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Abstract: Newcastle disease virus (NDV) is a significant pathogen of poultry; however, variants
also affect other species, including pigeons. While NDV is endemic in Bangladesh, and poultry
isolates have been recently characterized, information about viruses infecting pigeons is limited.
Worldwide, pigeon-derived isolates are commonly of low to moderate virulence for chickens. Here,
we studied a pigeon-derived NDV isolated in Bangladesh in 2010. To molecularly characterize
the isolate, we sequenced its complete fusion gene and performed a comprehensive phylogenetic
analysis. We further studied the biological properties of the virus by estimating mean death time
(MDT) and by experimentally infecting 5-week-old naïve Sonali chickens. The studied virus clustered
in sub-genotype XXI.1.2 with NDV from pigeons from Pakistan isolated during 2014–2018. Deduced
amino acid sequence analysis showed a polybasic fusion protein cleavage site motif, typical for
virulent NDV. The performed in vivo pathogenicity testing showed a MDT of 40.8 h, and along
with previously established intracerebral pathogenicity index of 1.51, these indicated a velogenic
pathotype for chickens, which is not typical for pigeon-derived viruses. The experimental infection
of chickens resulted in marked neurological signs and high mortality starting at 7 days post infection
(dpi). Mild congestion in the thymus and necrosis in the spleen were observed at an advanced stage
of infection. Microscopically, lymphoid depletion in the thymus, spleen, and bursa of Fabricius were
found at 5 dpi, which progressed to severe in the following days. Mild to moderate proliferation of
glial cells was noticed in the brain starting at 2 dpi, which gradually progressed with time, leading
to focal nodular aggregation. This study reports the velogenic nature for domestic chickens of a
pigeon-derived NDV isolate of sub-genotype XXI.1.2. Our findings show that not all pigeon-derived
viruses are of low virulence for chickens and highlight the importance of biologically evaluating the
pathogenicity of NDV isolated from pigeons.

Keywords: Newcastle disease virus; genotype XXI.1.2; pigeons; pathology; Bangladesh; PPMV-1;
pathogenicity

1. Introduction

Newcastle disease (ND) is caused by virulent strains of avian orthoavulavirus 1 (AOAV-1),
also known as avian paramyxovirus 1 (APMV-1) or Newcastle disease virus (NDV, used
hereafter), belonging to genus Orthoavulavirus of the family Paramyxoviridae [1]. NDV
is an enveloped virus containing a negative-sense, single-stranded RNA genome [2] of
approximately 15.2 kb that encodes for six major proteins: nucleocapsid (N) protein, phos-
phoprotein (P), matrix (M) protein, fusion (F) protein, haemagglutinin-neuraminidase
(HN), and large RNA-dependent RNA-polymerase (L). All NDV isolates belong to a single
serotype and are divided into three main pathotypes based on their pathogenicity for
chickens (listed in order of decreasing virulence): velogenic, mesogenic, and lentogenic (in-
cludes asymptomatic enteric) [3,4]. Velogenic viruses produce high mortality, particularly
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in immunologically naïve chickens, and are further divided into viscerotropic velogenic
NDV (vvNDV), causing haemorrhagic lesions in the gastrointestinal tract, and neurotropic
velogenic NDV (nvNDV), which produce predominantly neurological but also respiratory
signs. Mesogenic viruses are of moderate virulence, causing mostly respiratory disease,
whereas lentogenic viruses are of low virulence or avirulent and cause no clinical disease
to mild enteric, respiratory, or subclinical infection mostly in younger birds [5]. The two
surface glycoproteins F and HN play a key role in the virulence of NDV [6,7]. The F
protein and specifically its cleavage site amino acid sequence is known to be the major
determinant of NDV virulence [8,9]. Strains of NDV (vNDV) that possess a cleavage site
with multiple basic amino acids at the C-terminus of the F2 protein with motif 113R-Q-K/R-
R116 and phenylalanine at the N-terminus of the F1 protein (residue 117) are considered
virulent [4,10].

Based on their full-length F-gene coding sequences, NDV isolates are classified into
multiple genotypes and sub-genotypes under two main groups, namely class I and class
II [11,12]. Class I viruses belong to a single genotype, are mostly avirulent, and have
predominantly been detected in waterfowl and shorebirds [13,14]. Viruses of class II NDV
are currently classified into 21 (I-XXI) genotypes, some with multiple sub-genotypes [11].
Class II viruses have been detected in both domestic poultry and wild birds worldwide
and have caused at least five ND panzootics [15].

NDV of class II genotypes VI and XXI (the latter being newly formed and separated
from VI) have been associated with most ND outbreaks in pigeons and doves [16]. However,
these species have also been affected by viruses of genotype VII [11], which commonly
infect poultry [17]. Pigeon paramyxoviruses 1 (PPMV-1) are antigenic variants of NDV
adapted to birds of the family Columbidae. These viruses have been previously distinguished
from other NDV by a panel of monoclonal antibodies (mAb) [18] and have been reported to
form sub-genotype VI.1.1 (formerly designated as VIb) [12,19]. This mAb panel is neither
widely available nor commonly used, and not all viruses from genotype VI (and genotype
XXI that was created from viruses formerly belonging to genotype VI) have been shown to
be PPMV-1. Of note, while the term PPMV-1 has initially been used to designate only the
viruses of sub-genotype VI.1.1, it has also been often used for all viruses from genotype VI
without evidence that they are indeed PPMV-1 [20,21].

With the rapid development and availability of molecular methods, these are now
almost universally utilized for characterization of avian paramyxovirus isolates. Although
many pigeon-derived viruses have been found to possess multiple basic amino acid
residues at the F-protein-cleavage site, which is typical for virulent NDV, experimental
inoculation of many of these viruses revealed variable clinical outcomes in chickens [22–26].
While PPMV-1 commonly produce high morbidity and mortality in pigeons, infections
in chickens often present with mild to moderate neurological signs [23,24,27] or even
absence of clinical disease [22,25,28]. These findings are also supported by establishing
the intracerebral pathogenicity index (ICPI), with many pigeon-derived viruses having
values below 1.5 [28–31]. It has previously been reported that continuous circulation of
pigeon viruses in poultry could lead to generation of strains virulent to poultry [32–34]
and, although only occasionally, their potential to cause disease in chickens has been
demonstrated [23,27,35,36].

Velogenic viscerotropic NDV is endemic in Bangladesh, causing continuous outbreaks
in commercial as well as backyard poultry [37,38]. Our recent studies identified and
characterized velogenic NDV isolates from several outbreaks in chickens and pigeons in
Bangladesh [39–42]. However, detailed molecular and phylogenetic characterization and
pathogenicity studies in chickens of pigeon-derived Bangladeshi NDV isolates are not
available. Here, we aimed to molecularly investigate a Bangladeshi pigeon-derived NDV by
sequencing its complete fusion protein gene and performing a comprehensive phylogenetic
analysis to establish its relationship to other viruses based on the unified NDV classification
system. We further aimed to study the biological properties of the virus by estimating mean
death time (MDT) and by experimentally infecting 5-week-old naïve chickens.
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2. Materials and Methods
2.1. Ethics Statement

All applicable national and institutional guidelines for the care and use of animals were
followed. The study was carried out in accordance with the recommendation of the Ethical
Standard of Research Committee of Bangladesh Agricultural University, Mymensingh. The
utilized protocol and procedures were reviewed and approved by the Ethical Standard of
Research Committee (Ref. No. BAURES/ESRC/693/2020; Dated: 10.06.2020).

2.2. Virus

A pigeon-derived NDV isolate pigeon/Bangladesh/BD-P01/2010 (referred to as
BD-P01 hereafter) was retrieved from the repository of the Department of Pathology,
Bangladesh Agricultural University. The virus was originally isolated from an outbreak
in a small backyard flock (12 birds) of 6-month-old domestic pigeons in 2010 [39]. The
birds were reared in wooden boxes in a rural household, and chickens were also raised in
the same backyard. The single affected pigeon was found highly lethargic and anorexic
before death, and gross examination showed haemorrhages in the proventriculus. For
inoculum preparation, the virus was propagated in 9-day-old specific pathogen free (SPF)
embryonating chicken eggs (ECE) via allantoic cavity route, and the infected allantoic fluid
was harvested following death of the embryo. The identity of the virus in the infected
allantoic fluid was confirmed by RT-PCR, as described previously [40]. The inoculum
was also tested and found negative for avian influenza (AI), infectious bronchitis virus
(IBV), and infectious bursal disease virus (IBDV) using virus-specific RT-PCR, as described
elsewhere [43–45].

2.3. Pathogenicity Testing

The pathogenicity of the pigeon isolate was assessed by estimating the mean death
time (MDT) of embryonated chicken eggs following a standard procedure [5]. The ICPI of
the isolate was previously established (ICPI = 1.51) [39].

2.4. Sequencing

Viral RNA was extracted by using the MagMAX™-96 viral RNA isolation kit and a
KingFisher™ Magnetic Particle Processor (ThermoFisher Scientific, USA). For F-gene ampli-
fication, SuperScript® III One-Step RT-PCR System with Platinum® Taq DNA polymerase
(Life Technologies, USA) was used following the manufacturer’s recommendations. The
F-gene coding sequence was amplified using two overlapping RT-PCR with primer pairs
NDVF13-F1 5′-GAC GCA ACA TGG GCT CCA RAY CTT-3′, NDVF13-R1 5′-GGC AAA
CCC TCT GGT CGT GCT YAC-3′, and NDVF13-F2 5′-TTG GGA AAA TGC AAC AGT TTG-
3′, NDVF13-R2 5′-GCAT TCA CCT TTC ATC TGC GTT CA-3′ [46]. The RT-PCR product
was subjected to electrophoresis in 1% agarose gel. The DNA band was excised, purified,
and sequenced by a commercial laboratory (1st Base, Malaysia). The raw sequence data
were assembled and edited using BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html).

2.5. Collection of Sequences

The dataset of complete F-gene sequences provided by the international consortium
that published the current NDV classification system [11] was used in this study (dataset
deposited in GitHub at https://github.com/NDVconsortium/NDV_Sequence_Datasets).
As of 30 October 2020 the dataset contained 1901 sequences. All collected sequences were
aligned using Multiple Alignment with Fast Fourier Transformation (MAFFT v7.4.50) [47]
as implemented in Geneious Prime v.2021.0.1 (Biomatters Ltd., New Zealand). Additional
sequences (n = 50), submitted to GenBank after the dataset was created, were downloaded
and added to the alignment (as of 30 March 2021).

www.mbio.ncsu.edu/BioEdit/bioedit.html
https://github.com/NDVconsortium/NDV_Sequence_Datasets
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2.6. Evolutionary and Phylogenetic Analyses

To study the evolutionary relationship between the BD-P01 and viruses isolated in
other geographical regions, phylogenetic analyses were performed. The estimates of
average nucleotide distances were inferred using MEGA6 [48]. Analyses were conducted
using the Maximum Composite Likelihood model [49]. The rate variation among sites was
modelled with a gamma distribution (shape parameter = 1).

Next, utilizing MEGA6, the corrected Akaike information criterion was estimated
using all possible models. The general time-reversible (GTR) model [50] was identified as
best goodness of fit, and a maximum-likelihood tree with 1000 bootstrap replicates was
built using RaxML version 8.2.12 [51]. Evolutionary rate differences among sites were
modelled with discrete Gamma distribution (Γ), and the rate variation model allowed for
some sites to be evolutionarily invariable (I). The RaxML tree was constructed through the
CIPRES Science Gateway [52]. The tree was inferred using the complete class II full-length
F-gene alignment (n = 1952, including the sequence obtained here). The tree was visualized
using FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree). The taxa names include a
Roman–Arabic numeral representing the respective genotype for each isolate, the GenBank
accession number, host name (if available), country of isolation, isolate designation, and
year of isolation. The criteria put forth by Dimitrov and co-authors [11] based on the
phylogenetic topology and evolutionary distances between different taxonomic groups
were used for sub/genotype identification.

Bayesian time scaled analysis was conducted by the Bayesian Markov Chain Monte
Carlo (BMCMC) method implemented in BEAST v1.10.4 [53] program utilizing a subset of
all full-fusion gene sequences (n = 383) of genotypes VI, XX, and XXI (representing all former
genotype VI isolates, commonly considered to be pigeon related). General time-reversible
model with gamma distribution nucleotide substitution were applied (GTR+ Γ4) [50,54].
Relaxed clock model (uncorrelated lognormal distribution) [55] with exponential growth
demographic model was utilized. An input file for BEAST analysis was prepared using
Bayesian evolutionary analysis utility (BEAUTI) tool v.1.10.4, and the sequences were
annotated with year of collection. Three independent chains were run through the CIPRES
Science Gateway using BEAGLE library [56] to get output of 100,000 trees from each run.
Convergence was assessed in Tracer v1.7.1 program [57]. The trees from each run were
combined using LogCombiner v.1.10.4 (burn in 30%), and Maximum Clade Credibility trees
were generated using the Tree Annotator program v.1.10.4 from the BEAST package. The
FigTree v1.4.2 tool was used for the visualization of the annotated tree.

2.7. Chickens

A total of 53 one-day-old Sonali chickens (crossbred of Fayoumi and Road Island
Red chickens) were obtained from the Central Poultry Farm, Mirpur, Dhaka, Bangladesh.
The chickens were reared in relative isolation without vaccination and provided feed and
water with ad libitum access. At 28 days of age, chickens were bled, and the sera were
separated. The serum samples were subjected to haemagglutination inhibition (HI) test
following standard procedure [10]. None of the samples had detectable level of NDV-
specific antibodies. At 32 days of age, the birds were divided into two groups (infected and
control) and placed into separate houses for acclimatization.

2.8. Experimental Infection

At 35 days of age, the chickens from the experimental group (n = 31) were inoculated
with 106 EID50/0.1 mL of the BD-P01 virus. Each bird received 100 µL inoculum through the
intraocular (50 µL) and intranasal (50 µL) routes. The control birds (n = 22) received 100 µL
of uninfected allantoic fluid via the same routes. All birds were closely observed for clinical
signs during the post-inoculation period, and morbidity and mortality were recorded daily.
Birds that showed severe clinical signs, stopped eating or drinking, or remained recumbent
were euthanized and reported as dead on the next day for the calculation of survival curve

http://tree.bio.ed.ac.uk/software/figtree
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and average death time. Prism v.7.03 (GraphPad Software Inc., La Jolla, CA, USA) software
was used to analyze a survival curve using the log-rank (Mantel–Cox) test.

2.9. Necropsy, Sample Collection and Histopathological Examination

All euthanized birds were necropsied, and gross lesions were recorded. At 1, 2, 3, 5, 7,
and 9 days post infection (dpi), three birds per group (euthanized when sick or sacrificed)
were necropsied, and gross lesions were recorded. Birds found dead at inspection were also
examined. At necropsy, tissue samples from the Harderian gland, brain, thymus, spleen,
liver, kidney, heart, trachea, lungs, proventriculus, intestine, caecal tonsils, and bursa of
Fabricius were collected in 10% neutral buffered formalin. Next, fixed tissue samples were
processed, sectioned, and stained with routine haematoxylin and eosin staining methods,
as described previously [58]. The slides were examined under photomicroscope (ZEISS
Primo Star, Germany).

3. Results
3.1. Pathogenicity Testing

The pathogenicity testing of the pigeon isolate was performed in embryonating
chicken eggs. The BD-P01 virus showed a mean embryo death time (MDT) of 40.8 h.
Such MDT (<60) is typical for viruses that are of high virulence for chickens [3]. This result
is in agreement with the estimated ICPI of 1.51. While lentogenic viruses commonly have
ICPI below 0.7 and MDT above 120 h, these indexes are MDT of 60–90 h and ICPI of 0.7–1.5
for mesogenic viruses and MDT below 60 h and ICPI above 1.5 for velogenic viruses [4].

3.2. Molecular Characterization and Classification

The complete F-gene coding sequence of the BD-P01 isolate was obtained and analyzed
(submitted to GenBank and available under accession number JX028552). Analysis of the
deduced amino acid sequence at the fusion protein cleavage site of BD-P01 revealed
presence of multiple basic amino acid residues at the C-terminus of the F2 protein with
motif 113R-Q-K/R-R116. The amino acid at the N-terminus of the F1 protein (residue 117)
was deduced to be phenylalanine. Such cleavage site is specific for virulent viruses based
on criteria utilized by OIE to assess virulence of NDV isolates [10].

The nucleotide distances of the BD-P01 virus to related NDV from genotype XX,
XXI, and genotype VI were estimated (Table 1). The analysis identified that the viruses
most closely related to BD-P01 belong to class II sub-genotype XXI.1.2 (7.6% nucleotide
distance). The viruses from sub-genotypes XXI.1.1, XXI.2, and XXI were more distant
and showed 9.2%, 12%, and 14.7% nucleotide divergence, respectively. The viruses from
genotype VI, commonly associated with ND in pigeons, were also very divergent, with
12.4% nucleotide distance. The viruses from genotype XX were more than 10% distant
(11% nucleotide distance). As per the latest nomenclature system [11], the phylogenetic
analysis classified BD-P01 into class II genotype XXI (Figure 1, Supplementary Figure S1).
Among the three sub-genotypes of genotype XXI (i.e., XXI.1.1, XXI.1.2, and XXI.2), the
studied Bangladeshi pigeon isolate clustered with sub-genotype XXI.1.2 (former VIm) NDV
isolated from pigeons in Pakistan during 2014–2018.
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Figure 1. Phylogenetic analysis based on full-length nucleotide sequence of the fusion gene of isolates representing
Newcastle disease virus class II (n = 1952). The evolutionary history was inferred by using RaxML [51] and utilizing the
maximum-likelihood method based on the general time-reversible model with 1000 bootstrap replicates. A discrete gamma
distribution was used to model evolutionary rate differences among sites, and the rate variation model allowed for some
sites to be evolutionarily invariable. For imaging purposes, only isolates from genotype XX and XXI (n = 78) are shown; all
other genotypes are collapsed (the full tree is available in Supplementary Figure S1). The tree is drawn to scale, with branch
lengths measured in the number of substitutions per site. The Bangladeshi isolate BD-P01 is highlighted in blue color. There
were a total of 1649 positions in the final dataset. Only bootstrap values above 60 are shown.
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In order to estimate the time to most recent common ancestor (tMRCA) between
the studied isolate and related viruses, we used a BMCMC approach. The Bayesian tree
confirmed the topology of the Maximum Likelihood Analysis. Maximum Clade Credibility
trees revealed that BD-P01 and the viruses from sub-genotype XXI.1.2 have evolved from
an ancestor that existed during the late 1990s (Figure 2). Genotype XXI and genotype VI
emerged from common ancestors during the early 1960s (Figure 2), which is in agreement
with previously reported estimates [59,60]. Interestingly, genotypes VI and XXI share
common ancestors with viruses that were previously designated as sub-genotype VIc
and were recently re-classified as genotype XX. Genotype XX contains predominantly
chicken viruses isolated in the 1980s and the 1990s and group together with unclassified
chicken viruses from the 1950s and 1960s. The estimated tMRCA suggests that the common
ancestors between these viruses and those from genotypes VI and XXI circulated during
the late 1950s.

Table 1. Estimates of evolutionary distance between the studied BD-P01 virus and different sub/genotypes of class II
Newcastle disease viruses that have been associated with pigeons.

Sub/Genotype No. of Base Substitutions per Site a

BD-P01 XXI.1.1 XXI.1.2 XXI.2 XXI XX

BD-P01
XXI.1.1 0.092
XXI.1.2 0.076 0.093
XXI.2 0.120 0.105 0.124
XXI 0.147 0.125 0.139 0.148
XX 0.110 0.096 0.111 0.118 0.127
VI 0.124 0.108 0.125 0.131 0.148 0.102

a The number of base substitutions per site from averaging over all sequence pairs between groups are shown. Analyses were conducted
using the Maximum Composite Likelihood model [49]. The rate variation among sites was modelled with a gamma distribution (shape
parameter = 1). The analysis involved 383 nucleotide sequences. All positions containing gaps, and missing data were eliminated. There
were a total of 1652 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 [48].

3.3. Pathogenicity of BD-P01 for Chickens
3.3.1. Clinical Signs and Mortality

Five-week-old Sonali chickens were infected with the BD-P01 isolate. Clinical signs,
gross pathology, and microscope lesions were recorded. The morbidity and mortality
data of the infected chickens are summarized in Table 2. The post-inoculation survival is
depicted by a survival curve in Supplementary Figure S2. The infected chickens did not
show any clinical signs during the first 6 dpi. At 7 dpi, four of the infected chickens showed
sudden onset of lethargy and paralysis, and three chickens died. At 8 dpi, three more
chickens died, and five more chickens showed neurological signs, with paralyses of legs
and wings. At 9 dpi, 10 chickens died, and the remaining three chickens were euthanized
due to severe clinical signs. The average death time for the group was 7.85 days. The birds
in the control group remained healthy throughout the duration of the study period.

Table 2. Morbidity and mortality in chickens following infection with BD-P01.

Days Post
Infection

No. of Birds under
Observation

No. of Birds
Sick

No. of Birds
Died

No. of Birds Sacrificed
(Sick/Normal)

1 31 0 0 3
2 28 0 0 3
3 25 0 0 3
5 22 0 0 3
7 19 4 3 -
8 16 5 3 -
9 13 3 10 3
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method implemented in BEAST v1.10.4. The Bangladeshi isolate BD-P01 is highlighted in red font.
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3.3.2. Gross Lesions

No gross lesions were found at 1, 2, 3, and 5 dpi. At 7 dpi, slight congestion was found
in the lungs of one dead chicken. At 9 dpi, there was slight congestion in the thymus and
necrosis in the spleen of two dead chickens. On the same day, slight congestion was also
recorded in the lungs of three dead chickens. In addition, one dead bird had haemorrhages
in the proventriculus. Common gross lesions of chickens infected with the BD-P01 NDV
are presented in Figure 3.
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Figure 3. Gross lesions of chickens infected with the pigeon isolate of NDV BD-P01. (a) Congestion of lungs at 9 dpi;
(b) congestion of thymus at 9 dpi; and (c) necrosis of the spleen at 9 dpi.

3.3.3. Histopathological Changes

Tissue samples from both NDV-infected and control chickens were collected at necropsy
and examined after haematoxylin and eosin staining. In the respiratory system, congestion
and haemorrhages in the lung of the infected chickens were observed at 7 dpi. In addition,
proliferation of pneumocytes II was seen at 9 dpi. No significant lesions were observed
in the trachea of the infected chickens until 9 dpi, when there were haemorrhages and
desquamation of mucosal epithelium.

The proventriculus showed congestion and slight haemorrhages at 7 dpi. In addition,
infiltration of macrophages in the lamina propria was found at 9 dpi. In the intestine,
congestion and necrosis of the mucosa with sloughing of the epithelium were seen in two
birds at 5 dpi. The liver of two infected chickens showed few necrotic foci at 3 dpi and slight
congestion at 9 dpi. The kidney of the infected chickens showed congestion and tubular
necrosis with karyorrhexis at 5 dpi and onward. Slight congestion and haemorrhages were
noticed in the epicardium at 5 and 7 dpi.

Congestion was observed in the Harderian gland at 1 and 2 dpi in all infected chickens.
The thymus, bursa of Fabricius, and spleen of the uninfected control chickens showed
normal structure (Figure 4a,c,e), whereas the infected chickens showed severe lymphoid
depletion (Figure 4b,d,f). In all infected chickens, lymphoid depletion in the thymus started
at 5 dpi (Figure 4b) and became severe at 7 to 9 dpi. The bursa of Fabricius of all infected
chickens showed mild depletion of lymphocytes in the bursal follicles at 2 dpi, which
steadily increased, leading to significant depletion at 5 and 7 dpi (Figure 4d). Follicular
atrophy and fibroplasia in the bursa of Fabricius were found at 9 dpi. In the spleen, slight
depletion of lymphocytes was observed at 2 and 3 dpi in all infected chickens, followed by
multifocal lymphoid necrosis at day 5 and afterwards (Figure 4f).
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Figure 4. Histopathological changes in different lymphoid tissues of chickens infected with BD-P01.
(a) Section of the thymus, (c) bursa of Fabricius, and (e) spleen of uninfected chickens; (b) lymphoid
depletion and congestion in the thymus at 5 dpi, (d) severe lymphoid depletion in the bursa of
Fabricius at 7 dpi; (f) lymphoid necrosis in the spleen at 7 dpi. H & E stain, 10× (a–e), 40× (f).

Lesions were also found in the brain of the infected chickens. Mild to moderate
proliferation of glial cells (Figure 5a) was seen at 2 dpi, which gradually increased in
the course of time, leading to focal nodular aggregation (Figure 5b). There was also
satellitosis along with neuronal degeneration (Figure 5c,d) and neuronal necrosis in the
infected chickens.
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proliferation (40×); (b) nodular proliferation of oligodendrocyte (40×); (c) satellitosis around degenerating neuron (40×);
(d) higher magnification showing satellitosis around degenerating neuron (100×). H & E stain.

4. Discussion

Here, we sequenced the full-length fusion gene coding sequence of a pigeon-derived
NDV isolated in Bangladesh in 2010. The isolate was characterized as a member of
genotype XXI, and this is the first report of a virus from this genetic group in the country.
Experimental infection of chickens revealed that the virus is velogenic for chickens, which
is not typical for most NDV isolates from pigeons. The performed complete fusion gene
sequencing and molecular epidemiological and pathogenicity characterization provide
valuable information on virus distribution, diversity, and evolution, which will support
future ND studies.

In this study, we provide the first complete F-gene sequence of a pigeon-derived NDV
from Bangladesh (BD-P01). The characterized virus belongs to sub-genotype XXI.1.2 of
genotype XXI and is most closely related to NDV isolated from pigeons in Pakistan during
2010–2018. However, the high nucleotide distance between BD-P01 and the viruses from
Pakistan (7.6%) suggests that they did not evolve from each other or from a recent common
introduction. The BD-P01 virus demonstrates high genetic diversity (>5% nucleotide
distance to existing groups of genotype XXI); however, it cannot be designated into a new
sub-genotype, as at least four independent isolates are needed per current classification
criteria [11]. BD-P01 was identified in 2010, and no similar viruses have been reported
since then. For this reason, the isolate may belong to a diverse group of viruses that is
underreported due to scarcity of sampling/sequencing efforts. Alternatively, the virus
could represent a group that does not naturally circulate anymore.

The studied pigeon-derived BD-P01 was virulent but not fully adapted to chickens.
The experimental infection of 5-week-old chickens demonstrated that chickens were sus-
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ceptible to infection with BD-P01, and the virus induced high mortality in this species. The
observed clinical signs were typical for Newcastle disease and, together with the estimated
MDT of 40.8 h, confirmed the velogenic nature of the virus. While the challenge virus
readily infected chickens through the natural route of exposure, it seems it was not entirely
adapted to poultry. Multiple studies show that experimental infection of naïve chickens
with chicken-adapted NDV results in early onset of disease (usually by 5 dpi), often as
early as 1–2 dpi, with marked gross lesions [4,28,61]. The gross lesions in chickens follow-
ing infection with BD-P01 were scarce, including mostly congestion and hemorrhages in
individual birds. The first clinical signs in the present study were observed at 7 dpi, and the
birds’ mean death time was just under 8 days. However, once clinical signs were present,
the disease rapidly developed, and all birds died by 10 dpi. The observed clinical signs
and microscopic lesions were suggestive that BD-P01 is of neurotropic NDV pathotype.
Clinical signs included mostly lethargy and wing and leg paralyses. There were remark-
able neuronal lesions comprising gliosis and neuronal degeneration. Similar neuronal
lesions in chickens following infection with pigeon-derived NDV isolates have also been
reported earlier [27,32]. Pigeon-derived NDV have been documented to cause neurological
signs in chickens [62,63]. A limitation of the current study is that commercial birds were
used in the animal experiment. If these birds had underlying asymptomatic infections
(e.g., mycoplasma, infectious bursal disease, or Marek’s disease), the latter could have
exacerbated the clinical presentation after inoculation with BD-P01. However, these birds
were raised in isolation and were apparently healthy. No gross or microscopic lesions were
observed in the control group, indicating that the observed clinical signs and pathologic
lesions in the experimental group resulted from the BD-P01 challenge. The performed
study provides evidence of the potential of the BD-P01 virus to cause clinical disease in
commercial chickens.

The studied BD-P01 isolate may be a chicken-origin virus in process of adaptation to
pigeons. It has been previously demonstrated that over time pigeon NDV isolates appear
to increase their adaptation and virulence in pigeons with corresponding decrease in
adaptation and virulence for chickens [4,23]. This could explain the severity of clinical signs
that BD-P01 caused in pigeons and the delay of disease onset and scarcity of gross lesions in
chickens. Experimental pathogenicity studies reveal that most NDV isolated from pigeons
are highly virulent for pigeons and of moderate or low virulence for chickens [22–25,27,28],
which is probably a result of longer adaptation to pigeons for these viruses as compared to
BD-P01 (as it emerged in the last 20 years). Of note, serial passages of pigeon-origin NDV
in chickens have shown to increase their pathogenicity for chickens [32,34,64]. Indeed,
recent reports have suggested that the viruses from genotype XXI have evolved from
chicken-adapted viruses, further supporting our findings. Naguib et al. suggested that
the viruses of genotypes VI and XXI are descendants of viruses that circulated in poultry
in the 1950s and 1960s [65]. Similarly, Afonso discussed that the pigeon NDV lineages
(i.e., genotypes VI and XXI) may have originated from a chicken-adapted lineage (i.e., older
genotype XX, consisting of chicken viruses) [66].

The estimated nucleotide distances and performed phylogenetic and Bayesian analy-
ses provide sufficient evidence to suggest a continuous evolution of genotype XXI NDV.
Genotype XXI is relatively young and has been identified only recently. The first reported
viruses were isolated in 2005. Despite their recent identification, the sub-genotypes of
genotype XXI show significant diversity, with nucleotide distances between them ranging
from 7.6% to 14.8% (Table 2). Such high genetic distance cannot be explained with local
evolution over the last 16 years during which all available viruses from genotype XXI have
been reported. The estimated tMRCA suggests that genotypes XXI and VI evolved from
a common ancestor that circulated in the early 1960s. A period of almost 60 years is in
agreement with the genetic diversification that is observed between the groups within
genotype XXI and also between genotypes VI and XXI. The estimates of tMRCA presented
here align with previous studies utilizing large sequence datasets [59,60,67].
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Where and how the viruses from genotype XXI have been maintained over the years
until first identified in 2005 is puzzling. The hypotheses of maintenance in immune poultry
or in wild birds are viable. It has previously been suggested that NDV can be maintained
in vaccinated poultry [68,69]. While vaccinated birds do not show clinical signs, they still
shed the virus after infection with NDV [70,71]. The birds from the family Columbidae have
been documented as natural reservoirs of some NDV [4], and it is not unlikely that the
viruses from genotype XXI have been harbored in these species. These viruses may have
remained undetected and unreported due to scarcity (or lack thereof) of surveillance efforts.
Columbid birds are commonly not included in routine monitoring programs, and NDV
from these birds are mostly identified during massive die-offs or research studies using
convenience samples.

5. Conclusions

Overall, our study provides valuable information on NDV of genotype XXI that will
facilitate future investigation of NDV epidemiology. The results reported here highlight
the need to include synanthropic and wild bird populations in NDV-monitoring efforts
and not focus only on poultry. The identification of a pigeon-derived virus that is virulent
to chickens emphasizes the importance of biological characterization of such NDV isolates
and that the assumption that they are generally of low or moderate virulence to chickens
should not be over-trusted. Additional studies to identify and characterize more genotype
XXI NDV will aid to further elucidate the evolution and these viruses. A vaccination-
challenge study with currently utilized vaccines is warranted to reveal if they provide
protection against introduction of BD-P01 into poultry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081520/s1, Figure S1: Phylogenetic analysis based on full-length nucleotide sequence of the
fusion gene of isolates representing Newcastle disease virus class II (n = 1952). Figure S2: Survival of
35-day-old Sonali chickens after inoculation with BD-P01.
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