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Background: Trichinellosis is a helminthic disease caused by Trichinella spiralis

via the ingestion of raw or undercooked meat of infected animals. Current

estimates indicate that 11 million humans have trichinellosis, worldwide. The

e�ective use of anti-trichinella medications is limited by side e�ects and

resistance which highlight the critical need for safe and e�ective drugs,

particularly those derived from medicinal plants. Therefore, in the present

study, we aimed to evaluate the e�cacy of the ethanolic extract of Artemisia

annua (A. annua) in treatment of experimentally induced trichinellosis.

Materials and methods: Trichinellosis was induced experimentally in male

6–8 weeks BALB/c mice. BALB/c mice were divided into four groups, 10 mice

each. One group was left uninfected and untreated, whereas three groups

were infected with T. spiralis. One infected group of mice was left untreated

(negative control) while the remaining two infected groups received either 300

mg/kg of the ethanolic extract of A. annua or 50mg/kg of albendazole (positive

control). All treatments started from the third day post-infection (dpi) for 3

successive days. All animals were sacrificed on the 7th dpi for evaluation of

treatment e�cacy.

Results: Our findings showed that A. annua treatment reduced the T. spiralis

adult-worm count in the intestine of infected animals. Moreover, treatment

with A. annua restored the normal intestinal architecture, reduced edema,

alleviated inflammation as demonstrated by reduced inflammatory infiltrate

and expression of TGF-β in intestinal tissues of A. annua-treated animals

compared to infected untreated animals.
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Conclusions: Our findings show that A. annua extract is e�ective in treating

experimentally induced trichinellosis which highlight the therapeutic potential

of A. annua for intestinal trichinellosis.
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Introduction

Trichinellosis is a helminth disease caused by Trichinella

spiralis nematode (T. spiralis). Ingestion of the raw or

undercooked meat of infected animals is the major source

for the transmission of T. spiralis that have infected around

11 million humans globally (1). In 2014, the Food and

Agriculture Organization of the United Nations (FAO), and

the World Health Organization (WHO) had listed T. spiralis

among the top 10 most common foodborne parasites that

eventually lead to serious health problems. Trichinellosis have

become a public health concern and is considered a re-

emerging disease with recent outbreaks reported in 55 countries

(2–6).

The early clinical signs of trichinellosis are gastrointestinal

problems, such as abdominal pain, diarrhea, nausea, and

vomiting, which commonly start 2–7 days following

consumption of raw or undercooked meat (7). These

manifestations are due to invasion of intestinal epithelial

cells by T. spiralis larvae where they grow to adults, mate and

produce neonatal larvae 3–7 days post infection (dpi) (7).

Studies have shown that adult T. spiralis were expelled from the

intestine within 10–17 days following infection which indicates

that the intestinal phase (the first 17 dpi) is considered the

critical trichinellosis stage which determines the progression

and outcome of the disease (8, 9).

T. spiralis adult worms have been shown to trigger acute

inflammatory responses resulting in a series of intestinal

pathological changes (10). Previous studies have shown that Th2,

dendritic cells (DCs), eosinophils, and mast cells are the key

cells involved in immune responses against T. spiralis. A strong

Th2 response was demonstrated in T. spiralis infection which

eventually lead to a transient inflammatory reaction and worm

expulsion (11–14). Th2 immune response is mediated by soluble

mediators such as IL-4, IL-5, IL-9, IL-13 which in addition

to histamine, released from mast cells, and antibodies (IgE

and IgG1) result in adult worm expulsion (15, 16). Although,

the expulsion mechanisms depend mainly on Th2 cytokines;

however, the pathways and mechanisms responsible for this

process remain unclear (15, 16).

To date, albendazole and mebendazole are the main

anthelmintic medications used for treatment of trichinellosis

(17). However, their therapeutic utility is limited by emerging

resistance and the reported side effects such as acute liver

injury, anemia, leukopenia, hypercholesterolemia, proteinuria,

hemolytic anemia, and, in rare occasions, kidney and brain

injuries (18–22). Moreover, safety for pregnant women and

children under the age of 3 years remains a concern

(23). Therefore, the development of safe and effective anti-

trichinellosis drugs is a necessity (24).

In traditional medicine, medicinal plants have long been

used. Artemisia annua (A. annua), a plant known for its

malarial properties, has been researched for a variety of

biological activities, including anticancer, antidiabetic, and

antibacterial properties (25–32). In addition to treatment of

several parasitic diseases such as giardiasis (33), toxoplasmosis

(34) and leishmaniasis (35). A. annua contains a wide

range of chemical compounds (36, 37). Many bioactive

compounds have been isolated from this plant; however,

artemisinin is the most active of these compounds (38–40).

Other important constituents in A. annua include specific

sesquiterpene lactones, essential oils (41), tannins, saponins

(42), polyalkenes (43), phytosterols, fatty acids (42), and

proteins (42).

In the present study, we evaluated the efficacy of the

ethanolic extract of A. annua in treatment of BALB/c mice,

that were experimentally infected with T. spiralis. Based on

parasitological and histopathological analysis, we report high

efficacy of A. annua in treatment of intestinal trichinellosis. Our

results indicate that A. annua ethanolic extract is a potential

natural therapeutic for trichinellosis.

Materials and methods

Preparation of A. annua extract

Leaves of A. annua were obtained during the flowering stage

from a farmed field near South Valley University, Qena, Egypt.

Plant was identified by Prof. Naglaa Lofty; an associate professor

of Botany at the Faculty of Science, South Valley University,

Qena, Egypt. The plant’s voucher specimen (code: Aa.78) was

kept in the herbarium of the Department of Pharmacognosy,

Faculty of Pharmacy, South Valley University, Qena, Egypt

following their taxonomic identification. The freshly collected

plant was allowed to dry at room temperature before being

grounded into fine powder. A. annua ethanolic extract was

then prepared as previously described (44). Briefly, 200 g of

powder was macerated in 1L of 95% ethanol at 25◦C for
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16h, filtered, and the filtrate was dried in a rotary evaporator

at 40◦C under reduced pressure (45). The dried extract was

stored at 4◦C till used in the preparation of 300 mg/kg dose

for mice experiments (46, 47). The reference drug albendazole

was obtained as a suspension (20 mg/mL) from the Egyptian

International Pharmaceutical Industries Co, Cairo, Egypt.

Preparation of infective T. spiralis larvae

BALB/c mice infected with T. spiralis were obtained from

the Faculty of Medicine, Assiut University, Assiut, Egypt. Larvae

were obtained from the infected muscles as previously described

(48). Briefly, infected muscles were digested by immersion

in a digestive solution (1,000ml saline containing 20mL of

concentrated HCl and 20 g of Pepsin) for 12 h at 37◦C on

a mechanical stirrer. To release the larvae, the suspension

was centrifuged at 1,000 rpm for 2min. Material was rinsed

with normal saline (0.9% NaCl) and was re-centrifuged. The

larvae were counted by using hemocytometer to determine

the inoculum size that required to infect mice. The sediment

containing the larvae was then re-suspended in saline containing

1.5% gelatin for their use in the animal experiments.

Experimental design

Parasite free 6–8-week-old male BALB/c mice (N =

40), weighing 25–30 g, were purchased from Theodor Biharz

Research Institute, Giza, Egypt, and were kept in a sanitary

condition in Faculty of Veterinary Medicine, South Valley

University, Qena, Egypt during the whole experiment. Mice

were housed under controlled temperature and light conditions

with water and standard rodent diet, ad libitum.

Mice were divided into four groups, 10 mice each. Group A

represent uninfected mice (negative control) while Groups B, C,

and D were starved for 12 h then orally infected, each with 300

T. spiralis larvae, using a syringe (24). Group B did not receive

any treatment (infected untreated mice), whereas Group C and

D infected mice were treated with 50 mg/kg albendazole (49)

and 300 mg/kg of the A. annua ethanolic extract, respectively

(18, 33). All treatments started from the third day post-infection

(3 dpi) for three consecutive days (18, 50). All animals were

sacrificed on the 7th dpi for the evaluation of treatment efficacy

(24, 49, 51).

Assessment of the therapeutic e�cacy of
A. annua extract in intestinal trichinellosis

Isolation and counting of T. spiralis adult worms
in the intestines of di�erent mice groups

T. spiralis adult worms were isolated from the small

intestine of each mouse and counted as previously described

by Denham (52). The small intestine of each animal was

split longitudinally, cut into 5 cm pieces and incubated in

0.9% saline for 2h at 37◦C (53). Subsequently, intestine was

incubated in sodium hydroxide (0.05%) for 6h at 5◦C. The

worms were then retrieved by washing the intestines with

water and passing the wash through via a 200-mesh sieve (52).

The collected material was washed with distilled water and

streaked across 2- × 3-inch slides by using a Pasteur pipette.

Total number of worms in all intestinal 5 cm pieces/animal

were counted under a dissecting microscope and the mean

number of worms/group was calculated for comparison between

different groups.

Histopathological examination of small
intestine of mice from di�erent groups

Hematoxylin and eosin staining

For detection of histopathological changes in different

animal groups, we used 1 cm specimens from the junction

of the proximal (1/3) and distal (2/3) parts of the intestine

of mice sacrificed on the 7th dpi. The intestinal specimens

were fixed in 10% formalin and embedded in paraffin

(54). Sections, with a 3mm thickness, were stained with

hematoxylin and eosin (H&E) as previously described

(54, 55) and evaluated by an independent blinded pathologist.

Histopathological changes of the intestinal tissue were

used to assess the intensity of inflammation and were

scored from 0 to 4 (0, normal; 1, mucosal hyperplasia;

2, spotty infiltration by inflammatory cells not involving

the entire mucosa and/or submucosal thickness; 3,

marked increase of inflammatory cells involving the full

thickness of the mucosa and/or submucosal thickness; 4,

marked increase of inflammatory cells in both the mucosa

and submucosa).

Villi length was measured from the tip of villi to their base

at the mucosal surface. Crypt depth was measured from the

base of villi up to the beginning of the muscularis mucosa. For

the detection of eosinophils, at least three sections/animal were

examined under light microscopy at 400X magnification.

Determination of goblet cell numbers in the intestinal

mucosa

We used fixed 2 cm sections of the duodenum, jejunum, and

ileum with Carnoy’s solution. The tissues were embedded in

paraffin, cut with a microtome, and stained with Periodic Acid

Schiff (PAS) stain. Hematoxylin was used as the counterstain.

The number of goblet cells in mucosal linings in 3 high power

fields (HPF; 400X) were counted, and the mean number ± S.D

was calculated (56).

Immunohistochemistry

Small intestine sections embedded in paraffin were cut

into 4µm thick sections for immunohistochemical (IHC)

staining. Sections were de-paraffinized and rehydrated with
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FIGURE 1

E�ect of A. annua treatment on the number of adult T. spiralis

worm in the small intestine of infected mice. Treatment with A.

annua extract significantly reduced worm count in the intestine

of infected mice, an e�ect that was comparable to albendazole

(positive control). Data are expressed as mean ± SD (N = 10)

and analyzed by using ANOVA followed by LSD as a post hoc

test. Asterisk (*) indicate significant di�erence; p < 0.05.

descending ethanol grades. Sections were placed in citrate

buffer (pH 6.0) and heated in microwave for epitope retrieval.

Endogenous peroxidases were then blocked by using 3% H2O2

in ethanol (for 10min) and incubated with the primary anti-

TGF-β rabbit polyclonal antibody (ABclonal USA, Catalog

No.: A16640) for 1h at room temperature. Sections were

washed with TBS containing 0.05% Tween-20 (TBS-T) and

incubated with HRP-conjugated goat anti-rabbit secondary

antibody for 1h at room temperature (Abcam, Cambridge, MA,

USA. Catalog No.: HRP ab6728). Finally, slides were washed

with TBS-T and the color was developed by incubating the

tissue sections with 0.05% diaminobenzidine (DAB) and 0.01%

H2O2 for 3min. The sections were finally counterstained with

hematoxylin for 1min prior to dehydration and mounting.

Sections with no added primary antibody were used as

negative control. Images were captured using an Olympus

light microscope equipped with a digital camera (Olympus,

Japan, BX53). The number of TGF-β-positive mucosal glandular

and stromal cells, and submucosal stromal cells were counted

in 10 images captured at 400x and their percentage were

calculated (57).

Statistical analysis

The results were analyzed using the Statistical Package for

Social Sciences (SPSS) version 20 for Windows. All values are

expressed as mean± Standard deviation (SD). ANOVA test was

used for the comparison of mean number of adult worms, goblet

cells and eosinophils in the intestine wall between all groups of

animals. P-values< 0.05 were considered statistically significant.

Results

Treatment with A. annua extract
e�ectively reduced the number of T.
spiralis adult worms in the intestine of
infected animals

We aimed to evaluate the anthelmintic efficacy of A. annua

extract against T. spiralis adult worms in the intestine of

infected mice. Examination of the small intestines of A. annua

and albendazole-treated animals (positive control) revealed a

significant reduction in the number of T. spiralis adult worms

compared to infected untreated animals (P = 0.004) (Figure 1).

However, there was no significant difference between the

number of adult worms in A. annua and albendazole-treated

mice (P = 0.19). Our results indicated that A. annua extract is

effective in reducing the number of T. spiralis adult worms in

the small intestine of infected mice.

A. annua treatment protected the
intestine against infection-induced
pathological changes

Next, we examined the intestinal sections of different

mice groups to evaluate the therapeutic effect of A. annua in

reducing the pathological changes due to T. spiralis infection.

H&E staining of intestinal sections of uninfected untreated

mice showed long regular, finger-like intestinal villi (black

arrows), shallow intestinal crypts, and sparse goblet cells (red

arrows) (Figure 2A). However, intestinal sections of infected

untreated mice showed shortened, leaf-shaped, degenerated,

distorted and edematous intestinal villi with some areas showing

complete villous atrophy (black arrows) and significant mucosal

inflammation (red arrows) (Figure 2B). Higher magnification

(400x) showed edema in villi cores and lamina propria (blue

arrows) and increase in goblet cell numbers (black arrows)

(Figure 2C). Moreover, inflammatory cellular infiltrate was

detected in the lamina propria composed mainly of eosinophils

(red arrows). T. spiralis adult worms were also observed (red

arrows) lying on surface of distorted intestinal villi (black

arrows) (Figure 2D). Conversely, the intestinal sections of mice

treated with A. annua extract showed marked improvement

of the villi outline along with reduced edema (black arrows)

and absence of worms (Figure 2E). Higher magnification (400x)

demonstrated similar frequency of goblet cells (black arrows)

but reduced inflammatory infiltrate (red arrows) (Figure 2F)

compared to infected untreated mice. Similarly, albendazole

treatment preserved villi structure and length with mild

edematous cores (black arrows) (Figure 2G), while reducing

inflammatory cellular infiltrates (red arrows) with no significant
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FIGURE 2

Treatment with A. annua restored villi architecture and alleviated inflammation in intestinal tissues of T. spiralis-infected mice. (A) Representative

image of small intestinal tissue of uninfected mice stained with H&E showing uniform villi and goblet cells (100x). (B) Representative image of

small intestinal tissue of T. spiralis-infected untreated mice showing distorted degenerated edematous villi (black arrows) with significant

mucosal inflammation (red arrows) (100x). (C) Higher magnification of (B) (400x) demonstrating edema in villi and lamina propria (blue arrows)

and also high goblet cell numbers (black arrows) and inflammatory infiltrate composed mainly of eosinophils (red arrows) (D) Higher

magnification of (B) (400x) with parasite on surface (red arrows) of distorted villi (black arrows). (E) Representative image of small intestinal tissue

of infected mice treated with A. annua extract showing restoration of villi outline and reduced edema (black arrows). (F) Higher magnification

(400x) of (E) with similar number of goblet cells (black arrows) and lower inflammatory infiltrate than infected untreated mice (red arrows). (G).

Representative image of small intestinal tissue of infected mice treated with albendazole showing protected villi and reduced edema (black

arrows) compared to infected untreated mice. (H) Higher magnification (400x) of (G) showing reduced inflammatory infiltrate (red arrows) and

similar frequency of goblet cell number (black arrows) compared to infected untreated mice.

FIGURE 3

Eosinophil cell numbers in intestinal tissues of di�erent groups

of mice. Infection of mice with T. spiralis significantly increased

eosinophil cell number in intestinal tissue/high power field (HPF)

compared to uninfected mice. Treatment with either A. annua or

albendazole (positive control) did not result in significant change

(ns) in eosinophil cell numbers infiltrating the mucosa and

submucosa of small intestine compared to infected untreated

mice. Asterisk (*) indicate significant di�erence between

uninfected and infected untreated mice (p < 0.007), whereas ns,

non-significant.

change in numbers of goblet cells compared to infected

untreated mice (black arrows) (Figure 2H).

Interestingly, we found that eosinophils were significantly

elevated in all T. spiralis-infected mice compared with

uninfected mice (P = 0.007) (Figure 3). We also detected

increase in goblet cell number in all infected animal groups

compared to uninfected animals (P = 0.003). To further valid

our observation, we used periodic acid Schiff staining for

the visualization of goblet cells. In uninfected mice, goblet

cells were distributed among the epithelial cells covering

the villi. A significantly higher number of goblet cells were

observed in intestine sections from T. spiralis-infected animals

compared to uninfected animals (P < 0.003). There was no

significant difference in the number of goblet cells between A.

annua or albendazole-treated mice and infected untreated mice

(Figures 4, 5).

A. annua treatment reduced TGF-β
expression in intestinal tissues of T.
spiralis-infected mice

Immunohistochemical staining of the intestinal tissues

showed weak expression of TGF-β in the intestinal tissues

of uninfected mice (black arrows) (Figure 6A). In contrast,

elevated expression of TGF-β was detected in mucosal stromal

cells (arrow heads) extending to the submucosal inflammatory
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FIGURE 4

Representative microphotographs of intestinal tissue of di�erent groups of mice showing goblet cells. Periodic Acid Schi�’s (PAS) staining was

performed to demonstrate goblet cells in intestinal tissues. (A) Uninfected mice. (B) Infected untreated mice. (C) Intestinal tissue of mice treated

with A. annua ethanolic extract. (D) Intestinal tissue of mice treated with albendazole (positive control). Black arrows point to goblet cells.

Magnification, 400x.

cells (black arrows) in infected untreated animals (Figure 6B).

Interestingly, albendazole and A. annua-treated mice showed a

significantly lower number of positive cells (black arrows) (35.70

and 20.75%, respectively) (Table 1; Figures 6C,D).

Discussion

Trichinellosis is a worldwide parasitic zoonotic disease that

is commonly treated with benzimidazole derivatives, including

albendazole. Toxicity, adverse effects, low bioavailability, and

drug resistance limit the therapeutic utility of those anti-

trichinella drugs. Therefore, the development of new and safe

alternatives for treatment of trichinellosis is a necessity. Several

recent studies have shown that medicinal plants may represent

safe and effective alternative therapeutics for treatment of

trichinellosis (23, 58–60). In our present study, we aimed to

evaluate the efficacy of ethanolic extract of A. annua in treating

intestinal trichinellosis in experimentally infected mice.

Our results demonstrated that treatment with A. annua

extract significantly reduced the number of adult worms in

the small intestine compared to infected untreated animals.

Similarly, Abo Rayia et al. (61) reported 75% reduction in

T. spiralis adult worm count after treatment of infected mice

with artemisinin; the main active constituent of A. annua.

Furthermore, Caner et al. (18) reported a good therapeutic effect

FIGURE 5

Goblet cell numbers in intestinal tissues of di�erent groups of

mice. High magnification images (400x) of intestinal tissues

stained with PAS and hematoxylin were used to count goblet

cells. All infected mice groups (treated and untreated) showed

significant high numbers of goblet cells/HPF in comparison to

uninfected mice group. Asterisk (*) indicate significant

di�erence, whereas ns, non-significant.

of A. vulgaris and A. absinthium extracts against the T. spiralis

larval stages in muscles.

Of note, several studies have shown that A. annua is also

effective against many parasitic diseases such as trypanosomiasis
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FIGURE 6

A. annua treatment markedly reduced TGF-β expression in intestinal tissues of T. spiralis-infected mice. (A–D) Immunohistochemical staining of

TGF-β in intestinal tissues of di�erent mice groups A. Representative image of intestinal tissue of uninfected mice showing weak expression of

TGF-β (black arrows). (B) Representative image of intestinal tissue of infected untreated animals showing high expression of TGF-β in

submucosal inflammatory cells (black arrows) and mucosal stromal cells (arrow heads). (C) Representative image of intestinal tissue of

albendazole-treated animals showing reduction of TGF-β-positive mucosal stromal cells (black arrows). (D)Representative image of intestinal

tissue of A. annua-treated mice showing marked reduction in TGF-β -positive mucosal stromal cells (black arrows). Magnification is 200x.

TABLE 1 Percentage (%) of TGF-β positive cells in the intestinal tissue

of di�erent groups of mice.

Groups TGF-β positive cells (%)

T. spiralis uninfected mice 10%

T. spiralis-infected untreated mice 80.20%

Albendazole-treated mice 35.70%

A. annua-treated mice 20.75%

(62), schistosomiasis (62), toxoplasmosis (34), leishmaniasis

(34), giardiasis (33), and coccidiosis (63).

Our data also showed that treatment with A. annua

ameliorated the T. spiralis induced histopathological changes

in infected mice. In infected untreated animals, we observed

prominent villous atrophy with marked chronic inflammatory

cell infiltrates composed of neutrophils, lymphocytes, and

macrophages. The administration of A. annua and albendazole

to T. spiralis-infected mice restored the normal villi structure

and reduced inflammatory cellular infiltration.

Although our treatments reduced inflammatory cellular

infiltration, high eosinophilic infiltration was still recognized

in all infected animal groups, including treated animals. We

believe that high number of eosinophils in A. annua-treated

mice was not caused by the treatment since high eosinophils

count was noticed in all infected animals including the

infected untreated group. Our speculation is supported by

previous studies which showed that A. annua caused a decline

in eosinophils count by 27% when used for treatment of

schistosomiasis (64), and suppressed infiltration of mast cells

and eosinophils into the epidermis (65), when used in treatment

of atopic dermatitis. Moreover, infection with T. spiralis has

been shown to trigger an increase in eosinophil counts (66).

Eosinophils have been reported to play a major role in resistance

to parasitic infections, including that of T. spiralis, and to

kill newborn larvae (NBL) of this parasite (13). Additionally,

IL5-dependent eosinophils promote worm expulsion during

T. spiralis infection (67). The role of eosinophils was further

confirmed by a study which detected a rich eosinophil

infiltrate in the myocardial tissue of one patient who died of

severe trichinellosis (68). In contrast, other studies suggested

that eosinophils are essential for protection of NBL. Huang

et al. suggested that recruitment of eosinophils to the site

of infection may protect NBL by stimulating the production

of IL-10 from DCs and CD4+ T cells which inhibit the

activation of macrophages and neutrophils (the source of NO)

and subsequently prevent NO production, thus promoting T.

spiralis larval survival (69). This is further supported by the

observation that eosinophil-ablated mice cleared T. spiralis adult

worms normally (70, 71). Despite all of the above findings,

the role of eosinophils in host defense against T. spiralis
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or promotion of parasite growth and survival remains to

be determined.

Our histological data also demonstrated increased goblet

cell counts in the intestinal sections of all infected mice

groups compared to uninfected mice. It is well documented

that goblet cells have a significant role in protection of the

intestinal epithelium from intestinal pathogens by secretion of

mucins which form a protective viscous barrier against invading

organisms including intestinal nematodes (72, 73). Using PAS,

we noticed that the infected untreated and treated animal groups

have higher numbers of goblet cells, a phenomenon that usually

accompanies the invasion of T. spiralis (8, 12, 14, 74, 75). Goblet

cells secrete various types of active molecules, including mucin

glycoproteins, which are essential for the formation of themucus

overlaying the surface of epithelial cells causing the trapping of

the worms and their expulsion from the host (76–78). This has

been confirmed by the observation of delayed worm expulsion

in Stat6- or IL-4Ra-deficient mice infected with T. spiralis, as

those mice were not able to develop goblet cell hyperplasia

(12, 79). In addition to mucus, TFF3 (trefoil factor) is produced

by goblet cells which helps prevent disturbances in the mucosa

and improves regeneration (80).

Several reports have discussed the important role of TGF-β

in adult-worm expulsion during intestinal trichinellosis (81–83).

Therefore, in the present study, we used immunohistochemical

staining to quantify the expression of TGF-β in intestinal

tissues of T. spiralis-infected mice. According to our results, the

production of TGF-β was increased in infected untreated mice,

whereas lower numbers of TGF-β-positive cells were observed

in treated animals. Similar findings were reported by previous

studies which support the role of TGF-β in worm expulsion

(81–84). Akiho et al. reported that gut contraction during T.

spiralis infection is driven by Th2 cytokines and TGF-β via

STAT6 and COX-2, respectively (85, 86). Moreover, Steel et al.

stated that TGF-β is the main player in intestinal contraction

and worm expulsion (87). Using mice which lacked the ability to

produce TGF-β in experimental intestinal trichinellosis model,

they observed that the mice lacked the ability to contract

intestinal muscles and flush out the parasite (16, 87).

Conclusions

We showed that A. annua extract eliminated the adult

worms from the intestine of T. spiralis-infected mice. Moreover,

our extract treatment restored the normal intestinal architecture,

villi length, and reduced inflammatory cellular infiltration.

Moreover, treated mice showed modest expression of TGF-β,

which has been proven to play a major role in worm expulsion.

The therapeutic effect of A. annua extract was comparable

to albendazole; however, the side effects and the reported

resistance to benzimidazole derivatives, including albendazole

support further testing of A. annua extract as a promising

complementary herbal product for treatment of trichinellosis.

More studies are required to investigate the anti-trichinella

active components of A. annua and to develop more effective

and safer derivatives that can be used in combination to limit

the development of resistance.
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