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Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide. Recent genome-wide association (GWA) studies have
pinpointed many loci associated with CVD risk factors in adults. It is unclear, however, if these loci predict trait levels at all
ages, if they are associated with how a trait develops over time, or if they could be used to screen individuals who are pre-
symptomatic to provide the opportunity for preventive measures before disease onset. We completed a genome-wide
association study on participants in the longitudinal Bogalusa Heart Study (BHS) and have characterized the association
between genetic factors and the development of CVD risk factors from childhood to adulthood. We report 7 genome-wide
significant associations involving CVD risk factors, two of which have been previously reported. Top regions were tested for
replication in the Young Finns Study (YF) and two associations strongly replicated: rs247616 in CETP with HDL levels
(combined P = 9.7610224), and rs445925 at APOE with LDL levels (combined P = 8.7610219). We show that SNPs previously
identified in adult cross-sectional studies tend to show age-independent effects in the BHS with effect sizes consistent with
previous reports. Previously identified variants were associated with adult trait levels above and beyond those seen in
childhood; however, variants with time-dependent effects were also promising predictors. This is the first GWA study to
evaluate the role of common genetic variants in the development of CVD risk factors in children as they advance through
adulthood and highlights the utility of using longitudinal studies to identify genetic predictors of adult traits in children.
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Introduction

Cardiovascular disease (CVD) affects over 79 million people in

the United States [1], and is the leading cause of death worldwide

[2–4]. Identifying the genetic determinants of CVD can lead to

more effective diagnostics, prognostics, therapeutics, and, ulti-

mately, preventive strategies. The best chance for prevention

would be to identify risk at the earliest possible age. Genome-wide

association (GWA) leveraging cross-sectional phenotypic data has

been a particularly useful approach to identifying loci that

influence many of the quantitative risk factors of CVD [5–10],

however the use of cross sectional data does not provide insight

into how such risk factors develop over time. Longitudinal studies,

particularly those that begin in childhood, allow for the

identification of risk profiles of susceptible individuals before

disease onset. The Bogalusa Heart Study (BHS) is a longitudinal

study focused on the early natural history of CVD. The BHS

began in 1973 and includes up to 9 phenotypic screenings in

childhood (4–17 years of age) and up to 10 adult (18–48 years of

age) cross-sectional screenings. We have conducted a longitudinal

genome-wide association study on a subset of the total sample of

unrelated individuals with a large number of measurements (mean

number of measurements = 8, range = 4–13) and are of European

Ancestry (N = 525).
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Results

Longitudinal GWA
We conducted a genome-wide association study of longitudinal

measures of 12 traits measured from childhood through adulthood

on participants of the BHS of European ancestry: anthropomor-

phic (height, weight, and waist circumference), blood pressure (BP)

(diastolic and systolic BP), heart rate, blood lipids (low density

lipoprotein cholesterol (LDL), high density lipoprotein cholesterol

(HDL), total cholesterol (TC), and triglycerides), and metabolic

traits (glucose and insulin). Genotyping was performed on the

Illumina Human610 and HumanCVD BeadChips [11] for a total

of 545,821 SNPs passing QC and allele frequency filters (see

Materials and Methods). Imputation was performed using the

CEU HapMap 2 as a reference population with the computer

program MACH v.1.0.16 (http://www.sph.umich.edu/csg/yli/

mach/) [12], providing genotype estimates for an additional

1,622,114 SNPs. For each SNP, we tested whether it had an

average linear effect over time (SNP effect), and whether it entered

into a time-dependent effect (SNPxAGE interaction effect), such

that the genotype is associated with variation in the linear

trajectory of the trait from childhood through adulthood. Both

SNP and SNPxAGE effects were calculated using linear mixed

models as implemented in the R nlme package [13], adjusting for

age and gender.

Table 1 lists all regions showing SNP effect associations

(P,1026) and Table 2 lists all regions showing association

(P,1026) with SNPxAGE effects. We analyzed the regions

surrounding the top associations for consistency with recombina-

tion hotspots and LD relationships (Figure S1) and provide

Manhattan plots of each trait association (Figure S2). From both

sets of analyses, there were 5 novel associations with a P-value less

than 561028 and 6 novel regions where there were at least 10

genotyped or imputed SNPs with P,1025. The most significant

association (rs7890572, P = 3.8610210) was observed with a linear

triglyceride trajectory effect (i.e., SNPxAGE effect) on the X

chromosome within the IL1RAPL1 gene and near the gene

Author Summary

We have studied the association between genetic factors
on a whole genome level and cardiovascular disease (CVD)
risk factors in a population of individuals studied from
childhood through adulthood. The longitudinal study
design has enabled the investigation of genetic variation
influencing trait values over time. We have identified DNA
variants that are associated with CVD trait values
consistently over time, and a second set of variants that
are associated with CVD trait values in a time-dependent
manner. We also show that variants previously identified in
adult populations have consistent effects within our
population and that these effects are usually similar across
childhood through adulthood. The discovery of time-
dependent variants that influence CVD trait values over
time can potentially be used to screen young individuals
who are pre-symptomatic and provide the opportunity for
preventive measures decades before disease onset.

Table 1. Top SNP effect GWA hits for 12 phenotypes.

Trait Cytoband Gene(s) Top SNP, Alleles
#SNPs @
P,1025 Risk AF Beta (SE) P

diastolic BP 5p13.3 CDH9/CDH6 rs7704530 G/A 2/3 0.26 8.44 (1.57) 1.161027

diastolic BP 7q11.21 TPST1 rs709595 C/G 8/17 0.39 7.18 (1.43) 7.061027

glucose 2q24.3 G6PC2, ABCB11 rs853773 A/G 4/1 0.53 28.72 (1.73) 7.061027

glucose 6q22.31 NKAIN2/RNF217 rs781718* G/A 1/4 0.89 23.46 (0.69) 8.461027

HDL-cholesterol 16q12.2 HERPUD1/CETP rs247616* T/C 4/2 0.33 3.77 (0.75) 6.661027

insulin 7p14.3 CHN2 rs3793275* A/T 1/3 0.94 24.63 (0.78) 5.861029

insulin 20p13 RNF24/SMOX rs6052399* T/C 0/1 0.93 24.55 (0.84) 9.861028

insulin 6q14.1 BCKDHB/FAM46A rs16892328* C/T 0/1 0.94 24.93 (0.92) 1.361027

insulin 18p11.31 MRLC2/TGIF1 rs1613695* G/A 0/1 0.95 25.68 (1.07) 1.761027

insulin 14q13.3 TTC6/SSTR1 rs10498337 T/G 1/0 0.81 29.3 (1.87) 8.961027

LDL-cholesterol 21q22.11 MRPS6/KCNE2 rs8131349* A/G 0/1 0.06 17.6 (3.05) 1.461028

LDL-cholesterol 19q13.33 APOE/APOC1 rs7412 T/C 1/1 0.07 269.74 (12.15) 1.661028

LDL-cholesterol 6q22.31 C6orf170/GJA1 rs7738656 G/A 1/0 0.84 242.39 (8.11) 2.561027

LDL-cholesterol 5q33.2 KIF4B/SGCD rs10044666* G/T 1/3 0.72 28.57 (1.68) 4.761027

systolic BP 11q24.1 ASAM/GRAMD1B rs11822822 G/A 2/4 0.24 10.74 (2.12) 5.661027

systolic BP 15q22.1 RORA/VPS13C rs726914 G/A 2/0 0.62 9.21 (1.83) 7.161027

total cholesterol 21q22.11 MRPS6/KCNE2 rs8131349* A/G 2/2 0.06 18.4 (3.32) 4.661028

total cholesterol 4p16.1 ABLIM2 rs6829649 T/G 1/2 0.87 250.96 (9.42) 9.661028

total cholesterol 6q22.31 C6orf170/GJA1 rs7738656 G/A 1/1 0.84 246.21 (8.79) 2.161027

total cholesterol 8q24.22 ST3GAL1/ZFAT rs4897695* C/G 1/6 0.91 13.66 (2.62) 2.761027

waist circumference 8q24.13 MTSS1/ZNF572 rs891541* A/G 4/7 0.29 4.55 (0.91) 7.761027

A list of all SNP effect P-values less than 1026 in the BHS. SNP names marked with an ‘‘*’’ are imputed, while those that are unmarked are directly genotyped. SNP alleles
are reported as risk/nonrisk and are in genome forward orientation (build 36.3). The number of SNPs @ P,1025 corresponds to the number of genotyped/imputed SNPs
with P,1025 within 200kb up and downstream of the top SNP. Associations at P,561028 are indicated in bold.
doi:10.1371/journal.pgen.1001094.t001

Longitudinal GWA of CVD Risk Factors in the BHS
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encoding glycerol kinase (GK), in which mutations have been

implicated in pseudo-hypertriglyceridemia, caused by high levels

of glycerol creating measurement artifacts in the triglyceride assay

[14]. A novel association of potential biological interest involved a

SNP effect on insulin levels with variation in the CHN2 locus

(rs3793275, P = 5.861029), a beta-chimerin that has recently been

described as part of a fusion gene also containing the insulin

receptor that was shown to be responsible for severe insulin

deficiency [15]. This SNP is also associated with glucose

trajectories in our dataset (SNPxAGE; P = 1.561027). In the

7q11 region, 25 SNPs are associated (P,1025) with diastolic BP

(SNP effect; peak SNP rs709595, P = 7.061027). The calcitonin

gene-related peptide receptor (CRCP) is approximately 200 kb

from the top SNP, but contains SNPs that are in LD with the top

SNP (see Figure S1). The calcitonin gene-related peptide is a

vasodilator [16] and its receptor CRCP has been previously

implicated in hypertension in a small candidate gene association

study of hypertension in Japanese individuals [17].

In addition to novel associations, there were three regions

showing SNP associations that have been previously identified in

GWA studies: rs853773 [18] near G6PC2 was associated with a

glucose SNP effect (P = 7.061027), rs247616 [5] near CETP was

associated with an HDL SNP effect (P = 6.661027), and the

APOE e2 SNP rs7412 [19] was associated with a genome-wide

significant LDL SNP effect (P = 1.661028). A region near APOA5

that had been previously implicated in triglyceride levels showed a

significant SNPxAGE effect on triglycerides in our study

(rs12280753; P = 1.861028). Although the nearest gene to

rs12280753 is not APOA5, this SNP was also the most strongly

associated SNP in previous studies of adult triglyceride levels

[5,10,20].

Replication in the Young Finns
We pursued replication of these findings in genotyped

individuals within the Young Finns (YF) cohort, consisting of

2,442 Finnish individuals tracked from childhood through middle

Table 2. Top SNPxAGE effect GWA hits for 12 phenotypes.

Trait Cytoband Gene(s) Top SNP, Alleles
#SNPs @
P,1025 Risk AF Beta (SE) P

distolic BP 14q24.3 ESRRB/VASH1 rs17104804 G/A 1/2 0.92 20.76 (0.15) 5.961027

glucose 16q21 CDH5/TK2 rs4783595 T/C 2/1 0.87 21.67 (0.31) 9.561028

glucose 7p14.3 CHN2 rs3793275* A/T 1/3 0.94 20.61 (0.12) 1.561027

glucose Xp22.2 ATXN3L/EGFL6 rs5979903 T/C 1/0 0.06 1.88 (0.36) 1.961027

glucose 11q13.5 WNT11/PRKRIR rs12807555* G/T 0/1 0.90 20.47 (0.09) 2.761027

glucose 17q25.1 PRPSAP1/SPHK1 rs9909931 G/A 2/3 0.19 1.36 (0.27) 4.361027

glucose 1q32.1 PLXNA2/LOC642587 rs12069004* C/T 0/1 0.91 20.54 (0.11) 5.861027

glucose 8q24.22 ZFAT/KHDRBS3 rs12548494* C/G 0/1 0.93 20.6 (0.12) 7.161027

glucose 7p21.1 AHR/SNX13 rs10260737 G/A 2/12 0.89 21.77 (0.36) 7.361027

glucose 8q23.2 KCNV1/CSMD3 rs3019325* G/C 0/6 0.70 20.31 (0.06) 7.561027

heart rate 3q24 RASA2/RNF7 rs6440031 G/A 1/0 0.90 1.33 (0.25) 1.861027

heart rate 12q21.2 NAV3/SYT1 rs1449460 G/A 2/6 0.08 21.36 (0.27) 7.461027

height 11q23.3 CADM1/BUD13 rs1144036 C/T 1/0 0.16 1.17 (0.23) 2.461027

height 19q13.32 PSG3 rs8103264* C/G 2/10 0.93 20.38 (0.08) 5.661027

insulin 12p11.23 TM7SF3 rs1552257* C/T 4/10 0.20 0.18 (0.04) 7.561027

LDL 17q22 AKAP1/MSI2 rs8073909 T/C 1/0 0.64 21.41 (0.27) 1.461027

LDL 10p13 FRMD4A rs11258628* A/T 0/1 0.92 20.69 (0.14) 4.161027

systolic BP 19p13.3 RFX2 rs1046391* G/T 0/1 0.86 0.21 (0.04) 4.161027

systolic BP 14q24.3 ESRRB/VASH1 rs17104804 G/A 3/5 0.92 20.91 (0.19) 9.361027

total cholesterol 17q22 AKAP1/MSI2 rs8073909 T/C 1/4 0.64 21.68 (0.31) 6.961028

triglycerides Xp21.2 IL1RAPL1 rs7890572 G/A 5/0 0.07 9.75 (1.55) 3.8610210

triglycerides 11q23.3 CADM1/BUD13 rs12280753* T/C 7/11 0.07 2.64 (0.47) 1.861028

triglycerides 9q21.2 PSAT1/CHCHD9 rs13290397* C/G 1/3 0.89 21.98 (0.38) 2.461027

triglycerides 2p16.3 FSHR/NRXN1 rs6726786* G/T 1/3 0.89 22.09 (0.41) 2.961027

triglycerides 3q22.3 IL20RB/SOX14 rs12330441 T/G 2/4 0.93 29.54 (1.86) 3.061027

waist circumference 20q13.32 APCDD1L/STX16 rs127430* G/A 2/13 0.86 20.33 (0.06) 3.361028

waist circumference 11q24.1 SORL1/BLID rs7121446 G/A 1/7 0.78 21.09 (0.21) 3.661027

waist circumference 17p13.2 SHPK rs7210277* C/T 0/1 0.91 20.39 (0.08) 7.061027

waist circumference 10q24.2 CNNM1 rs17568778 C/A 1/0 0.92 21.55 (0.31) 8.261027

weight 4q35.1 ODZ3 rs6552560 T/C 3/7 0.23 1.35 (0.25) 8.561028

A list of all SNPxAGE effect P-values less than 1026 in the BHS. Associations at P,561028 are indicated in bold. SNP names marked with an ‘‘*’’ are imputed, while those
that are unmarked are not. SNP alleles are reported as risk/nonrisk and are in genome forward orientaiton (build 36.3). The number of SNPs at P,1025 corresponds to
the number of genotyped/imputed SNPs with P,1025 within 200kb up and downstream of the top SNP.
doi:10.1371/journal.pgen.1001094.t002

Longitudinal GWA of CVD Risk Factors in the BHS
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adulthood (ages 3–45) with three measures in young individuals

(ages 3–24) and two measures in older individuals (ages 24–45).

These individuals have been genotyped on a custom-built Illumina

genotyping chip (670K). Using the same analysis methods, we

tested whether the top SNP was associated in the YF study

(Table 3). Imputed genotype dosages were used when direct

genotype data was not available. For the APOE-e2 SNP rs7412,

which is not in HapMap or on the 670K chip, we used the SNP

with the next strongest association in the BHS (rs445925). There

were two SNPs that significantly replicated beyond the multiple

testing threshold (P,0.05/51 = 161023): the rs247616 SNP at

CETP (P = 1.7610218), and rs445925 at APOE (P = 4.1610215).

There was no trend to replicate the direction of effect between the

studies: within the SNP effects, there were 12/21 (57%, chi-square

P = 0.51) markers that showed the same direction of effect, while

within SNPxAGE effects, there were 14/30 (47%, chi-square

P = 0.72). The samples were combined and P-values were

calculated for the combined BHS and YF data, using study as a

covariate (Table 3). The associations at rs247616 at CETP with

HDL-cholesterol (P = 9.7610224) and rs445925 at APOE with

LDL-cholesterol (P = 8.7610219) were strongly significant, but no

other regions in the combined BHS/YF data reached genome-

wide significance of P,561028.

Prediction of adult values given childhood values
Genetic variants will be most useful for trait prediction when

they are associated with a trait above and beyond other known risk

factors. In addition, the ability to predict adult trait levels in

children, before disease onset, can lead to a disease prevention

strategy. In longitudinal studies starting in childhood and going

into adulthood, we can ask whether genetic loci are associated with

the adult trait level above and beyond the trait level seen in the

first measure taken in childhood. To test this hypothesis, we

evaluated whether our associated markers were likely to be

predictive of adult levels of the traits, after adjustment for trait

levels in childhood. To account for variation in data collection, we

also included the age at each of these measures as well as gender as

covariates in the analysis. Within the BHS, variants that were

characterized as SNPxAGE effects were more likely to be

predictive of adult values after correcting for childhood values,

which is expected since these variants were characterized in BHS

initially (Table 4). In the YF study, however, we also saw more

SNPxAGE variants associated with adult levels given childhood

levels (Table 4). There were 6 variants that were associated with

adult levels in the YF study at P,0.05, with 2 corresponding to the

genome-wide significant SNP effects and 4 corresponding to BHS

SNPxAGE variants. Only the association of rs445925 with LDL-

cholesterol was strong enough to withstand multiple corrections.

Further analysis of this observation is warranted in a larger cohort.

Previously identified markers
We assessed whether associations that have been described in

previous adult cross-sectional GWA studies exhibit consistent

effects over time and whether the effect sizes observed in children

through middle-aged adults are consistent with those previously

described. We identified 169 SNP-trait associations (see Materials

and Methods) for which we had directly genotyped or imputed

genotype data. We first estimated our power to detect each

previous association at alpha = 0.05 under a more structured, but

similar study design (i.e., 8 equally spaced measurements), given

the previously reported effect size and allele frequency. Under this

model, we would expect to have detected 40/169 (24%)

associations at P,0.05, and we observed a similar number of

SNP effects in the BHS data (32/169; 19%). We evaluated the

associations across all traits together by comparing how well the

previously reported effect size was recapitulated in the BHS GWA

(Figure 1A). For consistency across studies and traits, if an effect

size was not already expressed in terms of percent standard

deviation (%SD), we converted the previously reported effect size

into %SD and compared the previous effect size to the SNP effect.

The previously reported effect size was a strong predictor of the

SNP effect (slope = 0.47, P = 1.2610221), suggesting that SNPs

that have been previously identified in adult cross-sectional GWA

studies are good predictors of time-averaged effects in the BHS

sample.

We also determined whether the same previously identified

SNPs were likely to show effects on a trait over time (SNPxAGE

effects). Under a simple model that assumed that all of the effect in

adults is due to a locus that has no effect in childhood, we

estimated power to detect such an interaction effect in a similarly

structured study with 8 repeated measures. Given these assump-

tions, we would have expected to see 24/169 (14%) SNPxAGE

associations. We observed 6/169 (3.6%) SNPs that showed

SNPxAGE effects at P,0.05, indicating that effects seen in SNPs

described in adult GWA studies are not due primarily to

differences in effects over time, although larger studies will be

required to definitively characterize this.

Composite scoring
We considered whether a composite genotype score would

better predict overall CVD risk factor trajectories or time-

dependent effects than any single locus. For each person and

each trait, we created a score by summing the expected effect in

percent standard deviation of each allele that the person carried.

We then determined whether the score was associated with the

trait’s average value and trajectory by using this score as a

predictor for each trait in a linear mixed model, adjusting for age

and gender. We assessed the score’s average effect across time

(score effect) and whether or not there was a time-dependent effect

(score*age effect). The traits HDL, LDL, total cholesterol,

triglycerides, and height showed strongly significant score effects,

while only triglycerides showed a score*age effect (Table 5).

Longitudinal data was visualized by color-coding the individuals

according to the decile of their overall score and the average linear

trend of each group was plotted (LDL, Figure 1B and others in

Figure S3). These results indicate that the cumulative effects of

SNPs that are identified in large adult cross-sectional studies are

generally age-independent effects, with an exception in triglycer-

ides, which was the only trait to show a significant score*age effect.

We additionally tested whether previously identified variants were

predictive of adult levels after adjusting for childhood levels

(Table 6). We saw that 25/169 (14.8%) showed association at

P,0.05. These observations in the BHS data suggest that even

though results from existing GWA studies demonstrate age-

independent effects, they can be predictive of trait values in adults.

Discussion

We identified seven associations at P,561028 showing either

time-averaged or time-dependent effects on CVD risk factors in

the BHS, two of which have been previously characterized. Of all

associations with P,1026, we were able to strongly replicate the

association in the YF with HDL-cholesterol at CETP with a

combined P = 9.7610224, and LDL-cholesterol at APOE with a

combined P = 8.7610219. Differences that exist between the

cohorts, such as birth year (15 year difference), and environmental

differences could have influenced replication of the remaining

SNPs. Larger discovery studies will also have better resolution and

Longitudinal GWA of CVD Risk Factors in the BHS
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Table 3. Replication results in the Young Finns.

BHS YF BHS + YF combined

Trait Top SNP (Alleles) Effect Beta (SE) P Beta(SE) P Beta(SE) P

diastolic BP rs7704530 G/A SNP 8.44 (1.57) 1.161027 20.05 (0.22) 0.82 0.4 (0.2) 0.04

diastolic BP rs709595 C/G SNP 7.18 (1.43) 7.061027 20.03 (0.21) 0.88 0.38 (0.19) 0.04

glucose rs853773 A/G SNP 28.72 (1.73) 7.061027 20.33 (0.37) 0.37 20.73 (0.32) 0.02

glucose rs781718* G/A SNP 23.46 (0.69) 8.461027 0.71 (0.7) 0.31 20.32 (0.59) 0.58

HDL-cholesterol rs247616* T/C SNP 3.77 (0.75) 6.661027 2.8 (0.32) 1.7610218 2.99 (0.29) 9.7610224

insulin rs3793275* A/T SNP 24.63 (0.78) 5.861029 0.36 (0.3) 0.23 20.13 (0.26) 0.63

insulin rs6052399* T/C SNP 24.55 (0.84) 9.861028 20.01 (0.44) 0.99 20.7 (0.37) 0.06

insulin rs16892328* C/T SNP 24.93 (0.92) 1.361027 20.81 (0.54) 0.14 21.64 (0.45) 0.00027

insulin rs1613695* G/A SNP 25.68 (1.07) 1.761027 0.35 (0.36) 0.32 20.13 (0.31) 0.68

insulin rs10498337 T/G SNP 29.3 (1.87) 8.961027 20.05 (0.22) 0.81 20.35 (0.18) 0.06

LDL-cholesterol rs8131349* A/G SNP 17.6 (3.05) 1.461028 21.14 (1.29) 0.38 1.46 (1.2) 0.23

LDL-cholesterol rs445925*# G/A SNP 12.8 (2.63) 1.561026 12.16 (1.54) 4.1610215 11.96 (1.34) 8.7610219

LDL-cholesterol rs7738656 G/A SNP 242.39 (8.11) 2.561027 21.52 (0.9) 0.09 22.91 (0.83) 0.00049

LDL-cholesterol rs10044666* G/T SNP 28.57 (1.68) 4.761027 21.25 (0.91) 0.17 22.93 (0.81) 0.00029

systolic BP rs11822822 G/A SNP 10.74 (2.12) 5.661027 20.34 (0.35) 0.34 0.44 (0.3) 0.14

systolic BP rs726914 G/A SNP 9.21 (1.83) 7.161027 0.07 (0.27) 0.81 0.55 (0.23) 0.02

total cholesterol rs8131349* A/G SNP 18.4 (3.32) 4.661028 21.26 (1.43) 0.38 1.44 (1.32) 0.28

total cholesterol rs6829649 T/G SNP 250.96 (9.42) 9.661028 0.09 (1.23) 0.94 22.06 (1.1) 0.06

total cholesterol rs7738656 G/A SNP 246.21 (8.79) 2.161027 21.51 (1) 0.13 23.04 (0.92) 0.00094

total cholesterol rs4897695* C/G SNP 13.66 (2.62) 2.761027 0.51 (1.7) 0.76 4.14 (1.44) 0.0041

waist circumference rs891541* A/G SNP 4.55 (0.91) 7.761027 0.28 (0.37) 0.44 1.18 (0.35) 0.00076

distolic BP rs17104804 G/A SNPxAGE 20.76 (0.15) 5.961027 20.02 (0.04) 0.63 20.1 (0.03) 0.00047

glucose rs4783595 T/C SNPxAGE 21.67 (0.31) 9.561028 20.04 (0.04) 0.29 20.12 (0.03) 0.00021

glucose rs3793275* A/T SNPxAGE 20.61 (0.12) 1.561027 0.04 (0.05) 0.43 20.09 (0.05) 0.05

glucose rs5979903 T/C SNPxAGE 1.88 (0.36) 1.961027 0.08 (0.04) 0.07 0.16 (0.04) 9.861025

glucose rs12807555* G/T SNPxAGE 20.47 (0.09) 2.761027 0.01 (0.05) 0.78 20.1 (0.04) 0.02

glucose rs9909931 G/A SNPxAGE 1.36 (0.27) 4.361027 20.02 (0.04) 0.56 0.06 (0.03) 0.06

glucose rs12069004* C/T SNPxAGE 20.54 (0.11) 5.861027 0.02 (0.05) 0.7 20.1 (0.05) 0.03

glucose rs12548494* C/G SNPxAGE 20.6 (0.12) 7.161027 1.461024 (0.09) 1 20.18 (0.07) 0.01

glucose rs10260737 G/A SNPxAGE 21.77 (0.36) 7.361027 20.02 (0.06) 0.8 20.11 (0.05) 0.03

glucose rs3019325* G/C SNPxAGE 20.31 (0.06) 7.561027 20.02 (0.03) 0.55 20.07 (0.03) 0.0097

heart rate rs6440031 G/A SNPxAGE 1.33 (0.25) 1.861027 20.01 (0.03) 0.72 0.03 (0.02) 0.16

heart rate rs1449460 G/A SNPxAGE 21.36 (0.27) 7.461027 0 (0.03) 0.93 20.05 (0.03) 0.1

height rs1144036 C/T SNPxAGE 1.17 (0.23) 2.461027 20.07 (0.04) 0.09 0 (0.03) 0.91

height rs8103264* C/G SNPxAGE 20.38 (0.08) 5.661027 20.04 (0.06) 0.42 20.11 (0.05) 0.02

insulin rs1552257* C/T SNPxAGE 0.18 (0.04) 7.561027 0 (0.02) 0.79 0.02 (0.02) 0.27

LDL rs8073909 T/C SNPxAGE 21.41 (0.27) 1.461027 0.06 (0.04) 0.08 0.04 (0.04) 0.32

LDL rs11258628* A/T SNPxAGE 20.69 (0.14) 4.161027 0.02 (0.09) 0.84 20.38 (0.09) 1.861025

systolic BP rs1046391* G/T SNPxAGE 0.21 (0.04) 4.161027 0.01 (0.03) 0.78 0.05 (0.02) 0.03

systolic BP rs17104804 G/A SNPxAGE 20.91 (0.19) 9.361027 0.01 (0.03) 0.63 20.05 (0.03) 0.06

total cholesterol rs8073909 T/C SNPxAGE 21.68 (0.31) 6.961028 0.06 (0.04) 0.13 0.03 (0.04) 0.51

triglycerides rs7890572 G/A SNPxAGE 9.75 (1.55) 3.8610210 0.1 (0.22) 0.66 0.97 (0.18) 1.261027

triglycerides rs12280753* T/C SNPxAGE 2.64 (0.47) 1.861028 0.28 (0.16) 0.09 0.69 (0.15) 7.861026

triglycerides rs13290397* C/G SNPxAGE 21.98 (0.38) 2.461027 0.21 (0.15) 0.17 20.25 (0.14) 0.08

triglycerides rs6726786* G/T SNPxAGE 22.09 (0.41) 2.961027 0.1 (0.15) 0.49 20.32 (0.14) 0.02

triglycerides rs12330441 T/G SNPxAGE 29.54 (1.86) 3.061027 20.05 (0.16) 0.75 20.47 (0.16) 0.0025

waist circumference rs127430* G/A SNPxAGE 20.33 (0.06) 3.361028 20.02 (0.05) 0.65 20.19 (0.04) 1.461026

waist circumference rs7121446 G/A SNPxAGE 21.09 (0.21) 3.661027 20.07 (0.04) 0.11 20.15 (0.03) 2.561026
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power to accurately estimate longitudinal effect sizes, likely

allowing for more robust replication.

We evaluated the longitudinal effects of markers that have been

previously identified in adult GWA studies. We found that

previously identified markers showed time-averaged effects con-

sistent with their reported effect size. This argues that the linear

mixed model is an effective tool for modeling time-averaged effects

in a GWA setting and that adult GWA studies may be capturing

variation that tends to have consistent effects over time. Using a

scoring approach, the overall signal from previously identified

markers tended to have strong associations with time-averaged

effects, but except in the case of triglycerides, did not show time-

dependent effects. Previously identified markers were also likely to

be associated with adult trait levels above and beyond childhood

levels. Although we primarily describe time-averaged effects for

previously identified markers, there may be more subtle time-

dependent effects that larger studies will be better able to capture.

It is important to note that although we focused on analysis of

linear trends over time, a linear model may not best capture these

trends. Other approaches could be explored further such as non-

linear models when there is an a priori expectation of trait

trajectory, or model free approaches. These additional models

could lead to additional variations that influence trajectories, or

more precise estimations of effect size.

Longitudinal studies are particularly suited to capturing effects

that vary over time. Genetic variation that shows a time-

dependent effect may help predict those that will go onto develop

disease before they show symptomatic traits. The discovery of

variants associated with SNPxAGE interaction effects could thus

be used to screen young individuals who are pre-symptomatic and

provide the opportunity for preventive measures decades before

disease onset. We explored how well the markers that we identified

predicted adult traits after correcting for childhood traits and

suggest further study of variants with SNPxAGE effects as possibly

better predictors of adult trait levels above and beyond childhood

levels. These results are consistent with the idea that longitudinal

studies may be a useful tool to better capture time-dependent

variation that could ultimately be better predictive of future

outcomes.

Materials and Methods

Ethics statement
The study was approved by the institutional review board and

the ethics committee of each institution. Written informed consent

was obtained from each participant in accordance with institu-

tional requirements and the Declaration of Helsinki Principles. All

subjects in the BHS gave informed consent at each examination,

and for those under 18 years of age, consent of a parent/guardian

was obtained. Study protocols were approved by the Institutional

Review Board of the Tulane University Health Sciences Center.

The Bogalusa Heart Study (BHS)
Between 1973 and 2008, 9 cross-sectional surveys of children

aged 4–17 years and 10 cross-sectional surveys of adults aged 18–

48 years (Figure S4), who had been previously examined as

children, were conducted for CVD risk factor examinations in

Bogalusa, Louisiana. This panel design of repeated cross-sectional

examinations has resulted in serial observations from childhood to

adulthood. By linking the 19 surveys, 12,163 individuals have been

examined, with 37,317 observations. In the ongoing Longitudinal

Aging Study funded by NIH and NIA since 2000, there are 1,202

subjects who have been examined 4–14 times from childhood to

adulthood and have DNA available for GWA genotyping. Based

on the analysis of identity-by-state (IBS) sharing from whole

genome genotyping data, we focus on a subset of 525 genotyped

individuals who are of European ancestry and unrelated (229

male, 296 female). The average number of measurements per

individual is 8 (range 4–13).

The Cardiovascular Risk in Young Finns Study (YF)
The YF cohort is a Finnish longitudinal population study

sample on the evolution of cardiovascular risk factors from

childhood to adulthood [21]. The first cross-sectional study was

conducted in 1980 in five centers and included 3,596 participants

in the age groups of 3, 6, 9, 12, 15, and 18, who were randomly

chosen from the national population register. After baseline in

1980 these subjects have been re-examined in 1983 and 1986 as

young individuals, and in 2001 and 2007 as older individuals.

Genotype data for the present analysis (DNA collected in 1980,

2001 and 2007) was available for 2,442 individuals.

In the latest follow-up in 2001, a total of 2,283 participants (of

which DNA is available from 2,265 participants) were examined

for numerous study variables, including serum lipoproteins,

glucose, insulin, obesity indices, blood pressure, life-style factors,

smoking status, alcohol use and general health status.

Genotyping & QC
BHS genotyping. We genotyped 1,202 BHS samples using

the Illumina Human610 Genotyping BeadChip [22], and

HumanCVD BeadChip [11]. Genotypes were called using a

clustering algorithm in Illumina’s BeadStudio software. Three

samples on the Human610 BeadChip gave poor results (call rates

,99%) and were discarded from the study. In addition, 3 samples

had a different estimated gender from genotype data versus gender

provided with the phenotype data and were also discarded. SNPs

with call rates ,90% were discarded, and SNPs with call rates

between 90–95% or cluster separation score ,0.3 were manually

Table 3. Cont.

BHS YF BHS + YF combined

Trait Top SNP (Alleles) Effect Beta (SE) P Beta(SE) P Beta(SE) P

waist circumference rs7210277* C/T SNPxAGE 20.39 (0.08) 7.061027 0.04 (0.06) 0.48 20.17 (0.05) 0.00043

waist circumference rs17568778 C/A SNPxAGE 21.55 (0.31) 8.261027 0 (0.06) 0.98 20.17 (0.05) 0.00024

weight rs6552560 T/C SNPxAGE 1.35 (0.25) 8.561028 20.02 (0.03) 0.5 0.06 (0.03) 0.03

Replication effects and P-values in the Young Finns (YF) Study and in combined data, adjusted for study. SNP names marked with an ‘‘*’’ are imputed, while those that
are unmarked were directly genotyped. SNP alleles are reported as risk/nonrisk and are in genome forward orientation (build 36.3). # rs445925 is a proxy for rs7412.
doi:10.1371/journal.pgen.1001094.t003
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Table 4. Association of GWAS SNPs with adult trait levels after adjusting for childhood levels.

Trait Top SNP (Alleles) Effect BHS Adult prediction P YF Adult prediction P

diastolic BP rs7704530 G/A SNP 0.07 0.74

diastolic BP rs709595 C/G SNP 0.26 0.09

glucose rs853773 A/G SNP 0.003 0.24

glucose rs781718* G/A SNP 0.27 0.21

HDL-cholesterol rs247616* T/C SNP 8.161024 0.0067

insulin rs3793275* A/T SNP 0.89 0.36

insulin rs6052399* T/C SNP 0.014 0.89

insulin rs16892328* C/T SNP 0.22 0.14

insulin rs1613695* G/A SNP 0.16 0.67

insulin rs10498337 T/G SNP 0.38 0.88

LDL-cholesterol rs8131349* A/G SNP 0.14 0.16

LDL-cholesterol rs445925* G/A SNP 0.025 2.361026

LDL-cholesterol rs7738656 G/A SNP 0.042 0.25

LDL-cholesterol rs10044666* G/T SNP 0.015 0.78

systolic BP rs11822822 G/A SNP 0.002 0.63

systolic BP rs726914 G/A SNP 0.004 0.54

total cholesterol rs8131349* A/G SNP 0.051 0.3

total cholesterol rs6829649 T/G SNP 0.56 0.44

total cholesterol rs7738656 G/A SNP 0.028 0.08

total cholesterol rs4897695* C/G SNP 0.24 0.91

waist circumference rs891541* A/G SNP 0.14 0.28

distolic BP rs17104804 G/A SNPxAGE 1.561024 0.46

glucose rs4783595 T/C SNPxAGE 8.761028 0.4

glucose rs3793275* A/T SNPxAGE 5.761027 0.44

glucose rs5979903 T/C SNPxAGE 3.061024 0.45

glucose rs12807555* G/T SNPxAGE 1.261028 0.93

glucose rs9909931 G/A SNPxAGE 5.061027 0.67

glucose rs12069004* C/T SNPxAGE 3.261025 0.88

glucose rs12548494* C/G SNPxAGE 2.761026 0.45

glucose rs10260737 G/A SNPxAGE 1.261025 1

glucose rs3019325* G/C SNPxAGE 2.261025 0.56

heart rate rs6440031 G/A SNPxAGE 1.261023 0.77

heart rate rs1449460 G/A SNPxAGE 0.0302 0.81

height rs1144036 C/T SNPxAGE 0.2199 0.01

height rs8103264* C/G SNPxAGE 0.0360 0.49

insulin rs1552257* C/T SNPxAGE 3.861025 0.61

LDL rs8073909 T/C SNPxAGE 1.261026 0.007

LDL rs11258628* A/T SNPxAGE 7.361026 0.88

systolic BP rs1046391* G/T SNPxAGE 6.261024 0.74

systolic BP rs17104804 G/A SNPxAGE 0.0015 0.36

total cholesterol rs8073909 T/C SNPxAGE 2.061027 0.008

triglycerides rs7890572 G/A SNPxAGE 4.261026 0.43

triglycerides rs12280753* T/C SNPxAGE 9.961029 0.24

triglycerides rs13290397* C/G SNPxAGE 6.861027 0.33

triglycerides rs6726786* G/T SNPxAGE 3.961026 0.74

triglycerides rs12330441 T/G SNPxAGE 3.161025 0.79

waist circumference rs127430* G/A SNPxAGE 2.161027 0.71

waist circumference rs7121446 G/A SNPxAGE 2.261026 0.68

waist circumference rs7210277* C/T SNPxAGE 1.261026 0.9

waist circumference rs17568778 C/A SNPxAGE 9.061027 0.99
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inspected and cluster positions were edited if needed. We removed

approximately 30,000 SNP loci (4.9%) due to poor performance.

The final average sample call rate was 99.95% for the Human610

BeadChip, and 99.32% for the CVD BeadChip. We assessed

reproducibility by genotyping 29 samples in duplicate (18 known

replicates, 11 blind replicates), and observed .99.99% identical

genotype calls on both BeadChips. Finally we observed 99.98%

genotype concordance in 12,581 overlapping SNPs between the

610 and CVD BeadChips. A final list of 545,821 unique SNPs

passed QC and allele frequency filters.

YF study genotyping. For replication, we had genome-wide

SNP data from a custom Illumina BeadChip containing 670,000

SNPs and CNV probes from 2,442 YF participants (1,123 males,

1,319 females). The custom content on the custom 670K array

replaced some poor performing SNPs on the Human610

BeadChip and added more CNV content, and includes 546,677

SNPs passing QC from 594,210 SNPs on the chip. The custom

670K chip shares 562,643 SNPs in common with the Illumina

Human610 BeadChip. Genotypes were called using Illumina’s

clustering algorithm [23]. A total of 2,556 samples were

genotyped. After initial clustering, we removed 2 subjects for

poor call rates (CR,0.90), and 54 samples failed subsequent QC

(i.e., duplicated samples, heterozygosity, low call rate, or custom

SNP fingerprint genotype discrepancy). The following filters were

applied to the remaining data: MAF 0.01, GENO 0.05, MIND

0.05, and HWE 161026. Three of 2,500 individuals were

removed for low genotyping (MIND.0.05), 11,766 markers

were excluded based on HWE test (P#161026), 7,746 SNPs

failed missingness test (GENO.0.05), 34,596 SNPs failed

frequency test (MAF,0.01) and one individual failed gender

check. A final list of 546,677 SNPs passed QC and allele frequency

filters.

Assessing cryptic relatedness. Bogalusa participants with

genotype data were filtered for relatedness. Whole-genome

genotype data was used to calculate identity-by-descent

(PI_HAT) values in PLINK [24]. Individuals were then removed

such that no pair of individuals retained a PI_HAT value greater

than 0.10. PI_HAT values were consistent with known sibling and

half-sibling relationships. The final list consisted of 525 BHS

individuals.

Trait Top SNP (Alleles) Effect BHS Adult prediction P YF Adult prediction P

weight rs6552560 T/C SNPxAGE 1.861025 0.04

Adult prediction P-values correspond to the association between the SNP and the last adult measurement, after adjusting for the first measure in childhood.
doi:10.1371/journal.pgen.1001094.t004

Table 4. Cont.

Figure 1. Effects of previously identified variants in the BHS. A) Effect sizes of previously identified markers are plotted against observed
effects in the BHS. SNP-trait associations are plotted by shape and color to indicate trait. The size of the point indicates the power to detect an
association of the magnitude previously described, and whether a point is filled in or not indicates whether the association was significant at P,0.05
in the BHS. Linear regression lines are shown, with the slope and p-value of the association between previously reported effect sizes and the
observed effect sizes. B) Individuals were scored based on the effect size of each previously identified marker and are grouped and color-coded based
on the decile of their score. Linear lines are linear regression estimates of the average trajectory of each decile group.
doi:10.1371/journal.pgen.1001094.g001
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In the YF data, there were 546,770 SNPs and 2,496 individuals

which were utilized to generate an identity-by-descent (IBD)

matrix file in PLINK [24]. There were 51 pairs of individuals

with pi-hat greater than 0.2 thus these individuals removed due to

possible relatedness. One of the pair was removed using greater

missingness as criteria. The final list consisted of 2,442 YF

subjects.

Imputation. We imputed genotypes in genotyped BHS

individuals for all HapMap (phase II, release 22) SNPs using the

program MACH [12]. The best estimate of the quantitative allele

dosage was used as the predictor in association tests. The CEU

HapMap phased haplotypes were used as a reference (N = 60

unrelated individuals). This resulted in overall allelic error rates of

1.6%. SNPs were filtered for minor allele frequency (,5%) and r2

with respect to genotyped SNPs (,0.30), resulting in genotype

data in a total of 2,173,391 SNPs. Imputation was performed in

the YF samples using MACH with the HapMap release 22 CEU

haplotypes as reference.

Prediction ability
Previously identified markers were obtained through the

NHGRI database [25] (accessed 5/20/09). Marker associations,

alleles, and allele frequencies were verified with those reported

in the original papers and corrected if required. Markers were

used if the alleles at the locus provided unambiguous orientation

or if the allele frequencies were different enough between A/T

and C/G SNPs to distinguish which allele was the associated

allele. We thus excluded any A/T or C/G SNPs with a minor

allele frequency .0.4 and required that the allele frequency in

the previously reported study be within 10% of the allele

frequency in the BHS. We excluded studies of non-European

Ancestry origin. One SNP per cytogenic region was used for

each phenotype: the SNP with the smallest previously reported

p-value was used.

Effect size was translated to percent standard deviation. If the

effect size was reported in an absolute measure (e.g. cm for height),

then the standard deviation from the BHS study was used.

Standard deviation was calculated from the standard error of the

SNP association reported in the linear mixed model. For glucose,

cholesterol, and triglycerides measures, units were converted to

mg/dl before converting to %SD.

A risk value was calculated for each individual based on the

imputed genotype and previously reported effect size, converted to

%SD. The %SD was multiplied by the allelic dosage for each SNP

and summed over all the associated SNPs for each phenotype. The

resulting risk value was then used as a predictor for the BHS

individuals.

Genome-wide association
GWA was performed using linear mixed model regression with

fixed covariates of age and sex, random slope, and random

intercept. Genotypes were coded as 0,1, or 2 when the SNP was

genotyped and by dosage (scale 0–2) when imputed. Analysis was

performed within the nlme package in R [13]. Covariance

structures were determined by testing all spatial covariance

structures (exponential, Gaussian, linear, rational quadradics,

and spherical) with covariates and a sample of SNPs, and picking

the structure that best fit the data as measured by the lowest AIC

(Akaike Information Criteria) value. SNP and SNPxAGE

interaction effects were estimated separately. Although the default

nlme optimizer tended to have difficulty converging, we obtained

good results by using the optim optimizer on data where all

missing data was removed. The number of SNPs that converged

and for which we obtained results is listed in Table S1. Analyses

were performed on a compute cluster with 600,000 tests taking

,3 hrs on 64 processors.

Table 6. P-values for predictive ability of previously identified
SNPs, after adjusting for first measure in childhood.

Trait SNP Alleles BETA SE P

diastolic BP rs653178 T/C 21.2 0.5 0.025

glucose rs560887 T/C 23.0 1.5 0.046

HDL-cholesterol rs1532624 A/C 2.1 0.7 0.005

HDL-cholesterol rs964184 G/C 22.8 1.1 0.015

HDL-cholesterol rs157580 A/G 21.6 0.7 0.027

HDL-cholesterol rs7395662 A/G 21.5 0.7 0.038

HDL-cholesterol rs471364 T/C 2.2 1.1 0.049

height rs185819 T/C 0.9 0.3 0.003

height rs3748069 A/G 0.9 0.3 0.006

height rs710841 C/T 20.8 0.3 0.013

height rs4896582 A/G 20.8 0.3 0.013

height rs967417 G/A 0.7 0.3 0.013

height rs757608 G/A 20.7 0.3 0.031

height rs3760318 A/G 20.6 0.3 0.032

height rs16896068 A/G 20.8 0.4 0.037

height rs6060373 A/G 20.6 0.3 0.048

LDL-cholesterol rs12740374 G/T 6.3 2.4 0.009

LDL-cholesterol rs12272004 A/C 28.7 4.1 0.034

systolic BP rs3184504 C/T 21.6 0.7 0.023

total cholesterol rs693 G/A 25.7 2.3 0.013

total cholesterol rs2304130 A/G 8.9 4.1 0.031

triglycerides rs964184 G/C 51.7 10.7 1.961026

triglycerides rs780094 C/T 219.1 7.2 0.009

triglycerides rs7819412 A/G 13.4 6.7 0.045

weight rs7138803 G/A 22.2 1.0 0.037

Previously associated SNPs were tested for whether they were associated with
adult level traits after adjusting for the trait level seen in childhood. Only
associations at P,0.05 are shown.
doi:10.1371/journal.pgen.1001094.t006

Table 5. P-values associated with score and score*age effects
(Age and Sex adjusted).

Score Score6AGE

weight 0.03 0.11

diastolic BP 0.62 0.92

HDL-cholesterol 1.961025 0.11

height 8.8610212 0.86

LDL-cholesterol 5.7610210 0.27

systolic BP 0.11 0.21

total cholesterol 6.661029 0.21

triglycerides 4.161028 2.961025

Scores based on the genotypes of previously reported SNPs were used to test
for association with effects across time (Score) or time-dependent effects
(Score6Age).
doi:10.1371/journal.pgen.1001094.t005
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Filtering for genomic inflation
If genomic inflation factors were inflated or deflated, we reran

the GWA using the first four MDS components as covariates. If

the inflation factor was still less than 0.90 or greater than 1.05, we

removed the analysis. In addition, we filtered body mass index

(BMI) SNP, BMI SNPxAGE, and weight SNP analyses completely

from the analysis due to a combination of consistently inflated or

deflated genomic inflation factors or a long list of highly associated

SNPs.

Power
Power was calculated using G*Power 3 [26].We used the

MANOVA repeated measures module with 8 repeated measures

with a correlation of 0.5 between them, similar to the correlations

seen in this study. We estimated power for between-factor and

between-within interaction effects. Effect size (f) was calculated as

f ~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1{R2

r
26½ �

and R2 was calculated from the allele frequencies as reported in

the original associations (p and q) and the effect size in terms of

%SD [27].

Supporting Information

Figure S1 Regional plots of top SNP and SNPxAGE associa-

tions. Regions are ordered by phenotype and significance as in

Table 1 and 2. SNPs are indicated by triangle (directly genotyped)

or square (imputed), and colored according to LD (r2) with the top

SNP with increasing shades of red indicating stronger LD. Blue

lines indicate recombination hotspots and refSeq genes are

indicated.

Found at: doi:10.1371/journal.pgen.1001094.s001 (8.26 MB PDF)

Figure S2 Manhattan Plots of GWAS results for each trait.

Manhattan plots are shown for each SNP and SNPxAGE GWAS.

Each point corresponds to an association with triangles indicating

directly genotyped data and circles indicating imputed data. A

horizontal line is plotted at P = 1026 and SNPs above this point

are outlined in pink. These SNPs occur in Tables 1, 2, and 3.

Chromosomes are plotted in alternating blue and grey. P-values

greater than 0.001 are not plotted.

Found at: doi:10.1371/journal.pgen.1001094.s002 (8.19 MB PDF)

Figure S3 Longitudinal profiles of cumulative score from

previously identified SNPs. Individuals were scored based on the

effect size of each previously identified marker as in Figure 1B.

Individuals are grouped and color-coded based on the decile of

their score. Linear lines were calculated using linear regression

with all points from all individuals in a given decile.

Found at: doi:10.1371/journal.pgen.1001094.s003 (1.26 MB PDF)

Figure S4 Age at measurement in the BHS. All exam dates that

were included in the study are plotted as a function of the age of

participant at the exam date. Individuals had between 4–13

measurements. A single individual is highlighted in red.

Found at: doi:10.1371/journal.pgen.1001094.s004 (0.27 MB PDF)

Table S1 Number of SNPs that successfully converged and

produced association statistics.

Found at: doi:10.1371/journal.pgen.1001094.s005 (0.06 MB

XLSX)
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