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Voluntary movements, like point-to-point or oscillatory human arm movements, are

generated by the interaction of several structures. High-level neuronal circuits in the

brain are responsible for planning and initiating a movement. Spinal circuits incorporate

proprioceptive feedback to compensate for deviations from the desired movement.

Muscle biochemistry and contraction dynamics generate movement driving forces and

provide an immediate physical response to external forces, like a low-level decentralized

controller. A simple central neuronal command like “initiate a movement” then recruits all

these biological structures and processes leading to complex behavior, e.g., generate

a stable oscillatory movement in resonance with an external spring-mass system.

It has been discussed that the spinal feedback circuits, the biochemical processes,

and the biomechanical muscle dynamics contribute to the movement generation, and,

thus, take over some parts of the movement generation and stabilization which would

otherwise have to be performed by the high-level controller. This contribution is termed

morphological computation and can be quantified with information entropy-based

approaches. However, it is unknown whether morphological computation actually

differs between these different hierarchical levels of the control system. To investigate

this, we simulated point-to-point and oscillatory human arm movements with a

neuro-musculoskeletal model. We then quantify morphological computation on the

different hierarchy levels. The results show that morphological computation is highest for

the most central (highest) level of the modeled control hierarchy, where the movement

initiation and timing are encoded. Furthermore, they show that the lowest neuronal

control layer, the muscle stimulation input, exploits the morphological computation of

the biochemical and biophysical muscle characteristics to generate smooth dynamic

movements. This study provides evidence that the system’s design in the mechanical

as well as in the neurological structure can take over important contributions to control,

which would otherwise need to be performed by the higher control levels.
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1. INTRODUCTION

In biological systems, voluntary movements are generated
through a sequence of different processing units. From the motor
cortex to the spinal cord to the stimulation signal running down
the motor neuron to the muscle membrane. These processing
units can be interpreted as a neurological, hierarchical control
system (Loeb et al., 1999; Karniel, 2011). While it seems obvious
that the neuronal structures are responsible for the initiation
and execution of goal-directed movements, it has been discussed
that also the morphology of a system contributes to the control
(Iida and Pfeifer, 2004; Pfeifer and Iida, 2005; Paul, 2006;
Blickhan et al., 2007; Ghazi-Zahedi et al., 2016). In particular in
human arm movements, several control theories explicitly rely
on the viscoelastic muscle characteristics to generate dynamic
movements [e.g., impedance control Hogan, 1984, equilibrium
point control Kistemaker et al., 2006, 2007a,b; Bayer et al., 2017].
Here, the muscles serve as a low-level zero-delay reflexes [termed
preflexes Brown et al., 1995] capable of stabilizing the system
against external perturbations (van Soest and Bobbert, 1993;
Gerritsen et al., 1998; Loeb et al., 1999; Haeufle et al., 2010;
Proctor and Holmes, 2010; John et al., 2013). Such contributions
of the morphology have been termed “intelligence by mechanics”
(Blickhan et al., 2007), “exploitive actuation” (Rieffel et al., 2010;
Haeufle et al., 2012; Kalveram et al., 2012), or “morphological
computation” (Pfeifer and Iida, 2005; Paul, 2006; Ghazi-Zahedi
et al., 2016). Morphological computation, in this sense, captures
the concept that control is partially performed by the controlled
system interacting with the environment. More precisely, that
part of the information processing necessary to generate a desired
movement is performed by the morphological characteristics of
the system, i.e., by its hard- or wet-ware.

Characterizing this contribution of the system’s morphology
to its behavior is possible by quantifying morphological
computation (MC) (Zahedi and Ay, 2013; Ghazi-Zahedi et al.,
2016; Ghazi-Zahedi, 2019). This requires a causal model of
a reactive system’s sensorimotor loop. The model must allow
a clear separation of the system into a controller, actuator
signals, sensor signals, and the physical system termed world,
which includes the environment (in engineering this is typically
called the plant). In a nutshell, the quantitative measure
of morphological computation (MCW) then quantifies the
contribution of the world state W and the actuator signal A to
the further time evolution of the world state, i.e., the next world
stateW′. MCW is high, if the current world stateW has a strong
influence on the next world state W′, i.e., the system exploits its
physical properties. Thus, it is possible to quantify morphological
computation in causal models where A and W can be observed,
e.g., in neuro-muscular models (Ghazi-Zahedi et al., 2016).

The open question is, however, where in the biological control
system A and W should be separated. Is A the output of the
neurons that innervate the muscles (α motor neurons) and
therefore initiate muscle contraction? Or is A much higher in
the control hierarchy: the output of the central nervous system,
i.e., the signals that initiate a movement? One could argue
for the latter separation, as the decentralized low-level control
circuits, like mono-synaptic reflexes, are hard-wired into the

spinal cord and are therefore rather part of the system than
part of the controller. Or has A even to be located much lower
in the control hierarchy: the output force of the muscles? The
argument for this level of separation would be that muscles with
their non-linear viscoelastic properties serve as low-level zero-
delay reflexes (preflexes) contributing to control. Furthermore,
they adapt during our life-time to the requirements of our
daily activities. From our point of view it is unclear where to
separate between W and A and how this decision influences the
calculation of MC. Furthermore, it is unclear, to which extend
higher-level control can exploit morphological computation of
the lower-level structures—in actual units of bit.

This is not only relevant for the understanding of biological
systems, but also for bio-inspired and bio-mimetic robotics.
Much effort has been taken to develop new robotic design
concepts exploiting material properties (Kim et al., 2013; Rus and
Tolley, 2015; Polygerinos et al., 2017), such as viscoelasticmuscle-
like actuators in armmovements (Boblan et al., 2004; Driess et al.,
2018), elasticity in legged locomotion (Iida et al., 2009; Niiyama
et al., 2012; Hutter et al., 2013; Sprowitz et al., 2013; Hubicki
et al., 2016; Ruppert and Badri-Spröwitz, 2019) or morphology
which empowers hopping (Nurzaman et al., 2015), goal-directed
swimming (Manfredi et al., 2013), crawling Shepherd et al.
(2011), or even grasping (Deimel and Brock, 2016). However, also
in these approaches, the hierarchy of morphological computation
has not yet been quantified.

The purpose of this study was therefore to investigate
morphological computation in a hierarchical control system.
The novelty of our approach was to quantify morphological
computation on different control levels to better understand
the hierarchy. This is relevant for two reasons: (1) it further
evaluates and validates the quantification concept of MC and
(2) shows how the biological control system may benefit from
its hierarchical control structure and its non-linear actuators,
i.e., the muscles. For this, we resort to computer simulations
of human arm movements with a model that considers joint
dynamics, muscles, reflexes, central pattern generators, and
higher-level control.

2. METHODS

To investigate morphological computation in a hierarchical
control system, we simulate human armmovement with a neuro-
musculoskeletal model (Stollenmaier et al., 2020a) (see also
Supplementary Material). In this model, it is possible to access
all state signals, i.e., the state of the control logic, the input to the
low-level controller, the control signal, the muscles’ active state
(biochemistry), the muscles’ force, the generated joint torques,
and the resulting joint angles (section 2.1). Thus, we can access
all levels of the neuro-muscular control hierarchy to quantify
morphological computation (section 2.3).

2.1. Neuro-Muscular Model
The neuro-muscular model of human arm movements has been
developed to study neuronal motor control concepts in the
interaction with the musculoskeletal model. For this purpose, we
combined a computational motor control model of goal-directed
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arm movements with a musculoskeletal model (Figure 2). We
will shortly summarize the approach here and refer to the
Supplementary Material for the details of the model.

The model consists of several hierarchical layers (Figure 1),
which we will describe shortly in the following, starting from
the lowest hierarchical level (right-hand side). The chosen model
parameters represent a generic man and are collected from
different sources (van Soest and Bobbert, 1993; Kistemaker et al.,
2006; Mörl et al., 2012; Bhanpuri et al., 2014 and others, listed in
detail in the Supplementary Material).

2.1.1. Angles
The musculoskeletal model predicts two-degree-of-freedom arm
movements in the sagittal plane (see Figure 3). Its dynamics are
determined by two rigid bodies (lower and upper arm) that are
connected via two one-degree-of-freedom revolute joints that
represent the shoulder and elbow joint. This can be described
by double-pendulum equations of motion, i.e., second-order
ordinary differential equations. The outputs of this layer are the
predicted joint angles which correspond to the experimentally
observable state (q ∈ R

2).

2.1.2. Torques
The rigid bodies are driven by joint torques, which are calculated
based on anatomical muscle paths (Hammer et al., 2019) and
translating forces at the muscle origin, insertion, and via-points
into joint torques. The outputs of this layer are the predicted joint
torques (T ∈ R

2).

2.1.3. Muscle-Tendon Unit Forces
Active forces are generated by six muscle-tendon units (MTUs),
four monoarticular and two biarticular muscles. The force of
each MTU is modeled using a Hill-type model accounting for
muscle fiber and tendon characteristics (Haeufle et al., 2014).
The dynamic of each MTU is modeled by a first-order ordinary
differential equation. The outputs of this layer are the predicted
muscle-tendon unit forces (FMTU ∈ R

6).

2.1.4. Muscle Fiber Forces
Themodel of themuscle fibers, termed contractile elements (CE),
considers the dependence of the active fiber force on fiber length
and contraction velocity known from biological muscle fibers.
The outputs of this layer are the predicted muscle fiber forces
(FCE ∈ R

6).

2.1.5. Biochemical Muscle Activity
The biochemical processes that lead from a neuronal muscle
stimulation to a force generation can be modeled by a first-
order ordinary differential equation. The implemented model
of the activation dynamics further considers the fiber length
dependency of this process (Hatze, 1977; Rockenfeller et al.,
2015). The outputs of this layer are the predicted muscle fiber
activity states (a ∈ R

6).

2.1.6. Muscle Stimulation Signals
The bio-inspired hybrid equilibrium point controller exploits
muscle characteristics by combining a feed-forward command
[uopen(t)] with spinal feedback on muscle fiber lengths

[uclosed(t)]. This feedback represents a simplified version of the
mono-synaptic muscle spindle reflex, assuming that the muscle
spindles provide accurate time-delayed information about the
muscle fiber lengths lCE(t) (Kistemaker et al., 2006). The total
motor command ui for each muscle i is a sum of those
components and is calculated as

ui(t) =
{

u
open
i (t)+ uclosedi (t)+ uCPGi (t)

}1

0

=

{

u
open
i (t)+

kp

lCE,opt

(

λi(t)− lCEi (t − δ)
)

+ uCPGi (t)

}1

0

,

(1)

where kp is a feedback gain and the time delay δ is set to
10 ms representing a short-latency reflex delay which is in a
physiologically plausible range (More et al., 2010; Houk and
Rymer, 2011). lCE,opt stands for the optimal length of the
contractile element. The operation {x}10 sets values x < 0 to 0
and x > 1 to 1. The signal uCPGi represents a central pattern
generator (CPG). The outputs of this layer are the predicted
muscle stimulation signals (α motor neuron activities u ∈ R

6).

2.1.7. Muscle-Specific Central Control Tuning
The low-level controller gets two top-down input signals: The
open-loop muscle stimulation u

open
i (t) and the desired muscle

fiber lengths λi(t). Here, they represent an intermittent control
approach, because they are piecewise constant functions over
time. Herein, each constant value represents an equilibrium
posture (EP), i.e., the system is in a stable equilibrium
in these positions. The calculation of these central control
signals for a given movement is described in detail in the
Supplementary Material. The outputs of this layer are the
top-down central commands to each low-level reflex circuit
(utop-down ∈ R

12).

2.1.8. Timed Execution of a Movement
The output of our highest level of motor control is a
single piecewise constant signal used to time the selection of
equilibrium points meaning that all sub-circuits are switched at
the same time (ucentral ∈ R

1).

2.2. Simulation Experiments
2.2.1. Movement 1: Point-to-Point Movements
The first movement investigated here is a point-to-point
movement along a vertical line. Different movements between
four target positions were evaluated (see Figure 3A and
Supplementary Material). The central pattern generator is
inactive for those movements [uCPG(t) = 0]. An animation of
the movement is provided as Supplementary Material.

To consider the natural variation of this movement, we
repeated the simulation of the movement 1 → 4 seven times.
Each simulation only differed in the equilibrium postures (EPs)
for the starting joint angles, the peak elbow joint angle, and the
target joint angles. We determined these angles from motion
capture data of a single subject performing the movement seven
times. This natural variation of the angles resulted in different
signals on the muscle-specific central control level, i.e., different
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FIGURE 1 | Overview over the hierarchy levels in our neuro-muscular model of the arm.

FIGURE 2 | Schematic diagram of the motor control model. The motor command u is a sum of an open-loop and a closed-loop signal. The time-delayed feedback

loop incorporates proprioceptive feedback (mono-synaptic reflexes) by comparing the actual muscle fiber lengths lCE(t) to desired values λ. q(t) = (ϕ(t),ψ (t)) contains

the elbow and shoulder angle, respectively.

utop-down signals. All other parameters of the controller were
kept constant.

2.2.2. Movement 2: Dynamic Oscillatory Movements
For the second movement, a vibrating rod was added to the hand
in the model (see Figure 3B). The technical specifications of the
rod can be found in the Supplementary Material. To excite the
rod, as done in training and rehabilitation exercises, a sinusoidal
signal uCPG mimicking the output of a central pattern generator
(CPG) is added to the motor command u:

uCPG(t) = û · sin(2π · f CPG · t + φ0) , (2)

with û = 0.1: amplitude, f CPG: frequency, φ0: phase. The muscles
are synchronized by setting φ0 = 0 for flexing muscles and
φ0 = π for extending muscles.

The oscillation is exited for 0 ≤ t ≤ 4s. After this, uCPG = 0
and the oscillation is then only a result of the dynamics of the
system and not of the controller anymore. An animation of the
movement is provided as Supplementary Material.

To consider the natural variation of this movement, we
analyzed the frequency pattern of a single subject performing
a swing-rod exercise. The fast-fourier-transform spectrum
indicates a frequency variance of 0.2Hz. We therefore repeated
the simulation 14 times with a set of random CPG frequencies
f CPG = 3.8± 0.2Hz.

2.2.3. Details on the Human Experiments to Estimate

Natural Variability
Two healthy subjects participated in the study. The experimental
procedure was approved by the local ethics committee
(886/2018BO2). All participants gave their informed consent
prior to participation. The movements were recorded with a
12-camera motion capturing system (Vicon Motion Systems Ltd,
UK) using a marker set with 29 retro-reflecting markers. Using
the recorded marker positions over time, shoulder and elbow
angles were reconstructed (Rettig et al., 2009). The reconstructed
joint angle trajectories were smoothed with a Savitzky-Golay
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A B

FIGURE 3 | Visualization of the musculoskeletal model that was used for the computer simulations of the arm movements. The colored lines represent the modeled

muscles. (A) Goal-directed point-to-point movement between the points 1–4 and (B) dynamic oscillation movements with a vibrating rod.

polynomial filter (of order 4 and with a window size of 41
sampling points).

2.3. Quantifying Morphological
Computation
The following paragraphs will only give a brief introduction to the
quantification of MC. For a full discussion on this issue, please
read (Ghazi-Zahedi, 2019) or the Supplementary Material to
this publication. Quantifying MC requires a causal model of
the sensorimotor loop which divides a cognitive system into a
brain, actuators, environment, and sensors. In the context of this
work, we are focusing on reactive systems which means that the
actuators are directly connected with the sensors. A cognitive
system is then fully described by the following set of Markov
processes:

β : W −→ 1S [β(s|w)] (3)

π : S −→ 1A [π(a|s)] (4)

α : W×A −→ 1W [α(w′|w, a)], (5)

where w ∈W is the value of the world stateW, s ∈ S is the value
of the sensor state S, and a ∈ A is value of the actuator stateA.We
call β(s|w) the sensor map, as it describes how the agents perceive
the environment, π(a|s) the policy, as it describes how the agent
chooses an action as a reaction to a sensor, and finally we call
α(w′|w, a) the world dynamics kernel, as it describes how the next
world state W′ depends on the current world state W and the
current action A. It is important to note here that the world state
W captures everything physical. This means that the world state
W captures the state of the system’s body and its environment.

To quantify MC, we take a closer look at the world dynamics
kernel α(w′|w, a). Assume that the next world state W′ does not
depend on the current world state W but only on the current

action A. This means that the world dynamics kernel reduces to
α̃(w′|a). In this case, it is fair to say that the system shows no
MC at all, since the behavior is fully controlled by the action A.
Any measured divergence from this assumption means that the
current world state W had an influence on the next world state
W′, and hence, the system is exploiting the physical properties
of its body and its interactions with the environment. This can
be measured by the Kullback-Leibler Divergence (Cover and
Thomas, 2006) in the following way:

MCW : =
∑

w′ ,w,a

p(w′,w, a) log2
α(w′|w, a)

α̃(w′|a)
. (6)

The output of our models contains discrete numerical data,
i.e., S, A, and W are discrete variables. Therefore, we will
summarize the approach for discrete variables here. For a
discussion on how to estimate MCW on continuous state spaces,
please see Ghazi-Zahedi (2019).

The joint distribution p(w′,w, a) can be estimated by a
frequency method, i.e., by counting the number of occurrences
of each triplet (w′,w, a) normalized by the number of samples in
the data. This leads to the following estimation for p(w′,w, a):

p(w′,w, a) =
cw′ ,w,a

N
, (7)

where cw′ ,w,a is the number of occurrences of (w′,w, a) and N is
the total number of samples.

MCW can now be calculated in the following way:
The value calculated in line 9, MCW, represents the

morphological computation primarily used in this work.
Sometimes it is further interesting to take a look at the state-
dependent morphological computation, i.e., the time evolution
of the quantity. This requires minimal changes to the original
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Algorithm 1 Algorithm for MCW.

1: p(w′,w, a) ← (0)|W|×|W|×|A| {Matrix with |W| × |W| × |A|
entries set to zero}

2: for t = 1, 2, . . . ,T − 1 and wt+1,wt ∈ w∗, at ∈ a∗ do
3: p(wt+1,wt , at)← p(wt+1,wt , at)+ 1
4: end for

5: p(w′,w, a)← p(w′,w, a)/(T − 1)
6: Estimate p(w′, a) from w∗, a∗ or by summing over w
7: p(w′|w, a) = p(w′ ,w,a)/

∑

w′ p(w
′ ,w,a)

8: p(w′|a) = p(w′ ,a)/
∑

w′ p(w
′ ,a)

9: MCW =
∑

w′ ,w,a p(w
′,w, a) log2

p(w′|w,a)
p(w′|a)

algorithms. Instead of calculating the probability-weighted sum
over all states (line 9 in Algorithm 1), which leads to a single
number as a result, the measures are evaluated n-tuple in the
data set. This means that for MCW, the logarithm is evaluated
for every triple wt+1,wt , at (see Algorithm 2).

Algorithm 2 Algorithm for state-dependent MCW(t).

1: Perform steps 1–8 from Alg. 1
2: for t = 1, 2, . . . ,T − 1 and w′,w ∈ w∗, a ∈ a∗ do

3: MCW(t) = log2
p(w′|w,a)
p(w′|a)

4: end for

In conclusion, in order to quantify MC, we need time signals
of the World and Actuator states, W and A, respectively. This
means that it is necessary to separate the state variables of the
system intoW and A.

The neuro-muscular model investigated here has several
hierarchical levels (Figure 1). For this study, we systematically
separated the state variables between all of these different
hierarchy levels and calculated MC for each possible hierarchy
level.

There are two possible approaches to select W and A and
then calculate MC (Figure 4): The first approach (Figure 4A)
relates to the evaluation of experimental data, where usually
not all state variables can be recorded (especially in biological
systems). Here, W is always the mechanical system state q(t),
i.e., the joint positions (and for the oscillation movement also
the position of the rod mass relative to the hand). A on the
other hand contains only signals of one hierarchy level. We term
this approach “selected hierarchy levels” and term the respective
morphological computation MCsel

W .
The second approach (Figure 4B) always includes all signals.

It represents a clear cut at a specific level. All signals below this
cut-level are combined into W and all above into A. We termed
this approach “accumulated hierarchy levels” and termed the
respective morphological computation MCacc

W .

2.4. Statistical Analysis
Each simulation run provides data to calculate morphological
computation on all different hierarchy levels. Each hierarchy
level is then quantified by a single scalar quantity MCW

representing the respective morphological computation (see
line 9 in Algorithm 1). By varying the control parameters as
described above, the resulting MCW values represent a natural
variation for the same movement. The hypothesis (H0) was
that there is no significant difference in MC between hierarchy
levels across all repetitions of the movement. Each hierarchy
thus represents a different group and we used ANOVA to test
whether these groups differ. The normal distribution was tested
with a Shapiro-Wilk test (with α = 0.1 to keep the beta
error in check). The test confirmed normal distribution in the
majority of the groups (17 out of 28). This should not influence
the result, since ANOVA is robust to deviations form normal
distribution, especially here where each group has the same
number of samples. As the different hierarchy levels are taken
from the same simulation, they are not independent. To test
their statistical difference, we therefore analyzed the data with a
repeated measures ANOVA. We further used a pairwise post-hoc
test with Bonferroni correction to analyze which levels actually
differ.

3. RESULTS

Morphological computation is highest for the most central level
of the control hierarchy investigated here (ucentral). This holds
for all four types of point-to-point movements we evaluated
(Figure 5) as well as for the dynamic oscillation movement
(Figure 7). Going further down in the control hierarchy, MC
always decreases for the accumulated scenario (MCacc

W ), and

almost always for the selected (MCsel
W ) with one exception: the

torque. Choosing the torque T as actuator signal, the value for
MC is higher than using one of the next higher-level signals of
actuation. Please note that the figures are shown in logarithmic
scale to allow a better comparison of the large differences between
MC for the different hierarchy levels.

In general, using accumulated hierarchy levels results
in smaller morphological computation than using selected
hierarchy levels (MCacc

W < MCsel
W ). Furthermore, pointing

movements have a lower morphological computation than the
dynamic oscillation movements.

The reproduction of the experimentally observed variation of
the movement 1 → 4 in simulation also leads to a variation of
MCW. This variation is relatively small compared to the overall
difference between hierarchy levels. Therefore, an ANOVA test
reveals statistical significant differences between the hierarchy
levels. However, not all levels are significantly different. Especially
ucentral and utop-down, as well as FCE and FMTU do not differ
significantly in MC.

3.1. Noise in Point-to-Point Movements
In the pointing movements, all state variables are smooth, which
is a result of the noise-free formulation of the continuous control
signals. Therefore, the highest control levels produce very simple
control signals, i.e., piecewise constant signals in time (see above
and Supplementary Material for more details).

To test whether this smooth definition has an influence on
the result, we added random (uniformly distributed) noise to
the muscle stimulation signals u [noise levels: medium: 40/300 ·
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A

B

FIGURE 4 | Visualization of the difference of the calculation of MCW using (A) selected and (B) accumulated hierarchy levels as actuator signal A and world state W.

Note that for the oscillation movements, the observable state q includes both the joint angles and the rod position.

(umax − umin), high: 80/300 · (umax − umin)]. This changes the
previously consistent trend: the higher the added noise, the lower
the MC at the level of the muscle stimulation u (Figure 6).
At the same time, MC between at the muscle activity level a
increases. This leads to the fact, that—after adding noise to the
stimulation signal - MC with u as actuator signal is lower than
the calculation with a as actuator signal. However, this change in
trend is only true if morphological computation is evaluated on
selected signals (MCsel

W ). For MCacc
W , the trend is never reversed.

Noise only slightly shifts the values (not shown).

3.2. Dynamic Oscillatory Movements
The general trend of decreasing morphological computation for
lower hierarchy levels was the same in the dynamic oscillation
movements (Figure 7).

However, the dynamic oscillation data has different phases.
In the initial phase (t ≤ 4s), the rod is excited by sinusoidal
muscle stimulation signals with a frequency tuned to the rod’s
resonance (Figure 9). In this phase, everything oscillates in sync
and the morphological computation is on average smaller. Once
the CPG is turned off (t > 4s), the control signals become
relatively steady—only influenced by the feedback signals trying
to hold the position. The rod, however, still has a lot of energy

and therefore keeps oscillating. In this phase, MCW increases.
These results are similar on all levels of the control hierarchy
(Figure 8). Interestingly, MCacc

W actually becomes zero on the
lower hierarchy levels in the resonance oscillating movements
between 2 ≤ t ≤ 4s. This means that muscle fiber force FCE,
muscle-tendon unit force FMTU, and joint torques T contain the
same information as the mechanical state of the system q.

4. DISCUSSION

The meaning of morphological computation can be seen
quite well in the example of the dynamic oscillations. In
the initial phase, the controller enforces a dynamic oscillation
at the system’s resonance. In resonance, the morphological
computation is then quite low, as most—or even all—
information on the system state is already contained in the
stimulation, activity, and muscle force signals (Figures 8A, 9).
This is similar to a robotic model, driven by complex control
signals (Ghazi-Zahedi et al., 2016). However, if the sinusoidal
excitation is switched off, the rod dynamics take over and
generate a rich dynamic behavior at almost no information
input on the control/actuation levels. Hence, morphological
computation is high (Figure 8B). This case is similar to, e.g.,
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A B

FIGURE 5 | Point-to-point movement: Morphological computation MCW on different hierarchy levels for an exemplary point-to-point movement (1→ 4, see

Figure 3A). Morphological computation was evaluated using (A) selected (MCsel
W ) and (B) accumulated hierarchy levels (MCacc

W ). Note that a logarithmic scale is used

for the y-axis. Shown are the mean ±1.96 times standard deviation (≈95% confidence interval) of seven simulation runs with different starting, intermittent, and target

equilibrium postures taken from the natural variation observed in a human experiment. As tested by an ANOVA, there are significant differences in MCW between the

different hierarchy levels. The pairwise post-hoc test revealed that for MCsel
W there are two groups with similar mean: the highest two levels ucentral, utop-down, and the

three levels a, FCE, and FMTU. The levels u and T differ from all others. For MCacc
W , the three lowest levels FCE, FMTU, and T are one group. All other levels differ from all

others. All significance levels were set to p < 0.05. The limit of the y-axis is set to the maximum MC value that would result from having a constant signal as input.

Plots of the results of the other movements can be found in the Supplementary Material, but show the same trends.

FIGURE 6 | Influence of noise on morphological computation. Morphological

computation for selected hierarchy levels (MCsel
W ) for a point-to-point

movement (1→ 4). The noise was added to the muscle stimulation u [noise

levels: medium: 40/300 · (umax − umin), high: 80/300 · (umax − umin)]. As a

result, MCsel
W at the muscle stimulation level decreases and increases in

adjacent hierarchy levels. Note that a logarithmic scale is used for the y-axis.

mechanical toys, such as passive dynamic walkers which generate
the entire behavior based on their mechanical properties. This
example confirms that the measure of MCW captures what we
would expect as morphological computation.

By measuring morphological computation in a hierarchical
control system, we can—for the first time—quantify the
contribution of different hierarchy-levels to the control. The
increase of morphological computation for higher-levels of

the control hierarchy in the accumulative evaluation (MCacc
W )

means that the lower control levels actually contribute quite
significantly. To be able to test whether the differences between
the hierarchy-levels are significant, we introduced variations
based on experimental data. Not all MC data generated in this
way fulfills the ANOVA assumption of equal distribution for each
group represented by a hierarchy level. Still, the results found
by the ANOVA and post-hoc test match what can be seen in
Figures 5, 7. Literature suggests this contribution of muscles to
dynamic movements (van Soest and Bobbert, 1993; Gerritsen
et al., 1998; Wagner and Blickhan, 1999; Eriten and Dankowicz,
2009; van der Krogt et al., 2009; Haeufle et al., 2010, 2012, 2020;
Pinter et al., 2012; John et al., 2013; Kambara et al., 2013; Bayer
et al., 2017; Stollenmaier et al., 2020a). In this sense, the MCacc

W

quantifies the “importance” of each hierarchical level in the sense
of influence on the behavior (world state evolution) of the system.
This approach shows that the muscle-driven arm movements
can be initiated with very little information on the top control
levels while the lower control levels and also the biochemical and
muscular dynamics generate a smooth information-rich signal
and ultimately dynamic behavior out of these reduced signals
(Kistemaker et al., 2006; Stollenmaier et al., 2020a). This is
reflected in the large differences in MCacc

W (please note that the
plots use a logarithmic scale).

We expect similar results for robotic arm systems that
employ muscle-like actuation, e.g., fluidic muscles (Boblan et al.,
2004; Driess et al., 2018). Fluidic muscles show muscle-like
force-length-velocity characteristics (Klute et al., 2002) and by
antagonistic co-contraction allow for variable joint stiffness
(Wolfen et al., 2018). This way, even simple piecewise constant
control signals will result in smooth dynamic movements (Driess
et al., 2018), very similar to what is known from simulation
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A B

FIGURE 7 | Dynamic oscillation movement: Morphological computation MCW for (A) selected (MCsel
W ) and (B) accumulated hierarchy levels (MCacc

W ). Shown are the

mean ±1.96 times standard deviation (≈95% confidence interval) of 14 simulation runs with a set of random CPG frequencies in the spectrum observed in a human

experiment. As tested by an ANOVA, there are significant differences in MCW between the different hierarchy levels. The pairwise post-hoc test revealed that for MCsel
W ,

the highest levels ucentral and utop-down have similar means, so do the muscle stimulation u, activity a, as well as the forces FCE and FMTU. Only the torque level T differs

from all other groups. For MCacc
W , the highest levels ucentral and utop-down have similar means, so do the lowest levels FCE, FMTU, and T. All significance levels were set

to p < 0.05. The limit of the y-axis is set to the maximum MC value that would result from having a constant signal as input. Note that a logarithmic scale is used for

the y-axis.

A B

FIGURE 8 | Dynamic oscillation movement. Morphological computation is higher for the last movement phase where the central pattern stimulation is deactivated and

the movement continues due to the passive dynamics of the arm-rod system. (A) MCacc
W evaluated for the time span between 2 and 4 s (B) for the time span between

4 and 6 s, as indicated by the insets, which show the oscillation of the joints and the rod (cf. Figure 9). In the first time span, the control signals are sinusoidal muscle

stimulations exciting the rod at its resonance frequency (fCPG = 3.8Hz). In the second time span (B), the sinusoidal stimulation is zero and the oscillation is only driven

by the dynamics of the rod. The limit of the y-axis is set to the maximum MC value that would result from having a constant signal as input. Note that a logarithmic

scale is used for the y-axis.

results (Kistemaker et al., 2007a; Stollenmaier et al., 2020a,b;
Wochner et al., 2020), and are hypothesized to be a control
principle of goal-directed arm movements (Feldman and Levin,
2009). Furthermore, as mechanical (visco-)elastic morphological
characteristics are also known to benefit robotic locomotion (Iida
et al., 2009; Shepherd et al., 2011; Niiyama et al., 2012; Hutter
et al., 2013; Manfredi et al., 2013; Sprowitz et al., 2013; Nurzaman
et al., 2015; Hubicki et al., 2016; Ruppert and Badri-Spröwitz,
2019), we expect that such a hierarchy in morphological control
may be present in such systems too. This will become especially

interesting if hierarchical control systems learn to exploit these
morphological contributions to efficiently generate movements
(e.g., Manoonpong et al., 2007; Driess et al., 2018; Büchler et al.,
2020).

4.1. Difference Between the Two
Approaches to Calculate MC
The MCacc

W approach is particularly of value for the evaluation
of hierarchical computational models of motor control, where all
system states are observable. The calculation of morphological
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A B

FIGURE 9 | Time evolution of morphological computation MCW, world state W and actuator state A for the dynamic oscillation movement. The oscillation is exited for

0 ≤ t ≤ 4s by a sinusoidal CPG stimulation signal. After this, uCPG = 0 and the oscillation is then only a result of the dynamics of the system and not of the controller

anymore. Shown here is exemplary (A) the case of MCsel
W of the muscle stimulation level u (yellow bar in Figure 7A) and (B) the case of MCacc

W including only the joint

angles and rod position as world state (dark red bar in Figure 7B).

computation only based on selected actuation signals MCsel
W ,

however, better represent the experimenters’ reality, where most
of the system states are not or hardly observable. While the
general trend is the same, we observed that for the joint
torques the morphological computation increases again. This
can be attributed to the fact that the two joint torque signals
contain less information than the six muscle force signals.
Furthermore, MCsel

W is influenced by noise. Increasing noise
increases the apparent information content of the signals and
thus reduces morphological MCsel

W (yellow bar in Figure 6).
Interestingly, this additional noise is basically filtered by the
low-pass filter characteristics of the muscles’ activation and
contraction dynamics resulting in quite similar output behavior.
Therefore, MCsel

W increases for the lower hierarchy levels. The

consequence of this is, that one has to be careful if applyingMCsel
W

to experimental data, as noise on the signals may alter the result.

4.2. Model Considerations
The model used in this study was chosen as it resembles the
coarse organ-level dynamics of the neuro-musculoskeletal system
that leads to goal-directed movements. However, it does not
consider that in reality, eachmuscle-tendon unit consists of many
motor units that have to be and can be controlled separately by
higher control levels. We cannot rule out that these principles
of the biological system will have a significant effect on the
overall morphological computation and its distribution among
the hierarchy levels. In principle, this could be investigated
in more detailed models (e.g., Heidlauf and Röhrle, 2013;
Mordhorst et al., 2015). However, our model represents the
basic functional unit (Schmitt et al., 2019) considering the
main dynamic properties relevant for the passive contribution
of muscles to control (Pinter et al., 2012). Furthermore, the
two movements investigated here represent primitives that

could potentially be combined to generate more complex arm
movements (Sternad et al., 2000; Wei et al., 2003). Therefore,
we expect that our findings represent a fundamental concept in
biology. We further expect that it extends to other movements
too, e.g., locomotion, for which it is known that muscles
significantly contribute to the movement generation (van Soest
and Bobbert, 1993; Gerritsen et al., 1998; Daley et al., 2009;
Haeufle et al., 2010; John et al., 2013) and allow to simplify
higher-level control (Haeufle et al., 2014, 2020; Ghazi-Zahedi
et al., 2016).

Overall, we here provide evidence that the systems’ design
in the mechanical as well neurological structure facilitates the
control task by providing an appropriate integration of signals
at different levels of the control hierarchy.
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GLOSSARY

List of Symbols

Model levels and control variables.

ucentral ∈ R timed execution of the movement (EP timing)

utop-down ∈ R
12 muscle-specific central control tuning (uopen and λ)

u ∈ R
6 muscle stimulation signals

a ∈ R
6 biochemical muscle activities

FCE ∈ R
6 muscle fiber forces [N]

FMTU ∈ R
6 muscle-tendon unit forces [N]

T ∈ R
2 torques acting on the joints [Nm]

q = (ϕ,ψ ) ∈ R
2 joint angle trajectory

λ ∈ R
6 desired muscle fiber lengths [m]

lCE ∈ R
6 muscle fiber length [m]

lCE,opt ∈ R optimal lCE length [m]

kp ∈ R feedback gain

δ ∈ R feedback delay [s]

uopen ∈ R
6 open-loop control signal

uclosed ∈ R
6 closed-loop control signal

uCPG ∈ R
6 central pattern generator (CPG) signal

û ∈ R amplitude of the CPG

f ∈ R frequency of the CPG

φ0 ∈ R phase of the CPG

Morphological computation.

MCW quantitative measure of morphological computation

MCsel
W MCW for selected hierarchy levels

MCacc
W MCW for accumulated hierarchy levels

W current world state

W ′ next world state

A actuator state

S sensor state

w ∈W value of W

a ∈ A value of A

s ∈ S value of S

α(w′|w, a) world dynamics kernel

β(s|w) sensor map

π (a|s) policy

p probability distribution

cw′ ,w,a number of occurrences of (w′,w, a)

N total number of samples

Frontiers in Robotics and AI | www.frontiersin.org 13 October 2020 | Volume 7 | Article 511265

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Morphological Computation Increases From Lower- to Higher-Level of Biological Motor Control Hierarchy
	1. Introduction
	2. Methods
	2.1. Neuro-Muscular Model
	2.1.1. Angles
	2.1.2. Torques
	2.1.3. Muscle-Tendon Unit Forces
	2.1.4. Muscle Fiber Forces
	2.1.5. Biochemical Muscle Activity
	2.1.6. Muscle Stimulation Signals
	2.1.7. Muscle-Specific Central Control Tuning
	2.1.8. Timed Execution of a Movement

	2.2. Simulation Experiments
	2.2.1. Movement 1: Point-to-Point Movements
	2.2.2. Movement 2: Dynamic Oscillatory Movements
	2.2.3. Details on the Human Experiments to Estimate Natural Variability

	2.3. Quantifying Morphological Computation
	2.4. Statistical Analysis

	3. Results
	3.1. Noise in Point-to-Point Movements
	3.2. Dynamic Oscillatory Movements

	4. Discussion
	4.1. Difference Between the Two Approaches to Calculate MC
	4.2. Model Considerations

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Glossary
	List of Symbols



