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FKBP4 regulates 5-fluorouracil sensitivity in colon cancer
by controlling mitochondrial respiration
Zhenyu Zhu1,*, Qingsheng Hou1,*, Bishi Wang1, Changhao Li1, Luguang Liu1, Weipeng Gong1, Jie Chai2, Hongliang Guo1,
Yanhan Jia3

Mitochondrial respiration and metabolism play a key role in the
pathogenesis and progression of colon adenocarcinoma (COAD).
Here, we report a functional pool of FKBP4, a co-chaperone protein,
in the mitochondrial intermembrane space (IMS) of colon cancer
cells. We found that IMS-localized FKBP4 is essential for the
maintenance of mitochondrial respiration, thus contributing to
the sensitivity of COAD cells to 5-fluorouracil (5-FU). Mechanis-
tically, FKBP4 interacts with COA6 and controls the assembly of
the mitochondrial COA6/SCO1/SCO2 complex, thereby governing
COA6-regulated biogenesis and activity of mitochondrial cyto-
chrome c oxidase (complex IV). Thus, our data reveal IMS-localized
FKBP4 as a novel regulator of 5-FU sensitivity in COAD, linking
mitochondrial respiration to 5-FU sensitivity in COAD.
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Introduction

Colon adenocarcinoma (COAD) is one of the most common and
lethal malignant tumors of the digestive system (Siegel et al, 2020).
As a first-line strategy for COAD treatment, 5-fluorouracil (5-FU)–
based chemotherapy shows impressive clinical benefits. However,
because of intrinsic insensitivity or acquired resistance to 5-FU
treatment, the overall response rate to 5-FU in COAD is limited
(Blondy et al, 2020; Ghafouri-Fard et al, 2021). Thus, identification of
the biological mechanisms governing sensitivity of COAD cells to
5-FU would be helpful to improve the therapeutic response and
prolong survival in COAD patients.

Metabolic reprogramming plays essential roles in cancer ma-
lignancy and progression (Wallace, 2012; Willems et al, 2015). In
comparison to other types of human cancer, COAD cells exhibit
more mitochondrial metabolism (Kaldma et al, 2014; Chekulayev et
al, 2015; Sun et al, 2018). It has been widely shown that elevated
mitochondrial respiration promotes colon cancer cell proliferation
and contributes to colon cancer tumorigenesis and progression

(Boyle et al, 2018; Lin et al, 2018; Sun et al, 2018; Wen et al, 2019).
Besides, altered mitochondrial respiration has been shown to
sensitize colorectal cancer cells to chemotherapy, including 5-FU
(Liang et al, 2008; Denise et al, 2015; Vellinga et al, 2015; Bosc et al,
2017; Yun et al, 2019). However, little is known about the molecular
mechanisms and key regulators of mitochondrial respiration that
confer 5-FU sensitivity in COAD cells.

Immunophilin protein FKBP4 (also known as FKBP52) is an
HSP90-associated co-chaperone that controls assembly of various
protein complexes (Martinez et al, 2013; Zong et al, 2021). FKBP4 acts
as a scaffold protein to facilitate the interactions between key
components of several cancer-promoting signaling pathways
(Mange et al, 2019; Zong et al, 2021). High expression of FKBP4 is
associated with the malignancy and progression of several types of
human cancer (Rees-Unwin et al, 2007; Bhowal et al, 2017; Federer-
Gsponer et al, 2018; Mange et al, 2019; Liu & Gao, 2021; Zong et al,
2021). However, no study has yet addressed the role of FKBP4
in regulating sensitivity of COAD cells to 5-FU treatment. The
subcellular localization profiles of FKBP4 based on The Human
Protein Atlas database show both cytoplasmic and nuclear
distribution of FKBP4 in a variety of cell types (Thul et al, 2017).
Nevertheless, the compartmentalized activity and function of
FKBP4 still remains unclear.

COA6 is an assembly factor that controls stability and activity of
mitochondrial cytochrome c oxidase (complex IV) (Maghool et al,
2020; Swaminathan & Gohil, 2022). COA6 cooperates with SCO1 and
SCO2 in a complex to manipulate copper delivery pathway, thereby
dictating the copper-dependent biogenesis of complex IV subunits
and modulating mitochondrial respiration (Pacheu-Grau et al, 2015,
2020; Stroud et al, 2015; Soma et al, 2019). Loss-of-function COA6
mutant leads to complex IV deficiency and thus causes human
mitochondrial disease (Ghosh et al, 2014; Baertling et al, 2015;
Pacheu-Grau et al, 2015). However, the role of COA6-controlled
mitochondrial respiration in COAD, a mitochondria-dependent
disease, has not yet been addressed.

In this study, we uncover compartmentalized distribution of
FKBP4 in the cytoplasm, nuclei, mitochondrial intermembrane
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space (IMS), andmitochondrial matrix (MM) of COAD cells. We found
that IMS-localized FKBP4 plays an essential role in the regulation of
mitochondrial respiration and thus confers sensitivity of COAD cells
to 5-FU. Mechanistically, FKBP4 manipulates the establishment of
the COA6/SCO1/SCO2 complex, thereby facilitating the COA6-
mediated complex IV biogenesis and activity. Importantly, up-
regulated FKBP4 and COA6 in 5-FU-treated COAD patients are
correlated with poor prognosis. Thus, our analyses define IMS-
localized FKBP4 as a novel regulator of 5-FU sensitivity in COAD,
providing a molecular link between altered mitochondrial respi-
ration and 5-FU sensitivity in COAD.

Results

FKBP4 is up-regulated in colon cancer cells and localized in both
mitochondrial intermembrane space and matrix

We first analyzed the gene expression profile of FKBP4 in non-
malignant colon and COAD specimens from The Cancer Genome
Atlas (TCGA) and observed a significant up-regulation of FKBP4 in
COAD samples in comparison to the normal colon tissues (Fig 1A).
Accordantly, immunoblotting analysis of the FKBP4 protein level in
various human COAD and noncancerous colonic epithelial cell lines
showed that all the tested COAD cell lines expressed higher levels
of FKBP4 in comparison to noncancerous colonic epithelial cells
(Fig 1B). Next, we analyzed the subcellular localization of FKBP4 in
COAD cells using the cell fractionation strategy. In line with what is
shown in the Human Protein Atlas (Thul et al, 2017), we observed
that FKBP4 was expressed in the cytoplasm, nuclei, and mito-
chondria of both HCT116 and SW480 cells (Fig 1C). Further inves-
tigation of submitochondrial localization of FKBP4 by proteinase K
protection assay revealed that FKBP4 was located in both IMS and
MM (Fig 1D).

We next attempted to elucidate the mechanism by which
FKBP4 is imported into mitochondria. The tetratricopeptide re-
peat (TPR) domain of FKBP5, another member of the FKBP family
sharing 60% identity and 75% similarity with FKBP4, was shown to
be responsible for its mitochondrial localization via interaction
with HSP90/HSP70 (Gallo et al, 2011). Thus, we wondered whether
the same mechanism confers the mitochondrial translocation of
FKBP4. To address this question, we established HCT116 cells
bearing the K354A mutation in the TPR domain of FKBP4 (FKBP4-
K354A) (Fig S1A) that has been widely shown to abolish FKBP4/
HSP90 interaction (Cheung-Flynn et al, 2003; Riggs et al, 2003;
Zong et al, 2021). In accordance with these previous studies, we
observed that FKBP4/HSP90 and FKBP4/HSP70 interaction were
abrogated by FKBP4-K354A mutation (Fig S1B). However, the
mitochondrial localization of FKBP4 was not affected by the
FKBP4-K354A mutation (Fig S1C), suggesting that mitochondrial
localization of FKBP4 was not controlled by its TPR domain–
mediated interaction with HSP90/HSP70.

Proteins residing in mitochondria often contain mitochondrial-
targeting sequences (MTSs) within their N-terminal amino acid
sequence (Wiedemann & Pfanner, 2017; Hansen & Herrmann, 2019).
We thus investigated the amino acid sequence of FKBP4 for
identification of its putative MTS sequence. However, we could not

observe a canonical MTS sequence in FKBP4 by online MTS pre-
diction tools (Claros & Vincens, 1996; Fukasawa et al, 2015), sug-
gesting that FKBP4 contains an unconventional targeting
sequence that is not recognized by the current computational
prediction or is imported into mitochondria by another unknown
mechanism. Both possibilities have been previously shown
(Marchenko et al, 2000; Lee et al, 2005; Li et al, 2010; Chatterjee
et al, 2016; Wiedemann & Pfanner, 2017).

Taken together, these results demonstrate that, in addition to
the nucleus and cytoplasm, FKBP4 resides in mitochondria, more
precisely, in both IMS and MM.

Loss of FKBP4 reduces mitochondrial respiration in COAD cells

To evaluate the functional impact of FKBP4 loss on mitochondria in
COAD cells, we first generated the FKBP4 depleted HCT116 and
SW480 cells using siRNA-mediated knockdown strategy. Next, we
investigated the mitochondrial respiration profiles of control
(siCtrl) and FKBP4-depleted (siFKBP4) COAD cells by performing
Seahorse Cell Mito Stress Test analysis. When comparing the
respiration profiles of siCtrl with siFKBP4 cells, we observed
significantly reduced basal, ATP-linked respiration and maximal
respiratory capacity in the knockdown cells (Fig 1E–J). To assess
whether impaired mitochondrial respiration upon FKBP4 de-
pletion leads to compensatory alterations in glycolysis, we
monitored the glycolytic levels of siCtrl and siFKBP4 cells using
Seahorse XF Glycolysis Stress Test analysis. Of note, loss of
FKBP4 did not result in any changes in glycolysis or glycolytic
capacity of COAD cells (Fig S1D–G). These data suggest that
depletion of FKBP4 reduces mitochondrial respiration in COAD
cells.

IMS-localized FKBP4 is indispensable for maintaining
mitochondrial respiration in COAD cells

To dissect the contribution of compartmentalized FKBP4 more
concretely in COAD mitochondrial respiration, we generated vari-
ous 6xHis-tagged FKBP4-derivative COAD cells lines (Figs S2A and
S3A). In particular, we enforced FKBP4 transport to IMS by fusing a
well-characterized MTS sequence of SMAC (referred to as MTS1 from
here on) at its N-terminus (Newman et al, 2016; Saita et al, 2017).
Similarly, import of FKBP4 into MM was imposed by fusing the MTS
sequence of COX4A (referred to as MTS2 from here on) at its N-
terminus (Chatterjee et al, 2016). Nuclear transport of FKBP4 was
implemented by fusing the nuclear localization sequence of c-Myc
(referred to as NLS from here on) at its N-terminus (Dang & Lee,
1988; Chiu et al, 2018). We next investigated whether impaired
mitochondrial respiration upon FKBP4 depletion could be rescued
by ectopic expression of MTS1-FKBP4, MTS2-FKBP4, and NLS-FKBP4.
For this purpose, we infected COAD cells with lentivirus driving
expression of either the empty vector (EV) control or one of the
FKBP4 derivatives followed by treating these cells with non-
targeting negative control siRNA (siCtrl) or siRNA that targets the
39 UTR of the endogenously transcribed FKBP4 mRNA (siFKB-
P4_39UTR, Figs S2A and S3A). Cell fractionation and the subsequent
purity assessment by Western blot analysis with anti-FKBP4 and
anti-6xHis antibodies validated the exclusive mitochondrial

FKBP4 controls 5-FU sensitivity in COAD Zhu et al. https://doi.org/10.26508/lsa.202201413 vol 5 | no 11 | e202201413 2 of 13

https://doi.org/10.26508/lsa.202201413


localization of ectopically expressed MTS1-FKBP4 and MTS2-FKBP4
as well as exclusive nuclear localization of NLS-FKBP4 (Figs 2A and E
and S3B). Importantly, siFKBP4_39UTR specifically and effectively
depleted only endogenous FKBP4 without affecting the ectopically
expressed FKBP4-derivatives (Figs 2A and E and S3B). We further
performed proteinase K protection assay in COAD cells treated with
siFKBP4_39UTR in combination with MTS1-FKBP4 or MTS2-FKBP4.
The results showed that ectopically expressed MTS1-FKBP4 was
imported into IMS exclusively (Fig 2B). In contrast, MTS2-FKBP4
showed only MM localization (Fig 2F). Furthermore, respiration

profile analysis showed that mitochondrial respiration of EV
transfected control cells was strongly impaired upon loss of en-
dogenous FKBP4, whereas the respiration of MTS1-FKBP4 ectopi-
cally expressed COAD cells was not affected by depleting
endogenous FKBP4 (Figs 2C and D and S2B and C). In contrast, MTS2-
FKBP4 (Figs 2G and H and S2D and E) and NLS-FKBP4 (Fig S3C–F)
failed to rescue the respiration defect caused by siFKBP4_39UTR.
Taken together, these data provide strong evidence for a functional
significance of FKBP4 in IMS and its indispensable role in the
regulation of mitochondrial respiration.

Figure 1. FKBP4 shows mitochondrial localization and is required for the maintenance of mitochondrial respiration in CRC cells.
(A) Box plot of the FKBP4 expression level in normal (n = 41) and colon tumor (n = 480) samples based on The Cancer Genome Atlas (TCGA) dataset (TCGA-COAD). The P-
value of the Wilcoxon rank-sum test is shown in the plot. (B)Western blot analysis of FKBP4 expression in various types of noncancerous colonic epithelial cell lines and
COAD cell lines. (C) Western blot analysis of the indicated proteins in cytoplasmic (CF), nuclear (NF), and mitochondrial fractions (MF) of HCT116 and SW480 cells.
(D) Proteinase K protection assay of the mitochondria freshly isolated from HCT116 cells. PK, proteinase K; MM, mitochondrial matrix; IMS, intermembrane space; OMM,
outer mitochondrial membrane. Well-characterized mitochondrial proteins, TFAM (MM protein), CYCS (IMS protein), and Tom20 (OMM protein) were used as the control,
indicating the extent of digestion. (E, F) Western blot analysis of FKBP4 expression in HCT116 (E) and SW480 (F) cells treated with siCtrl or two different siRNAs targeting
FKBP4. (G, H, I, J) Profiles of mitochondrial respiration over time in HCT116 (G, H) and SW480 (I, J) treated with siCtrl or two different siFKBP4 using the Seahorse XFe 96
analyzer. O, oligomycin; F, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP); R+A, rotenone and antimycin A. (H, J) Basal and ATP-linked respiration as well
as maximal respiratory capacity were calculated. ***P < 0.001 by the two-tailed t test. Data are presented as mean + SD. n = 6.
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Figure 2. IMS-localized FKBP4 plays a critical role in controlling mitochondrial respiration in COAD cells.
(A) Immunoblotting for the indicated proteins in cytosolic, nuclear, and mitochondrial (Mito) fractions of HCT116 cells transfected with an empty vector (EV) or 6xHis-
tagged FKBP4 fused with mitochondrial-targeting signal from SMAC (MTS1-FKBP4) followed by treatment with siCtrl or siRNA targeting 39 UTR of the endogenously
transcribed FKBP4 mRNA (siFKBP4_39UTR). (B) Proteinase K protection assay of mitochondria isolated from HCT116 cells that were transduced with MTS1-FKBP4 and
transfected with siFKBP4_39UTR. PK, proteinase K. MM, mitochondrial matrix; IMS, intermembrane space; OMM, outer mitochondrial membrane. TFAM (MM protein), CYCS
(IMS protein), and Tom20 (OMM protein) were used as the control showing the extent of digestion. (C, D) Profiles of mitochondrial respiration over time in HCT116 cells
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Loss of IMS-localized FKBP4 confers enhanced sensitivity of COAD
cells to 5-FU

We next examined whether the FKBP4 loss-mediatedmitochondrial
defect impedes proliferation of COAD cells. To this end, we per-
formed sulforhodamine B (SRB) assay to determine the cell viability
of COAD cells treated with siCtrl or siFKBP4. However, we did not
observe proliferative inhibition in COAD cells upon FKBP4 knock-
down (Fig S4A and B). Accordantly, loss of FKBP4 did not trigger
apoptosis of COAD cells either (Fig S4C). Because the high FKBP4
level is known to promote migration and invasion of lung cancer
cell (Meng et al, 2020; Zong et al, 2021), we thus wondered whether it
plays a similar role in COAD cells. However, we did not observe a
significant change in the migration/invasion level upon FKBP4
depletion in COAD cells (Fig S4D and E), suggesting that FKBP4 does
not play a role in controlling COAD cell migration and invasion.

Elevated mitochondrial respiration has been associated with
5-FU resistance in COAD cells (Denise et al, 2015; Vellinga et al, 2015;
Bosc et al, 2017; Yun et al, 2019). We thus assessed the impact of
FKBP4 loss on sensitivity of COAD cells to 5-FU and found that the
IC50 values of 5-FU in both HCT116 and SW480 cells were dra-
matically decreased upon FKBP4 depletion, suggesting that loss of
FKBP4 increased the sensitivity of COAD cells to 5-FU (Fig 3A and B).
Importantly, the increased 5-FU sensitivity upon FKBP4 loss was
successfully reversed by ectopically expressing IMS-localized MTS1-
FKBP4 (Fig 3C and D). Similar to what we observed with mito-
chondrial respiration analysis, MM-localized MTS2-FKBP4 or
nucleus-localized NLS-FKBP4 had no effect on 5-FU sensitivity (Fig
3E–H). Thus, the IMS pool of FKBP4 plays a critical role inmodulating
sensitivity of COAD cells to 5-FU. Loss of IMS-localized FKBP4 en-
hances 5-FU sensitivity in COAD cells.

FKBP4 is indispensable for COA6-mediated biogenesis and
activity of complex IV

We next gained insight into the molecular mechanism by which
IMS-localized FKBP4 regulates mitochondrial respiration and 5-FU
sensitivity. COA6 was shown to govern biogenesis and activity of
mitochondrial respiratory chain complexes IV (also called cyto-
chrome c oxidase), thus playing a key role in maintaining mito-
chondrial respiration (Maghool et al, 2020; Swaminathan & Gohil,
2022). By co-immunoprecipitation (co-IP) analysis, we observed
that FKBP4 interacted with COA6 endogenously in the mitochondria
of COAD cells (Fig 4A). Besides, FKBP4 also interacted with SCO1 and
SCO2 (Fig 4A), which were found in a complex with COA6 and re-
quired for the role of COA6 in the regulation of complex IV assembly

(Pacheu-Grau et al, 2015, 2020; Stroud et al, 2015; Soma et al, 2019).
Furthermore, FKBP4/COA6 interaction was confirmed to be direct
using GST pull-down analysis (Fig 4B). We next asked whether FKBP4
depletion led to changes in the expression of COA6, SCO1, and SCO2.
To this end, we performed immunoblotting analysis to determine
the expression of these proteins in COAD cells upon treatment with
siCtrl or siFKBP4. However, we observed that FKBP4 depletion did
not affect the protein levels of COA6, SCO1, and SCO2 in the mi-
tochondria of COAD cells (Fig 4C). Intriguingly, FKBP4 knockdown led
to general down-regulation of the key subunits of complex IV, COX1,
COX2, and COX3 (Fig 4C), indicating a defect in complex IV bio-
genesis. Importantly, the decreased levels of COXs were rescued by
overexpression of MTS1-FKBP4 but not MTS2-FKBP4 or NLS-FKBP4
(Fig 4D and E), suggesting that IMS-localized (instead of the MM-
localized or nuclear) FKBP4 is indispensable for sustaining complex
IV biogenesis. Because the COA6/SCO1/SCO2 complex has been
well-characterized as a key regulator of complex IV biogenesis by
dictating the translation of mtDNA-encoded COXs (Pacheu-Grau et
al, 2015, 2020; Stroud et al, 2015), we thus assumed that FKBP4
depletion negatively affected the function of the COA6/SCO1/SCO2
complex for controlling complex IV biogenesis. In support of our
hypothesis, we observed that FKBP4 knockdown disrupted the
interaction between COA6, SCO1, and SCO2 (Fig 4F), though the
complex rupture did not lead to changes in submitochondrial
localization of these three proteins (Fig 4G). Taken together, these
data demonstrate that FKBP4 is indispensable for the assembly of
the COA6/SCO1/SCO2 complex and thus plays an essential role in
the regulation of COA6-mediated complex IV biogenesis and
assembly.

Next, we examined the impact of FKBP4 loss on complex IV
activity. The activity of complex IV was determined with a com-
mercial ELISA-based assay kit in siCtrl, siFKBP4, or siCOA6 COAD
cells. We observed that loss of FKBP4 dramatically reduced complex
IV activity in both HCT116 and SW480 cells (Fig 4H and I). In ac-
cordance with the well-characterized role of COA6 in controlling
complex IV biogenesis and activity, we also found that COA6
knockdown caused significant loss of complex IV activity (Fig 4H and
I). Importantly, ectopic expression of MTS1-FKBP4 successfully
rescued the impaired complex IV activity caused by endogenous
FKBP4 loss but failed to rescue the COA6 depletion-triggered in-
hibition (Fig 4H and I). In contrast, ectopic expression of COA6
successfully rescued siCOA6-induced complex IV deficiency but
failed to rescue the siFKBP4-caused defect (Fig 4H and I). Taken
together, these findings indicate an essential role of FKBP4 in
controlling the establishment of the COA6/SCO1/SCO2 complex,
thereby modulating the activity of mitochondrial complex IV.

infected with an empty vector (EV) or MTS1-FKBP4 followed by the transfection of siCtrl or siRNA targeting 39UTR of endogenous FKBP4 mRNA (siFKBP4). O, oligomycin; F,
carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP); R+A, rotenone and antimycin A. (D) Basal, ATP-linked respiration, and maximal respiratory capacity were
calculated. ***P < 0.001; ns, not significant by the two-tailed t test. Data are presented as mean + SD. n = 6. (E)Western blot analysis of the indicated proteins in cytosolic,
nuclear, andmitochondrial (Mito) fractions of HCT116 cells that were infected with an empty vector (EV) or 6xHis-tagged FKBP4 fused withmitochondrial targeting signal
from COX4A (MTS2-FKBP4) followed by treatment with siCtrl or siFKBP4_39UTR. (F) Proteinase K protection assay of mitochondria isolated from HCT116 cells that was
transfected with MTS2-FKBP4 and treated with siFKBP4_39UTR. PK, proteinase K; MM, mitochondrial matrix; IMS, intermembrane space; OMM, outer mitochondrial
membrane. TFAM (MM protein), CYCS (IMS protein), and Tom20 (OMM protein) were used as the control showing the extent of digestion. (G, H)Mitochondrial respiration
profiles of HCT116 cells transfected with an empty vector (EV) or MTS2-FKBP4 in combination with the treatment of siCtrl or siRNA targeting 39UTR of endogenous FKBP4
mRNA (siFKBP4). O, oligomycin; F, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP); R+A, rotenone and antimycin A. (H) Basal, ATP-linked respiration, and
maximal respiratory capacity were calculated. ***P < 0.001 by the two-tailed t test. Data are presented as mean + SD. n = 6.
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COA6 loss impedes mitochondrial respiration and confers 5-FU
sensitivity in COAD cells

Complex IV activity is essential to mitochondrial respiration. We
thus evaluated the effect of COA6 depletion on mitochondrial
respiration of COAD cells. By comparing the respiration profiles of
siCtrl with siCOA6 cells, we observed reduced respiration in
knockdown cells (Figs 5A and B and S5A and B). This finding is
consistent with the recognized role of COA6 in facilitating complex
IV biogenesis and activity. In addition, similar to FKBP4 depletion,

COA6 knockdown had no effect on glycolysis or glycolytic capacity
of COAD cells (Fig S5C–F). Moreover, ectopic expression of MTS1-
FKBP4 could not rescue the impaired respiration upon COA6 loss
(Figs 5C and D and S5G and H). These data demonstrate that COA6 is
indispensable for maintaining mitochondrial respiration in COAD
cells. To further assess the impact of COA6 loss on 5-FU sensitivity of
COAD cells, we examined the cell viabilities of HCT116 and SW480
cells upon treatment with siCtrl or siCOA6. The results showed that
IC50 of 5-FU in COAD cells was dramatically reduced upon COA6
knockdown (Figs 5E and S6A). Similar to the results of respiration

Figure 3. IMS-localized FKBP4 regulates sensitivity of COAD cells to 5-FU.
(A, B) Representative dose–response curves of 5-FU treatment in HCT116 (A) and SW480 (B) cells transfected with two different non-targeting control or FKBP4-targeting
siRNAs. (C, D, E, F, G, H) Representative dose–response curves of 5-FU treatment in HCT116 (C, E, G) and SW480 (D, F, H) cells transfected with an empty vector (EV), MTS1-
FKBP4 (C, D), MTS2-FKBP4 (E, F), or NLS-FKBP4 (G, H) in combination with siCtrl or siRNA targeting 39 UTR of endogenous FKBP4mRNA. (A, B, C, D, E, F, G, H) Twenty-four hours
after siRNA transfection, cells were seeded into 96-well plate. After 24 h, cells were treated with different doses of 5-FU for 72 h, followed by cell viability analysis using
sulforhodamine B (SRB) assay. IC50 values of 5-FU were indicated. Data are presented as mean ± SD. n = 3.
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Figure 4. FKBP4 controls COA6-regulated complex IV activity.
(A) Immunoprecipitation of FKBP4 in mitochondria of HCT116 cells with anti-FKBP4 antibody, followed by immunoblotting with indicated antibodies. (B) GST pull-down
analysis of interaction between FKBP4 and COA6 using recombinant GST-tagged FKBP4 and 6xHis-tagged COA6. (C)Western blot analysis of the indicated proteins in the
mitochondrial fraction of HCT116 cells treated with two different siCtrl or siFKBP4. TFAM was used as the loading control. (D, E) Western blot analysis of the indicated
proteins in the mitochondrial (D) and nuclear fraction (E) of HCT116 cells transduced with empty vector (EV), MTS1-FKBP4, MTS2-FKBP4, or NLS-FKBP4 in combination
with siCtrl or siFKBP4_39UTR. (F) Immunoprecipitation of COA6 in the mitochondrial fraction of siCtrl or siFKBP4 HCT116 cells, followed by immunoblotting with indicated
antibodies. (G) Proteinase K protection assay of mitochondria isolated from siCtrl or siFKBP4-treated HCT116 cells. PK, proteinase K; MM, mitochondrial matrix; IMS,
intermembrane space; OMM, outer mitochondrial membrane. TFAM (MM protein), CYCS (IMS protein), and Tom20 (OMM protein) were used as the control showing the
extent of digestion. (H, I) Complex IV activity in HCT116 (H) and SW480 (I) cells transfected with an empty vector (EV), MTS1-FKBP4, or COA6 in combination with siCtrl,
siFKBP4_39UTR, or siCOA6_39UTR treatment. ***P < 0.001; ns, not significant by two-tailed t test. Data are presented as mean + SD. n = 6.
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analysis, ectopic expression of MTS1-FKBP4 failed to reverse the
decreased IC50 values upon COA6 loss (Figs 5F and S6B). Therefore,
these findings indicate that COA6 is critical in sustaining mito-
chondrial respiration, thus affecting sensitivity of COAD cells to 5-FU.

Inhibition of complex IV phenocopies the enhanced 5-FU
sensitivity upon FKBP4 or COA6 depletion in COAD cells

To further assess the contribution of complex IV inhibition to 5-FU
sensitivity, we used two well-recognized complex IV inhibitors, KCN
(Khutornenko et al, 2010; Yamamoto et al, 2012; Zhang et al, 2017)
and ADDA5 (Oliva et al, 2016; Remsik et al, 2020), to study their
impact on 5-FU sensitivity in COAD cells. To this end, we determined
the cell viability of COAD cells upon treatment with KCN or ADDA5
using SRB assay. We observed that either of these two inhibitors
caused dramatic decline in IC50 values of 5-FU in COAD cells (Fig
6A–D). These findings demonstrate that the inhibition of complex IV

activity is sufficient to increase the sensitivity of COAD cells to 5-FU.
Importantly, ectopic expression of MTS1-FKBP4 failed to reverse the
complex IV inhibitor–triggered enhancement of 5-FU sensitivity (Fig
6A–D). These findings suggest that the role of IMS-localized FKBP4
in the regulation of 5-FU sensitivity is dependent on its manipu-
lation of complex IV activity.

In summary, our data suggest a novel role of FKBP4 in the
regulation of mitochondrial respiration via modulating COA6-
mediated mitochondrial complex IV biogenesis and activity, thus
controlling the sensitivity of COAD cells to 5-FU.

Discussion

The COA6/SCO1/SCO2 complex is essential for the assembly and
activity of complex IV, thereby controlling mitochondrial respiration
(Pacheu-Grau et al, 2015, 2020; Stroud et al, 2015; Soma et al, 2019;

Figure 5. COA6 modulates mitochondrial respiration and sensitivity of COAD cells to 5-FU.
(A, B)Mitochondrial respiration profiles of HCT116 cells treated with siCtrl or two different siCOA6. O, oligomycin; F, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
(FCCP); R+A, rotenone and antimycin A. (B) Basal, ATP-linked respiration, and maximal respiratory capacity were calculated. ***P < 0.001 by two-tailed t test. (C, D) Profiles of
mitochondrial respiration over time in HCT116 cells transfected with an empty vector (EV) or MTS1-FKBP4 in combination with the treatment of siCtrl or siRNA targeting 39UTR of
endogenous COA6 mRNA (siCOA6). (D) Basal, ATP-linked respiration, and maximal respiratory capacity were calculated. ***P < 0.001 by the two-tailed t test. (A, B, C, D) Data
are presented as mean ± SD. n = 6. (E) Representative dose–response curves of 5-FU treatment in HCT116 cells transfected with siCtrl or two different siRNA targeting COA6.
(F) Representative dose–response curves of 5-FU treatment in HCT116 cells transfected with an empty vector (EV) or MTS1-FKBP4 in combination with the treatment of siCtrl or
siRNA targeting 39UTR of endogenous COA6 mRNA (siCOA6). (E, F) Twenty-four hours after siRNA transfection, cells were seeded into 96-well plate. After 24 h, cells were
treated with different doses of 5-FU for 72 h, followed by cell viability analysis using SRB assay. IC50 values of 5-FU were indicated. Data are presented as mean ± SD. n = 3.
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Maghool et al, 2020; Swaminathan & Gohil, 2022). Mitochondrial
dysfunction caused by COA6 loss-of-function mutation leads to
several types of human mitochondrial diseases (Ghosh et al,
2014; Baertling et al, 2015; Pacheu-Grau et al, 2015). Nevertheless,
being a mitochondrial respiration-dependent disease, COAD has
not yet been linked to COA6-modulated mitochondrial function.
Our study fills this gap by showing that COA6 depletion sensi-
tized the COAD cells to 5-FU treatment via impairing complex IV
activity.

The co-chaperone protein FKBP4 is characterized as a scaffold
for sustaining the assembly of multi-protein complexes (Mange et
al, 2019; Zong et al, 2021). In alignment with this, we showed that
FKBP4 depletion led to rupture of the COA6/SCO1/SCO2 complex,
suggesting a critical role of FKBP4 in maintaining the assembly
of this complex. Thus, our study extends the knowledge on the
establishment of the COA6/SCO1/SCO2 complex and has iden-
tified new important interacting partner of this functional
complex.

Although FKBP4 has been shown to reside in both the cytoplasm
and nucleus in various cell types (Thul et al, 2017), the subcellular
compartmentalization of FKBP4 and its role in cancer cells has not
yet been addressed. Our study investigated the subcellular dis-
tribution of FKBP4 and identified a significant population of FKBP4
in the mitochondria of COAD cells. Further assessment of submi-
tochondrial localization, we found that FKBP4 resides both in IMS
and MM. Importantly, function analysis identified that IMS-
localized, instead of MM-localized or nucleus-localized FKBP4, is
critical for mitochondrial respiration of COAD cells. Thus, our study,
for the first time, dissects the compartmentalized activity of FKBP4
in COAD cells.

Most of the mitochondrial proteins are encoded by the nuclear
genome, translated in the cytoplasm, and imported into mito-
chondria (Pfanner et al, 2019). These nuclear-transcribed mito-
chondrial proteins frequently contain MTSs within their N-terminal
amino acid sequence (Wiedemann & Pfanner, 2017; Hansen &
Herrmann, 2019). Although FKBP4 showed mitochondrial localiza-
tion, no clear canonical MTS was detected in it. It might be that
FKBP4 has unconventional targeting signal that cannot be identi-
fied by bioinformatic prediction, as seen in MOF, APE1, CREB, and
p53 (Marchenko et al, 2000; Lee et al, 2005; Li et al, 2010; Chatterjee et
al, 2016). Mitochondrial import of FKBP5, another member of the
FKBP family, is known to be conferred by its TPR domain through a
HSP90/HSP70–dependent mechanism (Gallo et al, 2011). Although
FKBP4 also contains the TPR domain, its mitochondrial localization
is not dictated by the TPR domain–mediated interaction with
HSP90/HSP70. Thus, future work is needed to identify the special
mitochondrial import machinery of FKBP4.

FKBP4 is known to regulate nuclear translocation and/or tran-
scriptional activity of several cancer-related transcription factors
and thus contributes to malignancy and progression of several
types of human cancer (Chen et al, 2010; Mange et al, 2019; Liu & Gao,
2021; Zong et al, 2021). However, no study has yet addressed whether
FKBP4 plays a role in conferring the sensitivity of COAD cells to
chemotherapy agents. Our study for the first time fills this gap by
showing that targeting FKBP4/COA6 enhances the 5-FU sensitivity
in COAD cells via inhibiting the activity of mitochondrial complex IV.
Mechanistically, we found that FKBP4 regulates COA6-mediated
mitochondrial cytochrome c oxidase biogenesis. In addition to
what we have shown in the present study, FKBP4 was shown to
facilitate breast cancer proliferation via activating the PI3K/AKT

Figure 6. Complex IV inhibition enhances sensitivity of COAD cells to 5-FU.
(A, B) Representative dose–response curves of 5-FU treatment in HCT116 (A) and SW480 (B) cells transfected with an empty vector (EV) or MTS1-FKBP4 in combination
with the treatment with H2O or 20 μM KCN (potassium cyanide). (C, D) Representative dose–response curves of 5-FU treatment in HCT116 (C) and SW480 (D) cells
transfected with empty vector (EV) or MTS1-FKBP4 in combination with the treatment with DMSO or 10 μM ADDA5 (ADDA 5 hydrochloride). (A, B, C, D) Cells were treated with
different doses of 5-FU together with 20 μM KCN or 10 μM ADDA5 for 72 h, followed by cell viability analysis using SRB assay. IC50 values of 5-FU were indicated. Data are
presented as mean ± SD. n = 3.
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pathway (Mange et al, 2019). Accordantly, FKBP5 that acts antag-
onistically to the function of FKBP4 (Barent et al, 1998; Davies et al,
2002; Galigniana et al, 2010) was found to confer chemosensitization
via negatively regulating AKT in several types of cancer cells (Pei et
al, 2009; Li et al, 2011). Thus, it would be interesting to examine
whether FKBP4 confers chemoresistance in COAD via modulating
the PI3K/AKT signaling pathway in future work. In the present study,
we showed that direct inhibition of complex IV using selective
chemical inhibitors improves the response of COAD cells to 5-FU.
Thus, our data shed light on potential advantages for combination
treatment with 5-FU and complex IV inhibitors in anti-COAD
therapy.

Materials and Methods

Antibodies, siRNAs, plasmids, and chemicals

Detailed information regarding the antibodies, siRNAs, plasmids,
and chemicals used in this study is provided in Table S1.

Cell culture, cloning, and transfection

HCT116 and SW480 colon cancer cells were obtained and au-
thenticated from ATCC. HCT116 and SW480 cells were maintained in
DMEM supplemented with 10% FBS, glutamine, and penicillin/
streptomycin. Cells were tested as mycoplasma-free using the
Universal Mycoplasma Detection Kit (30-1012K; ATCC). The MTS
sequence from SMAC (referred to as MTS1, MAALKSWLSRSVTSF-
FRYRQCLCVPVVANFKKRCFSELIRPWHKTVTIGFGVTLCAVPI) was fused
to the N-terminus of FKBP4 by cloning to import the FKBP4 protein
into the mitochondrial intermembrane space. The MTS sequence
from COX4A (referred to as MTS2, MLATRVFSLVGKRAISTSVCVRAH)
was fused to the N-terminus of FKBP4 by cloning to import the
FKBP4 protein into the mitochondrial matrix. The nuclear locali-
zation sequence from c-Myc (referred to as NLS, PAAKRVKLD) was
fused to the N-terminus of FKBP4 by cloning to import the FKBP4
protein into the nucleus. For ectopic expression of these FKBP4-
derivatives, lentiviral plasmids were used to produce recombinant
lentiviruses to infect HCT116 and SW480 cells. For generation of
siRNA-mediated knockdown, cells were transfected with siCtrl,
siFKBP4, or siCOA6 using Lipofectamine RNAiMAX Transfection
Reagent (Thermo Fisher Scientific) according to the manufacturer’s
instructions, followed by harvesting the cells for the subsequent
assay.

Cell fractionation and mitochondrial isolation

Cell fractionation and mitochondrial isolation were performed with
the Mitochondria Isolation Kit for Cultured Cells (Cat. no.: ab110170;
Abcam) according to the manual. In detail, cells were frozen and
thawed once in liquid nitrogen to weaken the cell membranes and
then resuspended with Reagent A (supplied in the kit) and incu-
bated for 10 min on ice followed by homogeniation with the Dounce
homogenizer. Next, homogenate was clarified with centrifugation at
1,000g for 10 min at 4°C. After centrifugation, supernatant was

saved as supernatant #1. The pellet was resuspended with Reagent
B (supplied in the kit) and homogenized with the Dounce ho-
mogenizer. Homogenate was then clarified with centrifugation at
1,000g for 10 min at 4°C. After centrifugation, supernatant was
saved as supernatant #2. The pellet (nuclei) was lysed with RIPA
lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 0.1%
SDS, 0.5% sodium deoxycholate, and cOmplete protease inhibitor
Cocktail [Sigma-Aldrich]) to get the nuclear fraction. Supernatant #1
and #2 were combined, mixed thoroughly, and centrifuged at
12,000g for 15 min at 4°C. After centrifugation, supernatant was
collected (cytosolic fraction). The pellet (mitochondria) was lysed
with RIPA lysis buffer to get the mitochondrial fraction.

Western blot analysis

Equal amounts of proteins from each sample were subjected to
SDS–PAGE separation, followed by transferring to a PVDF mem-
brane. Membranes were then blocked with blocking buffer (PBS
containing 0.1% Tween 20 and 5% wt/vol nonfat dry milk) for 1 h at
room temperature, followed by incubation with indicated primary
antibody at 4°C overnight. The next day, membranes were washed
three times with washing buffer (PBS containing 0.1% Tween 20),
followed by incubation with HRP-conjugated secondary antibody
for 1 h at room temperature. Next, membranes were washed three
times with washing buffer and then subjected to treatment with ECL
solution and chemiluminescent detection.

Proteinase K protection assay

Mitochondria were freshly isolated with the Mitochondria Isolation
Kit for Cultured Cells (Cat. no.: ab110170; Abcam) as described
above and then resuspended with each of the three following
buffers: (1) isotonic buffer (10 mM MOPS-KOH, pH 7.2, 250 mM
sucrose and 1 mM EDTA), (2) hypotonic buffer (10 mM MOPS-KOH,
pH 7.2, and 1 mM EDTA) and (3) Triton buffer (10 mM Tris–HCl, pH 7.4,
1 mM EDTA, and 1% Triton X-100), followed by treatment with
50 μg/ml proteinase K for 15 min on ice. Reaction was then ter-
minated with 20 mM PMSF. Proteins from each reaction were
precipitated with 10% trichloroacetic acid (TCA), followed by
washing with acetone, resuspension with 1× SDS loading buffer,
and heating at 95°C for 10 min. Finally, the samples were sub-
jected to Western blot analysis.

Co-immunoprecipitation

Mitochondria of HCT116 cells were isolated with the Mitochondria
Isolation Kit for Cultured Cells (Cat. no.: ab110170; Abcam) according
to the manual as described above. Freshly isolated mitochondria
were then lysed in co-IP buffer (50 mM Tris, pH 7.4, 150 mM NaCl,
2 mM EDTA, 1% NP-40, and cOmplete protease inhibitor Cocktail
[Sigma-Aldrich]). Extracts were clarified by centrifugation. The ly-
sates were then incubated with the indicated antibodies overnight
at 4°C followed by incubation with Protein-A/G-Sepharose beads
(GE Healthcare) for 2 h. Immunoprecipitates were washed five times
in co-IP buffer, dissolved in 5× SDS–PAGE sample buffer, and
subjected to standard Western blot analysis.
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Mitochondrial respiration measurement

Mitochondrial respiration was assessed by using the Seahorse XF
Cell Mito Stress Test Kit (Agilent) on the Seahorse XFe 96 analyzer
(Agilent) based on manufacturer’s instruction. In brief, cells were
treated with siCtrl or indicated siRNA for 2 d, followed by trypsi-
nization and cell counting. Next, 20,000 cells were seeded in XF 96
cell culture microplates and allowed to attach overnight. The next
day, cell culture medium was replaced with Seahorse XF DMEM
medium (Agilent). After 1 h incubation at 37°C in a CO2-free incu-
bator, cells were subjected to Seahorse XF Cell Mito Stress Test
assay for measuring the oxygen consumption rate values with the
sequential addition of oligomycin (1 μM), FCCP (1 μM), and a mix of
rotenone (2 μM) and antimycin A (2 μM). The basal, ATP-linked, and
maximal respiration were calculated according to the manual. After
the run, assay media was removed, and cells were lysed for
Bradford protein assay to measure protein concentration. The data
were normalized with protein concentration.

Determination of glycolytic function

Glycolytic levels and capacities of colon cancer cells were deter-
mined by using the Seahorse XF Glycolysis Stress Test Kit (Agilent)
on the Seahorse XFe 96 analyzer (Agilent) based on manufacturer’s
instruction. In brief, 15,000 cells were seeded in XF 96 cell culture
microplates, followed by overnight incubation at 37°C, 5% CO2 to
allow the adhesion of the cells. The next day, cell culture medium
was replaced with Seahorse XF DMEM medium (Agilent). After in-
cubation at 37°C in a CO2-free incubator for 45 min, cells were
subjected to Seahorse XF Glycolysis Stress Test assay for measuring
the extracellular acidification rate (ECAR) values with the sequential
addition of glucose (10 mM), oligomycin (1 μM), and 2-deoxyglucose
(50 mM). The glycolysis and glycolytic capacity were calculated
according to the manual. After the assay was finished, assay media
was removed, and cells were lysed and then proceeded to protein
concentrationmeasurement using Bradford protein assay. The data
were normalized with protein concentration.

Sulforhodamine B (SRB) assay

Cells were seeded into 96-well plates at a density of 3,000 cells per
well. The next day, cells were treated with various concentrations of
5-FU as indicated in. After 72 h of drug exposure, SRB assay was
performed with the Sulforhodamine B Assay Kit (Abcam) according
to the manual. In brief, cells were fixed with Fixation Solution for 1 h
at 4°C, followed by removal of solution and three times gently
washing with ddH2O. Next, the cells were subjected to staining with
SRB solution for 15 min at room temperature in the dark. SRB
solution was then removed, and cells were washed with Washing
Solution for four times. The plate was then air-dried before the
addition of Solubilization Solution and incubation at room tem-
perature for 10 min. The absorbance was measured at 565 nm. All
the solutions used in the assay were supplied with the kit. The half-
maximal inhibitory concentration (IC50) values were determined by
fitting a 4-parameter logistic (4PL) sigmoidal dose–response curve
to the data.

Measurements of complex IV activity

Mitochondria of COAD cells were extracted as described above.
Complex IV activity of freshly isolated mitochondria was measured
using a Complex IV Human Enzyme Activity Microplate Assay Kit
(ab109909; Abcam) according to the manufacturer’s protocol.

Data collection

COAD transcriptome mRNA-seq data and corresponding clinical
dataset were downloaded from TCGA (https://cancergenome.nih.
gov, TCGA-COAD).

Statistical analysis

Statistical analyses for the comparison of expression levels of
FKBP4 and COA6 between normal colon tissues and COAD speci-
mens were performed using the Wilcoxon rank-sum test. Results
from quantitative analyses of other experiments are presented as
mean + SD. Statistical analysis was performed using the t test with
two-tailed distribution. Sample sizes are indicated where appro-
priate and were determined based on previous experience with
analogous experiments. Statistical significance is presented as
follows: *P < 0.05, **P < 0.01, ***P < 0.001.

Data Availability Statement

A publicly available dataset was analyzed in this study. These data
can be found here: TCGA (https://portal.gdc.cancer.gov/).
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