccine-derived (q) immunity carry-over (to next season). The true VE is 60% and current and prior season’s vaccination status are measured with perfect
accuracy.
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Full adjustment for vaccination history (model 5) produced
unbiased VE estimates (mean VE rounded to one digit always
60%—not shown).

3.2. Vaccination status and history assessed with imperfect accuracy

If both current and prior season’s vaccination status were
assessed with error (sensitivityr ¼ 95%, specificity f ¼ 90%), mean
VE estimates, regardless of model, were invariably lower than with
accurate vaccination status assessment, rendering positive biases
less positive or even negative and negative biases more pro-
nounced (Figs. 4 and 5). Partially adjusted VE estimates (model
3) maintained a weak positive bias only under the most extreme
assumption of immunity persistence (Fig. 4, right panel).

If the modification of VE by prior season was investigated (mod-
els 2 and 4) in the absence of such phenomenon and by using mis-
classified data, the VE in those not considered vaccinated in the
previous season became negatively biased except for the strongest
persistence of vaccination- and infection-derived immunity
(q ¼ x ¼ 0:8; Fig. 5, left panel). Even though misclassification
attenuated the bias in VE for the previously vaccinated, as esti-
mated from model 2 (Fig. 5, middle panel), the difference with
the VE in the previously unvaccinated was much more likely to
be statistically significant (Type I error); if vaccination-derived
immunity persisted from one season to the next in at least 60%,
the probability to wrongly reject the null hypothesis of no repeat
vaccination effect on VE was at least a third (Online Supplement
S3, Fig. S3.2a). In contrast, VE in the previously vaccinated from
model 4 was always negatively biased (Fig. 5, right panel), similar
to the previously unvaccinated, and the Type I error probability
was barely larger than without misclassification (Online Supple-
ment S3, Fig. S3.2b).



Fig. 4. Comparing absolute bias in VE estimates from model 1 (left panel), unadjusted for prior vaccination and model 3 (right panel), adjusted for prior season’s vaccination
status with shades of blue indicating positive bias and shades of red negative bias. Displayed values are based on 10,000 simulations, for different levels of infection-derived
(x) and vaccine-derived (q) immunity carry-over (to next season). The true VE is 60% and current and prior season’s vaccination status are measured with inaccuracy
(sensitivity, r = 95%, specificity f = 90%).

Fig. 5. Comparing absolute bias in VE estimates from models 2 and 4 (estimates identical) for those without prior vaccination (left panel); from model 2 for those with prior
vaccination (middle panel); and model 4 for those with prior vaccination (right panel). Displayed values are based on 10,000 simulations, for different levels of infection-
derived (x) and vaccine-derived (q) immunity carry-over (to next season). The true VE is 60% and current and prior season’s vaccination status are measured with inaccuracy
(sensitivity, r = 95%, specificity f = 90%).
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3.3. Other scenarios

If both VE and influenza risk were seasonally variable and neg-
atively correlated (the higher the VE, the lower the seasonal attack
rate), similar patterns were seen as described for historically
constant VE, but biases were generally about a third smaller (see
Online Supplement S4, Fig. S4.1). The patterns were also similar
when current season’s VE was only 20% (see Online Supplement
S4), even though bias increased substantially, in particular relative
bias.

3.4. Sensitivity analysis of misclassification of vaccination status in
current and prior season

For levels of sensitivity and specificity different from the default
(sensitivity 95%, specificity 90%), biases were generally more neg-
ative with decreasing accuracy and more positive with increasing
accuracy (Online Supplement S5, Figs. S5.1 and S5.2). Unadjusted
VE estimates were biased low if accuracy was low, but could be
low or high, depending on the levels of immunity carry-over, when
accuracy was high (Fig. S5.1). Adjusted VE estimates were biased
low with very few exceptions: Under high accuracy and highest
immunity carry-over, they were weakly biased towards too high
values.
4. Discussion

Vaccination history may be a confounder of influenza VE esti-
mates. Using computer simulation we demonstrated that failure
to control for vaccination history may cause nontrivial bias in VE
estimates, anywhere from underestimation by 11 percentage
points to overestimation by 25 percentage points, assuming a true
VE of 60%. This corresponds to relative biases of �18% and 42%,
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respectively; with lower VE, the relative error was even larger
(Online Supplement S4). The effect of carry-over of vaccine-
derived immunity was generally larger than from infection-
derived immunity because, by assumption, vaccination was much
more common than infection. This reflects the current situation
in the US and in some European countries [15]. Bias from
vaccine-derived immunity is generally positive (towards too high
values of VE) because the protective effect of prior vaccination is
not separated from the effect of current season’s vaccination. Bias
from infection-derived immunity, on the other hand, is generally
opposite in direction, because the protective effect of previous
infection is not separated from the effect of currently being unvac-
cinated. The strength of these two effects will determine the net
direction of the bias (Fig. 2, left panel).

Fully and accurately adjusting for vaccination history com-
pletely eliminates confounding by vaccination history (Fig. 1,
Appendix A). As long as past influenza infection does not affect
future vaccination uptake, adjustment for influenza infection his-
tory is unnecessary (see Appendix A). Even if past influenza illness
were to affect the decision to become vaccinated in the future, it
would be unnecessary to adjust for history of influenza infec-
tion—a virtually impossible task in the context of an observational
study; adjustment for perceived influenza illness, regardless of
whether laboratory-confirmed or not, would suffice. Unfortu-
nately, as the number of possible vaccination history trajectories
grows exponentially with the number of seasons considered, full
adjustment for vaccination history is impractical. Restricting the
considered time frame to only two or three seasons—resulting in
manageable 2 and 4 distinct vaccination histories, respectively—
may not be sufficient to capture the full immunological interplay
between past vaccination and natural infection, but may offer a
way to partially adjust for vaccination history. In our simulation
study, partially adjusted VE estimates for most, if not all, settings
were considerably less biased than unadjusted estimates (Fig. 2).
If vaccination status was misclassified, VE estimates, whether
adjusted or not, were considerably lower, resulting in more biases
toward too low values (Fig. 4). The resulting bias in partially vacci-
nation history–adjusted VE estimates was virtually always conser-
vative (VE estimates too low) (Fig. 4, right panel). Comparing VE
estimates partially adjusted for vaccination history (model 3) to
unadjusted VE estimates (model 1) may indicate the potential
importance of the problem: If these estimates are close, confound-
ing by vaccination history likely is not a major issue. In all our sim-
ulations, under low confounding conditions (immunity persistence
� 20%, with a true VE of 60%, the crude and adjusted VE were, on
average, always within 5 percentage points, regardless of misclas-
sification. Under high confounding conditions, however, that dif-
ference was never below 4 and as high as almost 10 percentage
points (not shown).

Recently, numerous studies have examined the effect of repeat
vaccinations on VE, mostly using data from two seasons and calcu-
lating VE for those vaccinated in both seasons, only in the current
and only in the prior season, compared to those not vaccinated in
either season, analogous to our model 2. We believe that this anal-
ysis is invalid for the VE of the previously vaccinated, due to con-
founding by vaccination history: Those having been vaccinated in
the prior season have a different vaccination—and infection— his-
tory on average than the referent group (neither vaccinated in prior
nor current season) and thus likely different susceptibility to influ-
enza infection before vaccination. We therefore advise against this
type of analysis. If modification of VE by prior season’s vaccination
status is suspected, interaction terms should be used instead
(model 4; see online Supplement S1). Many of these studies were
reviewed and meta-analyzed by Belongia et al. [16] and Ramsay
et al. [17]. Both meta-analyses confirmed that, while most studies
estimated a higher VE for those vaccinated only in the current sea-
son vs. those vaccinated in both seasons, especially for influenza A
(H3N2) and influenza B, these differences were usually not statis-
tically significant nor were the pooled differences. As we have
shown, even in the absence of modification of VE by vaccination
history, group-specific VE estimates may wrongly suggest effect
modification (model 2, type I error).

In a recent study of seasonal VE during the 2016–17 season in
the US [18] one of the main analyses investigated VE by prior sea-
son’s vaccination status (Table 4), also corresponding to our model
2 (categorical) analysis. This analysis was complemented by a sup-
plemental analysis (supplemental Table) corresponding to our
model 4, which we would classify as the more appropriate analysis
because history of vaccination is—at least in part—adjusted for. The
supplemental VE estimates for the previously vaccinated were con-
sistently lower than those based on the categorical analysis. Inter-
estingly, in our simulated studies, with no modification of VE by
prior season’s vaccination status, VE estimates for those deemed
vaccinated in the prior season (categorical model 2) were also
mostly higher than for the previously unvaccinated and this was
even more pronounced in the analyses of misclassified data (Figs. 3
and 5, left and middle panel). On the other hand, there was little
bias in the partially-adjusted VE estimates for the previously vac-
cinated (model 4, Figs. 3 and 4, right panels) and, consequently,
these estimates were typically lower than the categorical esti-
mates, like in [18]. This seems to support the notion that the con-
sistently identified lower VE in those previously vaccinated cannot
be attributed to confounding by vaccination history, but more
likely reflects an immunological phenomenon.

Misclassification of current and past vaccination status clearly
is a major challenge for VE assessment in general [14], and for
efforts to adjust for confounding by vaccination history in particu-
lar. The use of a misclassification correction method for vaccination
status, e.g. using the method described by Greenland and Kline-
baum [19], should be explored in future studies.

Our study suffers from several limitations. First, our simulation
study, which explores the possible confounding bias by vaccina-
tion history is necessarily a simplification of reality and we
ignored other important confounders. But even assuming that
our simulation model is reasonable, the potential parameter
space, most importantly regarding persistence of immunity from
vaccination and/or infection, is too large for systematic explo-
ration. We are therefore left with considerable uncertainty
regarding the importance of confounding by vaccination history
in real VE studies. The resulting bias could be more plausibly
bounded using empirical evidence to inform the distribution of
these parameters. Furthermore, we have treated influenza as an
immunological entity. In reality, not only different influenza types
and subtypes often co-circulate, but also different strains of indi-
vidual types/sub-types. It is unclear how that might affect the
relationship between influenza infection and vaccination in previ-
ous seasons and current influenza risk. Moreover, we have used
an ‘‘all-or-none”, as opposed to a ‘‘leaky” [7], model of vaccination
effect on susceptibility. Even though this does not affect our the-
oretical considerations, it is well-known that a ‘‘leaky” vaccina-
tion effect would change the interpretation of TND studies
[6,10,20]. The impact of partial adjustment for vaccination history
on VE estimates under a ‘‘leaky” model should be investigated by
future studies. Finally, if test accuracy were to be associated with
vaccination status, VE estimates would be even further
compromised.

In summary, we have shown that confounding by vaccination
history and inaccuracy of vaccination status assessment in TND
VE studies, which are increasingly used to inform vaccine policy,
can compromise VE estimates. Even partial adjustment, e.g. by vac-
cination status in one or two prior seasons, can substantially
reduce confounding bias and improve the robustness of VE esti-
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mates and the conclusions derived therefrom, even though mis-
classification of current and past vaccination status may compro-
mise efforts to adjust for it.
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Appendix A

Confounding of VE by vaccination history

Let �v� represent the vaccination and infection history, with m�
being a specific history. The causal odds ratio of interest can then
be written as

Pr i ¼ 1jv ¼ 1; �v� ¼ m�ð Þ � Pr i ¼ 0jv ¼ 0; �v� ¼ m�ð Þ
Pr i ¼ 0jv ¼ 1; �v� ¼ m�ð Þ � Pr i ¼ 1jv ¼ 0; �v� ¼ m�ð Þ ðA:1Þ

¼ Pr i¼1jv ¼1ð ÞPr �v� ¼ m�jv ¼1; i¼1ð Þ�Pr i¼0jv ¼0ð ÞPr �v� ¼ m�jv ¼0; i¼0ð Þ
Pr i¼1jv ¼0ð ÞPr �v� ¼ m�jv ¼0; i¼1ð Þ�Pr i¼0jv ¼1ð ÞPr �v� ¼ m�jv ¼1; i¼0ð Þ

ðA:2Þ
Only if

1. Pr vð Þ–Pr v j�v�ð Þ (independence of vaccine uptake from vaccina-
tion and infection history) and

2. Pr ið Þ–Pr ij�v�ð Þ (independence of infection risk from vaccination
and infection history),

will the terms Pr �v�jv ; ið Þ become Prð�v�Þ and cancel out. The
right-hand side of (A.2) then reduces to the marginal odds ratio

Pr i ¼ 1jv ¼ 1ð Þ � Pr i ¼ 0jv ¼ 0ð Þ
Pr i ¼ 0jv ¼ 1ð Þ � Pr i ¼ 1jv ¼ 0ð Þ ðA:3Þ

i.e. the odds ratio, and thus VE estimate, that is not adjusted for
vaccination and infection history equals the causal odds ratio/VE
estimate (A.1). If either of these conditions are not met, the odds
ratio (A.3) will be confounded by vaccination and infection history.

Adjustment for vaccination history sufficient if vaccination status is
independent of infection history

Separating �v� into vaccination history �v and infection history �i,
the causal odds ratio (A.1) becomes

Pr i ¼ 1jv ¼ 1; �v ¼ m;�i ¼ i
� �� Pr i ¼ 0jv ¼ 0; �v ¼ m;�i ¼ i

� �
Pr i ¼ 0jv ¼ 1; �v ¼ m;�i ¼ i
� �� Pr i ¼ 1jv ¼ 0; �v ¼ m;�i ¼ i

� �

¼ Pr i ¼ 1jv ¼ 1; �v ¼ mð ÞPr �i ¼ iji ¼ 1;v ¼ 1; �v ¼ m
� �

Pr i ¼ 1jv ¼ 0; �v ¼ mð ÞPr �i ¼ iji ¼ 1;v ¼ 0; �v ¼ m
� �

� Pr i ¼ 0jv ¼ 1; �v ¼ mð ÞPr �i ¼ iji ¼ 0;v ¼ 1; �v ¼ m
� �

Pr i ¼ 0jv ¼ 0; �v ¼ mð ÞPr �i ¼ iji ¼ 0;v ¼ 0; �v ¼ m
� � ðA:4Þ
If vaccination, conditional on vaccination history, is indepen-
dent of infection history, i.e. Pr �ijv ; �v� � ¼ Pr �iji;v ; �v� �

, the terms

Pr �iji;v ; �v� �
in (A.4) become Pr �ijv ; �v� �

and cancel, reducing (A.4) to
(3). Thus, adjusting for vaccination history, �v , without adjusting for
infection history, �i, is sufficient to estimate VE, as long as there are
no other sources of confounding and if, conditional on vaccination
history, vaccination is independent of infection history.

Appendix B. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jvacx.2019.100008.
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