Contents lists available at ScienceDirect

Genomics Data

journal homepage: http://www.journals.elsevier.com/genomics-data/

Draft genome sequence of *Paenibacillus algorifonticola* sp. nov., an antimicrobial-producing strain

Liying Zhu^{a,1}, Qian Wu^{b,1}, Qing Xu^b, Xian Xu^b, Ling Jiang^{c,*}, He Huang^b

^a College of Sciences, Nanjing Tech University, Nanjing 210009, PR China

^b College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China

^c College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China

ARTICLE INFO

Article history: Received 1 June 2015 Received in revised form 11 June 2015 Accepted 16 June 2015 Available online 2 July 2015

Keywords: Paenibacillus algorifonticola Cold spring Antimicrobial factors Genome analysis

ABSTRACT

Paenibacillus algorifonticola sp. nov. is isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region (China), a novel strain that can produce antimicrobial substance against human pathogenic bacteria and fungi, including *Staphylococcus aureus* and *Candida albicans*. Here we report a 7.60-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for the bio-synthesis of antibacterial factors, anaerobic respiration and several immune-associated reactions. Also, prospective studies on *P. algorifonticola* sp. nov. in the cold spring might offer a potential source for the discovery of bioactive compounds with medical value. The data repository is deposited on the website http://www.ncbi. nlm.nih.gov/nuccore/LAQ000000000 and the accession number is LAQ000000000.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

our group has isolated from a cold spring sample from Xinjiang

Uyghur Autonomous Region (China) with a novel species of

Paenibacillus algorifonticola sp. nov., named $X[259^{T}] = CGMCC$

 $1.10223^{T} = [CM16598^{T})$, which can produce water-soluble constit-

uents with the significant inhibitory activity against both S. aureus

and C. albicans [2]. Comparisons with 16S rRNA gene sequences as

shown in Fig. 1 revealed that the novel strain (1519 nt) had the

highest similarity to Paenibacillus xiniiangensis B538^T (96.6%) [3].

However, the phylogenetic distances from recognized species

(Fig. 2) indicated that P. algorifonticola is not affiliated to any of

these recognized species and the proportion of saturated straight-

chain fatty acid C_{16:0} was relatively high [2]. We can therefore conclude that this strain represents a novel species of the genus *Paenibacillus*. In consequence, investigation of the genetic informa-

tion and characteristics of *P. algorifonticola* is desired to further investigate its mechanism of metabolic regulation. Knowledge of the

genome sequence and bioinformatics will be of great help in this

XJ259^T obtained using Illumina Hiseq 2000 system. The reads were as-

sembled with SOAPdenovo [4,5], the version is 2.04, and the sequence

was annotated using the RAST annotation server (Fig. 3) [6], and the KEGG metabolic pathway was also constructed (Fig. 4). A library containing 500-bp inserts was constructed. Sequencing was performed based on

the paired-end strategy of 478-bp reads to produce 1161 Mb of filtered

sequences, representing a 132-fold coverage of the genome. The sequence

Here we present the draft genome sequence of strain P. algorifonticola

Specifications

Organism/cell/tissue Paenibacillus algorifonticola sp. nov. Strain XI259¹ Illumina Hiseq 2000 Sequencer or array type Data format Raw and processed DNA extracted from a wild-type strain, no treatment Experimental factors Experimental Draft genome sequencing of Paenibacillus algorifonticola, assembly and annotation features Consent N/A a cold spring sample from Xinjiang Uyghur Autonomous Sample source location Region (China)

1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/nuccore/LAQ00000000

A large-scale metagenomic-based study revealed that the microbes with antibiotic resistance genes are abundant and diverse in nature [1]. However, the widespread misuse or abuse of antibiotics in clinical practice has led to a large number of antibiotic-resistant pathogenic bacteria such as *Staphylococcus aureus* and *Candida albicans*. Recently,

http://dx.doi.org/10.1016/j.gdata.2015.06.023

2213-5960/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

regard.

^{*} Corresponding author.

E-mail address: jiangling@njtech.edu.cn (L. Jiang).

¹ These authors contributed equally to this work.

of *P. algorifonticola* is 7,495,641 bases with a G + C content of 48.39%, which was assembled into 115 contigs and 101 scaffolds. It contains 7048 open reading frames (ORFs), 70 tRNA genes, and 4 rRNA genes (Table 1) identified by Glimmer 3.02 [7], Genemark [8], tRNAscan-SE [9], and RNAmmer [10].

According to the genomic analysis of the strain *P. algorifonticola*, we identified 6 neutrophil extracellular traps (NETs)-associated proteins, including the calcium ion binding protein and cytoplasmic

calprotecin protein complex (e.g., Mrp8/14-complex or S100A8/A9) with potent antimicrobial properties [11]. We also identified 6 ORFs relate to the immune-associated reactions, including the nucleotide-binding oligomerization domain(NOD)-like receptor signaling pathway, antigen processing and immune-responsive domain IPR011614. The strain *P. algorifonticola* can also utilize other complex immune responses that lead to production of soluble effectors, including 14 antimicrobial peptides (AMPs), or to

4P. : TTAGAGTTTGATCCCCTGCTCAG GACGAACGCTGGCGGCGTGCCTAATA 5P. : -TAGAGTTTGATCCTG-GCTCAG GACGAACGCTGGCGGCGTGCCTAATA 6P. :AGAGTTTGATCCTG-GCTCAG GACGAACGCTGGCGGCGTGCCTAATA 3P. :CCTG-GCTCAG GACGAACGCTGGCGGCGTGCCTAATA P. :CCTG-GCTCAG GACGAACGCTGGCGGCGTGCCTAATA 2P. :		50 48 47 37 27 6
4P. : ATGCAAGTCGAGCGGACTTGATGGAGTGCTTGCACTCCTGATACTTAGC5P. : ATGCAAGTCGAGCGGACTTGAACACGTGCTTGCACCTCTGATACTTAGC6P. : ATGCAAGTCGAGCGGACTTGATACTGGAGTGCTTGCACTCTTGATGCTTAGC3P. : ATGCAAGTCGAGCGGACTTGATGCAGTGCACGCTTGCACTCTGAAAGTTAGCP. : ATGCAAGTCGAGCGGACTTGATGCAGTGCATGCACTTCTGAAAGTTAGC2P. : ATGCAAGTCGAGCGGACTTGATGCAGTGCATGCACTCCGATACTTAGC2P. : ATGCAAGTCGAGCGGACTTGATGCAGTGCAGTGCACTCCGATACTTAGC2P. : ATGCAAGTCGAGCGGACTTGATGCAGTGCAGTGCACTCCCTGATACTTAGC	6 : 6 : 6 :	100 98 97 87 77 56
4P. : GCGGACGGGTGAGTAACACGTG GGTAACCTGCCCATAAGACTGGGATAA 5P. : GCGGACGGGTGAGTAACACGTG GGTAACCTGCCCTTTAAGACTGGGATAA 6P. : GCGGACGGGTGAGTAACACGTAGGTAACCTGCCCCTAAGACTGGGATAA 3P. : GCGGACGGGTGAGTAACACGTAGGTAACCTGCCCCTAAGACTGGGATAA P. : GCGGACGGGTGAGTAACACGTAGGTAACCTGCCCCTAAGACTGGGATAA 2P. : GCGGACGGGTGAGTAACACGTAGGTAACCTGCCCCTAAGACTGGGATAA	0 : : 0 : : : 0 :	150 148 147 137 127 106
4P. : ATTCGGAAACGAATGCTAATACCGGATACGCAATTTGGTCGCATGGCCG 5P. : ATTCGGAAACGAATGCTAATACCGGATACGCGATACGGTCGCATGACTG 6P. : ATTCGGAAACGAATGCTAATACCGGATACACAACTTGGTCGCATGATCG 3P. : ATTCGGAAACGAATGCTAATACCGGATACACAACTTGGTCGCATGATCG P. : ATTCGGAAACGAATGCTAATACCGGATACACAACTTGGTCGCATGATCG 2P. : ATTCGGAAACGAATGCTAATACCGGATACACAACTTGGTCGCATGATCG	- : G : G :	199 197 197 187 177 156
4P. : ARTIGGGAAAGCCGGAGCAATCTCCCACTTATCGATGGACCTGCGGTGC5P. : AATCGGGAAAGATGGACCAATCTATCACTTAGAGATGGACCCGCGCGCG	A : A : A : A :	249 247 247 237 227 206
4P. : TTAGCTAGTTGGTGGGGTAACGGCTCACCAAGGCGACGATGCATAGCCG5P. : TTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCTAGCCG6P. : TTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCTAGCCG3P. : TTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCTAGCCGP. : TTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCCTAGCCG2P. : TTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCCTAGCCG	A: A: A: A:	299 297 297 287 277 256
4P. :CCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC5P. :CCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC6P. :CCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC3P. :CCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCP. :CCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC2P. :CCTGAGAGGGTGATCGCCCACACTGCGACTGAGACACGGCCCAGACTCC		349 347 347 337 327 306

Fig. 1. Multiple sequences alignment of Paenibacillus (P: Paenibacillus telluris; 2P: Paenibacillus sp. LNUB461; 3P: Paenibacillus telluris strain JS01-08; 4P: Paenibacillus xinjiangensis strain B538; 5P: Paenibacillus castaneae strain Ch-32; 6P: Paenibacillus algorifonticola).

L. Zhu et al. / Genomics Data 5 (2015) 302-308

4P. 5p. 6P. 3P. P. 2P.		ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGA ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGA ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGA ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGA ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGA ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGA		399 397 397 387 387 377 356
4P. 5P. 6P. 3P. 2P.		GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCC GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCC GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCC GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCC GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCC GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCC		449 447 447 437 427 406
4P. 5P. 6P. 3P. P. 2P.		AGGGAAGAACGCTATGGAGAGTAACTGCTCCATAGGTGACGGTACCTGAG AGGGAAGAATGCTTTCGGAGAGTAACTGCTCTCAAGGTGACGGTACCTGAG AGGGAAGAACGCTAAGGAGAGTAACTGCTCCTTAGGTGACGGTACCTGAG AGGGAAGAACGCTAAGGAGGAGTAACTGCTCCTTAGGTGACGGTACCTGAG AGGGAAGAACGCTAAGGAGGAGTAACTGCTCTTTAGGTGACGGTACCTGAG AGGGAAGAACGCTAAGGAGGAGTAACTGCTCTTTAGGTGACGGTACCTGAG		499 497 497 487 477 456
4P. 5P. 6P. 3P. 2P.		AAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGG AAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCCGGTAATACGTAGGGG AAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGG AAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGG AAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGG AAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGG	: : : : : : :	549 547 547 537 527 506
4P. 5P. 6P. 3P. P. 2P.		GCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCCTTG GCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCG		599 597 597 587 577 556
4P. 5P. 6P. 3P. P. 2P.		TAAGTCTGTTGTTT <mark>P</mark> AACTCGGAGCTCAACTTCGACTCGCAATGGAAACT TAAGTCTGTTGTTT <mark>P</mark> AACTCGGGGCTCAAC <mark>CCCGAC</mark> TCGCAATGGAAACT TAAGTCTGTTGTTTCAGGCACAAGCTCAACTTGTGTTCGCAATGGAAACT TAAGTCTGTTGTTTCAGGCACAAGCTCAACTTGTGTTCGCAATGGAAACT TAAGTCTGTTGTTTCAGGCACAAGCTCAACTTGTGTTCGCAATGGAAACT TAAGTCTGTTGTTTCAGGCACAAGCTCAACTTGTGTTCGCAATGGAAACT		649 647 647 637 627 606
4P. 5P. 6P. 3P. 2P.	: : : :	GCAAAGCTTGAGT <mark>A</mark> CAGAAGAGGAAAGTGGAATTCCACGTGTAGCGGTGA GCAAAGCTTGAGTCCAGAAGAGGAAAGTGGAATTCCACGTGTAGCGGTGA GCAAAGCTTGAGTCCAGAAGAGGGAAAGTGGAATTCCACGTGTAGCGGTGA GCAAAGCTTGAGTCCAGAAGAGGGAAAGTGGAATTCCACGTGTAGCGGTGA		699 697 697 687 677 656

Fig. 1 (continued).

activation of complement to inhibit activity of key metabolic enzymes (e.g., malate dehydrogenase and succinate dehydrogenase), which can directly damage the pathogen [12,13]. Additionally, *P. algorifonticola* have the ability to keep alive in the anaerobic condition since there were 8 ORFs related to the anaerobic dehydrogenases and anaerobic regulatory protein. Except for the biosynthesis of antimicrobial substances, the trehalose, vitamin B12 and B2 biosynthesis were also annotated in *P. algorifonticola*, further studies will be performed to confirm their functions, and a complete genome sequence will be included in the future to reveal the unique molecular characteristics of strain *P. algorifonticola*.

2. Nucleotide sequence accession numbers

This whole genome shotgun project has been deposited at DDBJ/ EMBL/GenBank under accession number LAQ000000000. The version described in this paper is the first version, with accession number LAQ001000000.

Conflict of interest

The authors declare that there is no conflict of interest on any work published in this paper.

L. Zhu et al. / Genomics Data 5 (2015) 302-308

L. 2110 et al. / Genomics Data 5 (2015) 302–308	
 4P. : AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGG 5P. : AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGG 6P. : AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGG 3P. : AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGG P. : AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGG 2P. : AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGG 	 749 747 747 737 727 706
 4P.: TGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATA 5P.: TGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATA 6P.: TGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCAAACAGGATTAGATA 3P.: TGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCAAACAGGATTAGATA P.: TGTAACTGACGCTGAGGCGCGAAAGCGTGGGGGAGCAAACAGGATTAGATA 2P.: TGTAACTGACGCTGAGGCGCGCGAAAGCGTGGGGGAGCAAACAGGATTAGATA 	 799 797 797 787 787 777 756
 4P. : CCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCG 5P. : CCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCG 6P. : CCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCG 3P. : CCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCG P. : CCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCG 2P. : CCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCG 	 849 847 847 837 827 806
 4P. : ATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTAC 5P. : ATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTAC 6P. : ATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTAC 3P. : ATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTAC P. : ATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTAC 2P. : ATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTAC 	 899 897 897 887 877 856
 4P.: GGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGT 5P.: GGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGT 6P.: GGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGT 9P.: GGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGT 2P.: GGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGT 	 949 947 947 937 927 906
 4P.: GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG 5P.: GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG 6P.: GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG 3D.: GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG P.: GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG 2P.: GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG 	 999 997 997 987 977 956
4P. : ACATCCCTCTGACCGTCCTAGAGATACGACTTTCCTTCGGGACAGAGGAG5P. : ACATCCCTCTGACCGTCCTAGAGATACGGCTTTCCTTCGGGACAGAGGAG6P. : ACATCCCTCTGACCGCTACAGAGAGTGTACCTTTCCTTCGGGACAGAGGAG3P. : ACATCCCTCTGAATCCACTAGAGATACTGGCGGCCTTCGGGACAGAGGAGP. : ACATCCCTCTGAATCCCCTAGAGATACCGGCGCCTTCGGGACAGAGGAG2P. : ACATCCCTCTGAATCCCCCCCAGAGAGATACCGGCGCCTTCGGGACAGAGGAG	 1047 1047 1037 1027

Fig. 1 (continued).

Acknowledgments

References

This work was supported by the National Science Foundation for Young Scholars of China (21225626, 21406111), the National High Technology Research and Development Program of China (2012AA022101, 2012AA021700), the National Natural Science Foundation of China for Young Scholars (21406111), the Natural Science Foundation of Jiangsu Province (BK20131406, BK20130917), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (14KJB530003).

[1] N. Joseph, C. Se'bastien, S. Pascal, et al., Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol. 24 (2014) 1096–1100.

- [2] Q.Y. Tang, N. Yang, J. Wang, et al., Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int. J. Syst. Evol. Microbiol. 61 (2011) 2167–2172.
- [3] J.M. Lim, C.O. Jeon, D.J. Park, et al., *Paenibacillus xinjiangensis* sp. nov., isolated from Xinjiang province in China. Int. J. Syst. Evol. Microbiol. 56 (2006) 2579–2582.
- [4] Li, et al., De novo assembly of human genomes with massively parallel short read sequencing, Genome Res. 20 (2010) 265–272.

L. Zhu et al. / Genomics Data 5 (2015) 302-308

4p. : ACAGGTGGTGGATGGTTGTCGTCGTCAGCTCGTGAGATGTTGGGTTAA5p. : ACAGGTGGTGGCATGGTTGTCGTCGTCAGCTCGTGAGATGTTGGGGTTAA6p. : ACAGGTGGTGCATGGTTGTCGTCGTCAGCTCGTGAGATGTTGGGGTTAA3p. : ACAGGTGGTGCATGGTTGTCGTCGTCAGCTCGTGAGATGTTGGGTTAAp. : ACAGGTGGTGCATGGTTGTCGTCGTCAGCTCGTGAGATGTTGGGTTAA2p. : ACAGGTGGTGCATGGTTGTCGTCGTCAGCTCGTGAGATGTTGGGTTAA		1099 1097 1097 1087 1077 1056
4P. :GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCACTTTGGG-TG5P. :GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCACTTCGGG-TG6P. :GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCAGGTTAAGCTG3P. :GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCAGGTTAAGCTGP. :GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCAGGTTAAGCTG2P. :GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCAGGTGAACCTG	: : :	1148 1146 1147 1137 1127 1106
 4P. : GGCACTCTAGGATGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC 5P. : GGCACTCTAGGATGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC 6P. : GGCACTCTAGGATGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC 3P. : GGCACTCTAGGATGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC P. : GGCACTCTAGGATGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC 2P. : GGCACTCTAGGATGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC 	: : :	1198 1196 1197 1187 1177 1156
 4P.: GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGG 5P.: GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGG 6P.: GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGG 3P.: GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGG P.: GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGG 2P.: GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGG 		
4P. : CCGATACAACGGGTC5P. : CCGATACAACGGCAAGCGAAGCGCGAGGTGGAGCCAATCCCARCAAAGT5P. : CCGATACAACGGCAAGCGAAACCGCGAGGTGGAGCCAATCCTATCAAAGT6P. : CCGATACAACGGGAAGCGAAACCGCGAGGTGGAGCCAATCCTATCAAAGT3P. : CCGATACAACGGGAAGCGAAACCGCGAGGTGGAGCCAATCCTATCAAAGTP. : CCGATACAACGGGAAGCGAAACCGCGAGGTGGAGCCAATCCTATCAAAGT2P. : CCGATACAACGGGAAGCGAAACCGCGAGGTGGAGCCAATCCTATCAAAGT	: : :	1298 1296 1297 1287 1277 1256
 4P. : CGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAAT 5P. : CGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAAT 6P. : CGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAAT 3D. : CGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAAT P. : CGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAAT 2P. : CGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAAT 	:	
6P. : TGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGTCTT 3P. : TGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGTCTT	: : : :	1396 1397 1387 1377

Fig. 1 (continued).

- [5] D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18 (2008) 821–829.
- [6] R.K. Aziz, D. Bartels, A.A. Best, et al., The RAST server: rapid annotations using subsystems technology. BMC Genomics 9 (75) (2008), http://dx.doi.org/10.1186/ 1471-2164-9-75.
- [7] A.L. Delcher, K.A. Bratke, E.C. Powers, et al., Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23 (2007) 673–679.
- [8] J. Besemer, A. Lomsadze, M. Borodovsky, GeneMarkS: a selftraining method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Res.* 29 (2001) 2607–2618.
- [9] K. Lagesen, P. Hallin, E.A. Rødland, et al., RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res.* 35 (2007) 3100–3108.
- [10] T.M. Lowe, S.R. Eddy, TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res.* 25 (1997) 955–964.
- [11] C.F. Urban, D. Ermert, M. Schmid, et al., Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against *Candida albicans*. PLoS Pathog. 5 (10) (2009) e1000639.
- [12] S. Marc, F.E. Joachim, Interplay between *Candida albicans* and the antimicrobial peptide armory. Eukaryot. Cell 13 (8) (2014) 950–957.
 [13] G. Mariusz, N. Joanna, F. Grzegorz, et al., Antimicrobial photodynamic therapy with
- [13] G. Mariusz, N. Joanna, F. Grzegorz, et al., Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of *Staphylococcus aureus*, in vitro and in vivo studies. Appl. Microbiol. Biotechnol. 99 (9) (2015) 4031–4043.

4P. :	GTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGCCGGTG		1448
5P. :	GTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGCCGGTG		1446
6P. :	GTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGCCGGTG		1447
3P. :	GTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGCCGGTG		1437
P. :	GTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGCCGGTG		1427
2P. :	GTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGCCGGTG		1406
4P. :	GGGTAACC-GCAAGG-AGCCAGCCGTCGAAGGTGGGGTAGATGATTGGGG		1496
5P. :	GGGTAACCCGCAAGGCAGCTAGCCGTCGAAGGTGGGGTAGATGATTGGGG		1496
6P. :	GGGTAACC-GCAAGG-AGCCAGCCGTCGAAGGTGGGGTAGATGATTGGGG		1495
3P. :	GGGTAACC-GCAAGG-AGCCAGCCGTCGAAGGTGGGGTAGATGATTGGGG		1485
P. :	GGGTAACC-GCAAGG-AGCCAGCCGTCGAAGGTGGGGTAGATGATTGGGG		1475
2P. :	GGGTAACC-GCAAGG-AGCCAGCCGTCGAAGGTGGGGTAGATGATTGGGG		1454
4P. : 5P. : 6P. : 3P. : P. : 2P. :	TGAAGTCGTAACAAGGTAACCAGGG TGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCC TGAAGTCGTAACAAGGTAGCCGTA TGAAGTCGTAACAAGGTAGCCG TGAAGTCG	÷	1521 1546 1519 1507 1507 1462

Fig. 1 (continued).

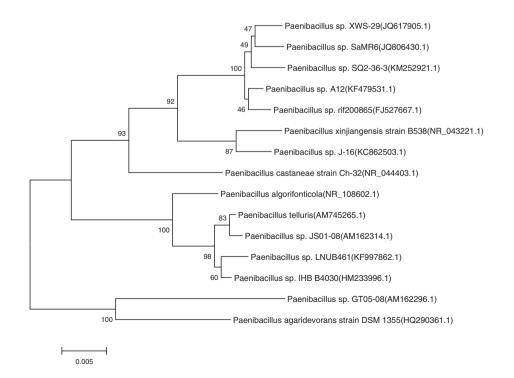
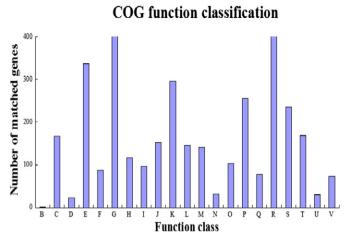
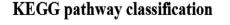




Fig. 2. Phylogenetic tree analysis of Paenibacillus algorifonticola in this study and other strains belonging to the genus Paenibacillus (MEGA 3.1).

Fig. 3. COG function classification of *Paenibacillus algorifonticola* (B: Chromatin structure and dynamics; C: Energy production and conversion; D: Cell cycle control, cell division, chromosome partitioning; E: Amino acid transport and metabolism; F: Nucleotide transport and metabolism; C: Carbohydrate transport and metabolism; H: Coenzyme transport and metabolism; I: Lipid transport and metabolism; J: Translation, ribosomal structure and biogenesis; K: Transcription; L: Replication, recombination and repair; M: Cell wall/membrane/envelope biogenesis; N: Cell motility; O: Posttranslational modification, protein turnover, chaperones; P: Inorganic ion transport and metabolism; U: Intracellular trafficking, secretion, and vesicular transport; V: Defense mechanisms).

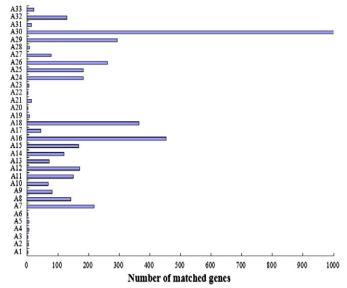


Fig. 4. KEGG metabolic pathway classification of Paenibacillus algorifonticola (A1: Organismal systems-Nervous system; A2: Organismal systems-Immune system; A3: Organismal systems-Excretory system; A4: Organismal systems-Environmental adaptation; A5: Organismal systems-Endocrine system; A6: Organismal systems-Digestive system; A7: Metabolism-Xenobiotics biodegradation and metabolism; A8: Metabolism-Nucleotide metabolism; A9: Metabolism-Metabolism of terpenoids and polyketides; A10: Metabolism-Metabolism of other amino acids; A11: Metabolism-Metabolism of cofactors and vitamins; A12: Metabolism-Lipid metabolisms; A13: Metabolism-Glycan biosynthesis and metabolism; A14: Metabolism-Enzyme metabolism; A15: Metabolism-Energy metabolism; A16: Metabolism-Amino acid metabolism; A17: Metabolism-Biosynthesis of other secondary metabolism; A18: Metabolism-Carbohydrate metabolism; A19: Human diseases-Neurodegenerative diseases; A20: Human diseases-Metabolic diseases; A21: Human diseases-Infectious diseases; A22: Human diseases-Immune system disease; A23: Human diseases-Cancers; A24: Genetic information processing-Translation; A25: Genetic information processing-Transcription; A26: Genetic information processing-Replication and repair; A27: Genetic information processing-Folding, sorting and degradation; A28: Environmental information processing-Signaling molecules and interaction; A29: Environmental information processing-Signal transduction; A30: Environmental information processing-Membrane transport; A31: Cellular processes-Transport and catabolism; A32: Cellular processes-Cell motility; A33: Cellular processes-Cell growth and death).

Table 1

General features of Paenibacillus algorifonticola sp. nov. draft genome.

Attributes	Value
Total sequence length (bp)	7,495,641
Gene number	7048
Gene length/Genome (%)	85.86
Gene average length (bp)	913
GC content (%)	48.39
N50 contig length (bp)	200,917
N90 contig length (bp)	57,078
Number of contig	115
Number of scaffolds	101
tRNAs	70
rRNAs (5S, 16S, 23S)	4
sRNA	5
Protein-coding genes	5364
Genes assigned to COGs	3376
Number of TFR	143