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Abstract
Objective  Tuberculosis (TB) remains a major deadly threat 
in mainland China. Early warning and advanced response 
systems play a central role in addressing such a wide-
ranging threat. The purpose of this study is to establish a 
new hybrid model combining a seasonal autoregressive 
integrated moving average (SARIMA) model and a non-
linear autoregressive neural network with exogenous input 
(NARNNX) model to understand the future epidemiological 
patterns of TB morbidity.
Methods  We develop a SARIMA-NARNNX hybrid model 
for forecasting future levels of TB incidence based on data 
containing 255 observations from January 1997 to March 
2018 in mainland China, and the ultimate simulating 
and forecasting performances were compared with the 
basic SARIMA, non-linear autoregressive neural network 
(NARNN) and error-trend-seasonal (ETS) approaches, as 
well as the SARIMA-generalised regression neural network 
(GRNN) and SARIMA-NARNN hybrid techniques.
Results  In terms of the root mean square error, mean 
absolute error, mean error rate and mean absolute 
percentage error, the identified best-fitting SARIMA-
NARNNX combined model with 17 hidden neurons and 
4 feedback delays had smaller values in both in-sample 
simulating scheme and the out-of-sample forecasting 
scheme than the preferred single SARIMA(2,1,3)(0,1,1)

12 
model, a NARNN with 19 hidden neurons and 6 feedback 
delays and ETS(M,A,A), and the best-performing SARIMA-
GRNN and SARIMA-NARNN models with 32 hidden 
neurons and 6 feedback delays. Every year, there was 
an obvious high-risk season for the notified TB cases in 
March and April. Importantly, the epidemic levels of TB 
from 2006 to 2017 trended slightly downward. According 
to the projection results from 2018 to 2025, TB incidence 
will continue to drop by 3.002% annually but will remain 
high.
Conclusions  The new SARIMA-NARNNX combined model 
visibly outperforms the other methods. This hybrid model 
should be used for forecasting the long-term epidemic 
patterns of TB, and it may serve as a beneficial and 
effective tool for controlling this disease.

Introduction
Tuberculosis (TB) is a worldwide chronic 
infectious disease caused by the aetiological 

agent Mycobacterium tuberculosis that is usually 
spread among people through direct and 
indirect contact by droplets, droplet nuclei 
and dust.1 Infection is typically found in the 
lungs but can also affect other organs.2 At 
present, although great progress has been 
made around the world in the prevention 
and control of TB, many countries, especially 
in low-income and middle-income settings, 
are still afflicted with a chronic plague of 
TB with huge losses to their economies, with 
funding reaching US$6.9 billion in 2018.3 4 
Moreover, TB is among the top 10 causes of 
death worldwide; it is estimated that globally 
there were 10.0 million new cases of TB in 
2017, of which 1.3 million individuals’ deaths 
were directly attributable to TB, and TB has 
killed more people than any other infectious 
disease in the past few decades.2 5 The eight 
countries that were hit the hardest with TB 
in 2017 (China ranked second) accounted 
for two-thirds of the global burden of TB.2 

Strengths and limitations of this study

►► This work showed the long-term temporal patterns 
and characteristics in tuberculosis (TB) incidence 
series through a 29-year analysis.

►► The seasonal autoregressive integrated moving 
average-non-linear autoregressive neural network 
with exogenous input (SARIMA-NARNNX) hybrid 
model can be employed to implement long-term 
forecasting of TB in mainland China.

►► The time variable is a significantly useful param-
eter that fails to be ignored during the process of 
constructing prediction models, particularly when a 
clear seasonality is included in the time series.

►► The SARIMA-NARNNX hybrid model has the poten-
tial for far-reaching implications for further preven-
tion and control of TB incidence.

►► The SARIMA-NARNNX hybrid model only relies on 
the retrospective responses and time factors with-
out considering additional explanatory variables.
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During the same period, China recorded the second 
largest morbidity of multidrug-resistant TB (MDR-TB) 
cases with an estimated 778 390 new TB notifications.2 
Furthermore, the costs of each confirmed case of TB 
have reached as much as 2% of urban residents’ average 
annual income in mainland China.6 Currently, although 
the TB incidence has been slightly decreasing annually 
in mainland China,7 the potential achievement is dimin-
ished by an increasing large-scale transient population, 
the emergence of MDR-TB, along with the comorbid 
conditions of AIDS and non-communicable diseases, 
which have led to a resurgence of TB in many regions in 
recent years.2 8 9 Additionally, WHO initiated the End TB 
Strategy in 2014 with the target of a 90% reduction in new 
TB cases by 2035 compared with 2015 and a milestone of 
reducing the TB incidence rate by 50% by 2025 relative 
to 2015.10 To accelerate progress towards such a daunting 
task, corresponding measures and actions are expected at 
both the national and international levels. At the national 
level, appropriate plans can fail to be becomingly formu-
lated without getting a clear perspective of the past, 
current and future temporal levels of this disease. There-
fore, advanced detection and early response systems for 
epidemics have formed an integral part of the effective 
precautions against TB and the reasonable allocation of 
available health resources.

Currently, numerous useful statistical techniques have 
been extensively employed in the forecasting domain, 
including linear methods such as the seasonal autore-
gressive integrated moving average (SARIMA) method,9 
the error-trend-seasonal (ETS) approach,11 linear regres-
sion,12 support vector machines12 and autoregressive 
distributed-lag modelling13; non-linear models, predom-
inantly involving artificial neural networks (ANNs)14and 
linear and the non-linear hybrid methods.7 13 15 Whereas 
complexities and challenges in understanding the inci-
dence trends of infectious diseases are the linear and 
non-linear interactions among different dimensions in 
real-world scenarios.14 16 Consequently, hybrid models 
comprising the SARIMA model and generalised regres-
sion neural networks (GRNNs) as well as non-linear 
autoregressive neural network (NARNN) techniques that 
can enable arbitrarily intricate non-stationary series to 
attain any desired accuracy owing to their powerful flex-
ible non-linear mapping capacity and accomplish satisfac-
tory performance in epidemiological predictions.3 9 14–19 
It has been shown that the SARIMA-NARNN combined 
model can provide a more accurate insight into time-de-
pendent data than the SARIMA-GRNN hybrid model.20 
However, the time variable is fairly helpful in modelling 
long-trajectory data exhibiting obvious seasonality and 
cyclicity,3 14 20 21 which is invariably neglected during 
SARIMA-NARNN model development.9 Importantly, 
many studies have confirmed that TB morbidity manifests 
obvious seasonal and cycle patterns.3 7 14 15 22 Therefore, to 
take full advantage of the linear and non-linear compo-
nents hidden in the epidemiological data, our team first 
proposes a hybrid methodology based on the SARIMA 

model and the non-linear autoregressive neural network 
with exogenous input (NARNNX) for modelling the long-
term seasonality and forecasting trends in TB incidence, 
called SARIMA-NARNNX. To further test and verify the 
feasibility and flexibility of this hybrid technique, the 
single SARIMA, NARNN and ETS methods, coupled with 
the traditional SARIMA-GRNN and SARIMA-NARNN 
hybrid techniques, were also established to simulate the 
TB incidence data, and then their modelling and fore-
casting powers were compared with our proposed hybrid 
model to find the optimal model to make a contribution 
to the elimination of TB in China and worldwide.

Materials and methods
Data sources
In this observational study, the longitudinal monthly 
morbidity data from January 1997 to March 2018 were 
extracted from the notifiable infectious disease reporting 
system supplied by the Chinese Center for Disease Control 
and Prevention (http://www.​nhfpc.​gov.​cn/​jkj/​s2907/​
new_​list_​6.​shtml) and the disease surveillance website 
(http://www.​jbjc.​org/​CN/​article/​showVolumnList.​do). 
A total of 255 months of observations over a period of 
22 years were obtained for the analysis. Subsequently, the 
data were separated into two groups; the first 240 points 
were designated for in-sample model building, while the 
remaining 15 points were reserved for forecasting assess-
ment and comparison (online supplementary table S1).

Statistical analysis
Developing the SARIMA-NARNNX hybrid model
The NARNN model only uses the known past input values 
to estimate the present output results (online supplemen-
tary figure S1), which may influence its prediction and 
extrapolation accuracies because the time variable is a 
significant rewarding parameter that fails to be ignored, 
particularly when a clear seasonality is present in the 
time series.9 In addition, there are strong correlations 
between the fitted values of the SARIMA model and the 
actual values of TB morbidity sequences. Therefore, the 
importance of the time variable is highlighted in our 
proposed SARIMA-NARNNX hybrid model. The time 
variable and the estimated values of the SARIMA model 
were regarded as input variables in our model, while the 
corresponding TB reported cases were used as the output 
variable (online supplementary figure S2). Then, the 
informative linear and non-linear implications contained 
in the TB notification data are systematically excavated 
through this combined methodology. Finally, the best-fit-
ting hybrid model identified is employed to conduct 
out-of-sample predictions. The estimated equation of the 
SARIMA-NARNNX combined model is defined as

	 ‍̂y(t) = f(y(t − 1), ..., y(t − d), x(t − 1), .., x(t − d))‍� (1)

Here, f represents a function that relies on the struc-
ture and connection weights of the NARNNX model,‍̂y‍ 
signifies the simulated and projected values from the 
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hybrid technique, y refers to the given prior TB incidence 
data in a lagged period d, and x denotes the input values 
containing the time factor and the mimics and projec-
tions of the SARIMA method.

In this hybrid model, the modelling steps were as 
follows. Initially, as mentioned above, the time variable 
and the estimated values of the SARIMA model were 
regarded as input variables, while the corresponding 
reported cases of TB were used as the output variable. 
Subsequently, the random divider  and function was 
applied to classify the in-sample data into three subsets: 
a training dataset (80% of the data), a validation dataset 
(10%) and a testing dataset (10%). Then, the number 
of hidden neurons and delays d was adjusted by trial 
and error using the Levenberg-Marquardt algorithm 
in an open feedback loop mode. The response plot of 
the outputs and targets and the residual autocorrelation 
function (ACF) plot, together with the mean square error 
(MSE) and correlation coefficient (R), were used to find 
the best-performing SARIMA-NARNNX model. Finally, 
the training open-loop architecture was transformed 
into closed-loop mode to make multistep-ahead forecasts 
(The code used in our experiments is included in the 
online supplementary materials).

Moreover, the single SARIMA and the traditional 
SARIMA-GRNN and SARIMA-NARNN models were 
constructed as described in the online supplementary 
materials, and their modelling and forecasting powers 
were compared with the SARIMA-NARNNX hybrid 
model.

Performance measures among models
In this work, the SARIMA model was built with the R 
statistical package (V.3.4.3, R Development Core Team, 
Vienna, Austria), and the selected three hybrid models, 
including the SARIMA-GRNN, SARIMA-NARNN and 
SARIMA-NARNNX, were developed with MATLAB 
(V.R2014a, MathWorks, Natick, Massachusetts, USA). A 
two-sided p <0.05 was considered statistically significant.

Of the mathematical methodologies mentioned above, 
the mimic and predictive performances were judged by 
two types of measures: scale-dependent indices (ie, the 
root mean square error (RMSE) and the mean absolute 
error (MAE)) and indices that depend on percentage 
errors (ie, the mean error rate (MER) and the mean abso-
lute percentage error (MAPE)). For these measures, the 
smallest values correspond to the optimal method.
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where Xi denotes the observed values,  ‍̂Yi ‍ signifies the 
simulated and projected values from the four selected 
models, ‍̄Xi ‍ represents the average of the observed values, 
and N is the number of fitted or projected values from the 
four selected models.

Patient and public involvement
Patients and the public were not involved in our present 
study, as the TB incidence series from the notifiable 
infectious disease reporting system was aggregated as 
secondary data and does not contain personal identifying 
information. Thus, these data are publicly available.

Results
General information
A total 17 926 271 cases were reported during the period 
between January 1997 and March 2018, with a monthly 
average morbidity of 88 304 cases, resulting in a yearly 
average incidence rate of 63.724 cases per 100 000 
people. The incidence rate has remarkably risen from 
30.836 cases per 100 000 persons in 1997 to 60.082 cases 
per 100 000 persons in 2017, with an increase of 94.847%. 
The highest incidence peak was at a maximum in 2005 
with 96.310 cases per 100 000 population, which was 
a marginal increase of 212.332% compared with 2008 
(online supplementary figure S3). When the short-term 
monthly effects of TB morbidity from January 1997 to 
March 2018 were removed by the Hodrick-Prescott (HP) 
decomposition approach (figure 1), it was observed that 
there are apparent seasonal peak activities in the TB inci-
dence time series, especially in March and April of each 
year, and the seasonal periodicity continued to fluctuate 
with a length of 12 months. In addition, the TB case noti-
fications from 2006 to 2017 trended slightly downward 
but were still significantly high.

Figure 1  Decomposition of monthly TB time series 
in mainland China from 1997 to 2018 into trend and 
cyclical components using the Hodrick-Prescott filter. TB, 
tuberculosis. 
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The best-performing SARIMA model
Before modelling, an augmented Dickey-Fuller (ADF) 
test was performed in the reported TB incidence series 
that indicated that the data are irregular and non-sta-
tionary (ADF=−1.705, p=0.427). Consequently, according 
to the results of the ADF test and TB incidence period-
icity, the first-order seasonal and non-seasonal differences 
were taken to remove the instabilities in the variance 
and mean (ADF=−4.175, p<0.001), which indicated that 
the differenced series was stationary. Subsequently, by 
analysing the spikes of the ACF and partial ACF (PACF) 
plots from the transformed TB morbidity series (online 
supplementary figures S4 and S5), several candidate 
models were roughly chosen to further discover the 
optimal SARIMA model (online supplementary table 
S2). Next, the best-performing SARIMA(2,1,3)(0,1,1)12 
model was selected based on the residual correlations 

in both the ACF and PACF plots, as well as the akaike 
information criterion (AIC), bias-corrected AIC (AICc) 
and schwarz bayesian criterion (SBC) values. The AIC, 
AICc and SBC values of 4914.44, 4914.94 and 4938.60, 
respectively, were the smallest among those candidate 
models. The ACF and PACF residual plots demonstrated 
that the error correlations at lags almost fell into the 
estimated threshold limits, and the Ljung-Box Q-test 
also revealed that the residuals were a white noise series 
(figure  2 and table  1). Furthermore, the testing results 
of the estimated parameters were all statistically signifi-
cant. Nevertheless, the lagrangian multiplier (LM) test 
demonstrated that apparent autoregressive conditional 
heteroscedastic (ARCH) effects were noted at different 
lags in the residual series (table 2). The specified equa-
tion of the SARIMA(2,1,3)(0,1,1)12 model can be written 
as (1-B)(1-B)12 Xt=(1+2.161B-1.938B2 +0.633B3 (1+0.7B12 
ɛt/(1–1.52B+0.909B2). Ultimately, the preferred model 
can be applied to predict the incident cases from January 
2017 to March 2018 (table 3).

The best-performing ARIMA-GRNN hybrid technique
The first-order differences taken for the TB morbidity 
series when building the SARIMA model caused 
13-month missing data. Therefore, the modelling values 
of the SARIMA model from February 1998 to December 
2016 were used for the inputs, while the original values 
of the TB incidence in the same months were used as 
the expected outputs to obtain the modelling results 
of the SARIMA-GRNN hybrid technique. To find the 
preferred GRNN model in which the smoothing factor 
can generate the smallest value of RMSE on the randomly 
selected testing set, after running the random integer 
function randint(1,2,(1   227)) in MATLAB, two sample 

Figure 2  Diagnostic checking for the residuals generated 
by the SARIMA(2,1,3)×(0,1,1)12 method. (A) Standardised 
residual plot; (B) autocorrelation function (ACF) of the errors 
at various lags; (C) Partial ACF (PACF) of the errors at various 
lags. SARIMA, seasonal autoregressive integrated moving 
average.

Table 1  Ljung-Box Q tests of the errors series for the chosen best-undertaking methods at different lags

Lags

SARIMA SARIMA-GRNN SARIMA-NARNN SARIMA-NARNNX

Box-Ljung Q P value Box-Ljung Q P value Box-Ljung Q P value Box-Ljung Q P value

1 0.079 0.779 2.287 0.130 1.769 0.183 0.057 0.811

3 0.084 0.994 3.308 0.347 6.010 0.111 0.336 0.953

6 0.970 0.987 3.969 0.681 7.375 0.288 0.436 0.999

9 4.065 0.907 4.850 0.847 8.940 0.443 1.348 0.998

12 7.396 0.830 6.097 0.911 10.706 0.554 3.160 0.994

15 8.480 0.903 7.667 0.936 14.006 0.525 5.059 0.992

18 9.763 0.939 11.351 0.879 14.478 0.697 9.189 0.955

21 10.959 0.964 11.446 0.953 14.997 0.823 10.320 0.975

24 15.399 0.909 17.626 0.821 17.174 0.841 18.569 0.775

27 20.056 0.828 21.015 0.786 19.064 0.868 30.082 0.311

30 20.803 0.894 21.071 0.886 20.029 0.916 33.156 0.316

33 23.485 0.889 22.172 0.924 21.507 0.938 38.354 0.240

36 25.866 0.894 25.066 0.914 22.383 0.963 40.113 0.293

GRNN, generalised regression neural network; NARNN, non-linear autoregressive neural network; NARNNX, non-linear autoregressive neural 
network with exogenous input; SARIMA, seasonal autoregressive integrated moving average. 
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points of 29 and 208 corresponding to the values of June 
2000 and May 2015, respectively, were chosen for the 
SARIMA-GRNN hybrid technique modelling. Then, we 
used the dataset that removed the two above-mentioned 
sample points to develop SARIMA-GRNN combined 
models with smoothing factors between 0 and 1 (incre-
mented by 0.001). The results are depicted in figure  3 

and online supplementary figure S6, which illustrate that, 
among all the smoothing factors, the minimum RMSE 
value (0.0024) was obtained with a smoothing factor of 
0.006. Consequently, this identified optimal value was 
adopted to construct the best-performing SARIMA-GRNN 
hybrid approach for TB incidence series modelling and 
forecasting. Further diagnostic tests for this hybrid model 

Table 2  ARCH effects of the observations and errors series for the chosen best-undertaking method at various lags

Lags

Original values SARIMA SARIMA-GRNN SARIMA-NARNN SARIMA-NARNNX

LM-test P value LM-test P value LM-test P value LM-test P value LM-test P value

1 192.37 <0.001 44.973 <0.001 58.393 <0.001 5.522 0.019 0.358 0.550

3 192.95 <0.001 47.413 <0.001 67.078 <0.001 6.659 0.084 4.639 0.200

6 190.52 <0.001 46.980 <0.001 66.140 <0.001 8.581 0.199 4.791 0.571

9 192.910 <0.001 46.254 <0.001 65.552 <0.001 9.030 0.435 5.654 0.774

12 199.100 <0.001 71.910 <0.001 71.985 <0.001 11.386 0.496 7.08 0.852

15 203.180 <0.001 72.409 <0.001 71.654 <0.001 11.841 0.691 8.205 0.915

18 200.2 <0.001 71.245 <0.001 71.075 <0.001 12.991 0.792 9.272 0.953

21 197.06 <0.001 70.719 <0.001 70.505 <0.001 14.318 0.856 9.193 0.988

24 194.57 <0.001 69.891 <0.001 72.594 <0.001 15.646 0.900 9.947 0.995

27 191.580 <0.001 70.122 <0.001 74.501 <0.001 21.634 0.756 10.339 0.998

30 188.550 <0.001 69.301 <0.001 73.457 <0.001 24.734 0.738 10.681 1.000

33 185.330 <0.001 68.289 <0.001 72.563 <0.001 26.942 0.762 11.038 1.000

36 182.53 <0.001 67.643 0.001 72.764 <0.001 32.373 0.642 13.956 1.000

ARCH,  autoregressive conditional heteroscedastic; GRNN, generalised regression neural network; NARNN, non-linear autoregressive neural 
network; NARNNX, non-linear autoregressive neural network with exogenous input; SARIMA, seasonal autoregressive integrated moving 
average.

Table 3  The projected cases of TB incidence using the best-performing approaches chosen from January 2017 to March 
2018 in mainland China

Time
Original 
values

SARIMA SARIMA-GRNN SARIMA-NARNN SARIMA-NARNNX

Forecasts MAE Forecasts MAE Forecasts MAE Forecasts MAE

January-2017 80 911 84 673 0.046 86 123 0.064 81 502 0.007 80 411 0.006

February-2017 92 037 78 429 0.148 84 772 0.079 82 383 0.105 91 943 0.001

March-2017 105 633 1 14 580 0.085 110 652 0.048 103 932 0.016 112 460 0.065

April-2017 97 296 1 06 435 0.094 108 340 0.114 93 322 0.041 104 869 0.078

May-2017 101 628 97 474 0.041 99 846 0.018 105 292 0.036 102 436 0.008

June-2017 99 001 92 719 0.063 94 623 0.044 89 143 0.100 93 127 0.059

July-2017 96 471 94 806 0.017 96 130 0.004 94 522 0.020 96 794 0.003

August-2017 100 076 92 419 0.077 93 497 0.066 91 733 0.083 93 969 0.061

September-2017 92 494 89 344 0.034 92 583 0.001 81 409 0.120 92 088 0.004

October-2017 81 554 82 947 0.017 88 642 0.087 80 656 0.011 85 865 0.053

November-2017 89 976 86 118 0.043 84 990 0.055 87 067 0.032 86 295 0.041

December-2017 87 630 87 387 0.003 93 857 0.071 84 549 0.035 88 608 0.011

January-2018 96 125 81 167 0.156 89 054 0.074 85 574 0.110 84 287 0.123

February-2018 77 224 80 301 0.040 86 698 0.123 80 071 0.037 80 715 0.045

March-2018 110 124 1 06 125 0.036 105 440 0.043 102 342 0.071 110 760 0.006

GRNN, generalised regression neural network; MAE, mean absolute error; NARNN, non-linear autoregressive neural network; NARNNX, non-
linear autoregressive neural network with exogenous input; SARIMA, seasonal autoregressive integrated moving average; TB, tuberculosis. 
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are displayed in tables  1 and 2 and figure  4A, showing 
that a white noise sequence was present in the generated 
errors, yet there were ARCH effects. The out-of-sample 
forecasting results are given in table 3.

The best-performing SARIMA-NARNN hybrid technique
To find the best-fitting NARNN model for the SARIMA 
error series, the hidden units and feedback delays 
ranged from 10 to 40 and 2 to 7, respectively, were iter-
ated one by one. Ultimately, comprehensively taking all 
the performance indices into consideration, we identi-
fied the optimum model with 32 hidden neurons and 
6 feedback delays. As presented in online supplemen-
tary figure S4, the preferred NARNN model had the 
minimum MSE value for training (0.003), validation 
(0.010) and testing (0.018), and it had the maximum 
R values for training, validation, testing subsets and for 
the entire dataset (0.882, 0.888, 0.619 and 0.823, respec-
tively) (online supplementary figure S7). Moreover, 
the ACF plot of the residuals produced by the NARNN 
model revealed that all autocorrelations were within 
the estimated confidence intervals except for the one 
at the zero lag that should occur, suggesting that the 
errors behave like a white noise series (figure 4B). The 
Ljung-Box Q-test was associated with a large p value that 
also indicated that there did not seem to be autocorrela-
tions remaining in the residuals (table 1). The response 
plot of the output elements for the randomly selected 
training, validation and testing subsets suggested that 
the preferred NARNN model can simulate the epidemic 
behaviours in the three grouped datasets due to the 
small errors that were located between approximately 
−0.2 and 0.2 (figure  5A). Additionally, the LM test 
demonstrated that the ARCH effects in the TB case noti-
fications series were largely ameliorated in the residuals 
in the SARIMA-NARNN hybrid model (table 2). There-
fore, the derived hybrid model is suitable for the current 
data. Next, the estimated results from the optimal hybrid 

approach were converted into the mimic and predic-
tive values of the original observations using an inverse 
transform operation, as shown in table 3.

The best-performing SARIMA-NARNNX combined technique
To deeply mine the linear and non-linear patterns 
included in the TB incidence series, the preferred 

Figure 3  The RMSE values corresponding to different 
smoothing factors for the SARIMA-GRNN combined 
technique. It can be seen that when smoothing factor is 
0.006, the lowest RMSE value is 0.0024. GRNN, generalised 
regression neural network; SARIMA, seasonal autoregressive 
integrated moving average.

Figure 4  The resultant error autocorrelation function (ACF) 
plots for the three optimal hybrid models selected. (A) 
ACF plot of errors for the best-performing SARIMA-GRNN 
hybrid technique across varying lags; (B) ACF plot of 
errors for the best-performing SARIMA-NARNN hybrid 
technique across varying lags; (C) ACF plot of errors for 
the best-performing SARIMA-NARNNX hybrid technique 
across varying lags. GRNN, generalised regression neural 
network; NARNN, non-linear autoregressive neural network; 
NARNNX, non-linear autoregressive neural network with 
exogenous input; SARIMA, seasonal autoregressive 
integrated moving average; TB, tuberculosis.
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SARIMA-NARNNX hybrid model was built by trial and 
error. Finally, the SARIMA-NARNNX model with 17 
hidden neurons and 4 feedback delays was determined to 
be the best-fitting model based on the minimum MSE for 
the training subset (18907817.559), the validation subset 
(19921017.940) and the testing subset (36872592.071), 
as well as with the maximum R values of the training, 
validation testing datasets and the entire dataset (0.994, 
0.982, 0.986 and 0.992, respectively) (online supplemen-
tary figure S8). The ACF plot of errors from the optimal 
hybrid model showed no individually evident autocor-
relations at varying lags except for the one at the zero 
lag, which are seeming satisfactory results with a white 
noise behaviour (figure 4C), the Ljung-Box Q-test further 
confirmed that this combined approach did not suffer 
from correlated residuals (table 1). The response plot of 
the output elements for the randomly selected training, 

validation and testing subsets indicated that the optimal 
technique can track the dynamic structure of the TB inci-
dence series well (figure  5B). Importantly, the LM test 
showed that the volatility in the actual observations was 
essentially eliminated from the residuals of the best-fit-
ting SARIMA-NARNNX hybrid model (table 2). All these 
results imply that the established model is appropriate 
and can be used to forecast future epidemic patterns of 
TB in mainland China (table 3).

Performance comparison
As shown in table 4, the MAE, MER, MAPE and RMSE 
values were the smallest in the SARIMA-NARNNX 
combined approach in the fitting stage and estimated 
stage. Among these four hybrid models, the curves 
mimicked and forecasted by the SARIMA-NARNNX 
hybrid model provided a better approximation to the 
actual data than the other models did (figure  6). As 
observed from the four measures, our proposed SARI-
MA-NARNNX hybrid model visibly lowered the model 
simulating and forecasting errors. Hence, this combined 
method should be adopted in the upcoming years for 
forecasting TB incidence. Moreover, to further test the 
performance superiority in the long-term prediction of 
TB incidence, we provided additional modelling and 
forecasting using the notified TB incidence, in which 
the data from January 1997 to December 2012 were 
used as the training set, and the data from January 
2013 to March 2018 were used as the testing set. Online 
supplementary tables S3  and  S4 and figures S9–S12 
summarise the analytical results. Despite the degra-
dation in its performance percentages, the proposed 
hybrid model can still be applied to perform long-term 
TB incidence predictions. In view of its superiority, 
this data-driven hybrid approach was thus remodelled 
on the whole dataset between January 1997 and March 
2018 to predict the future long-trajectory trends of TB 
incidence (online supplementary table S5 and figures 
S13–S15). As shown in figure 7, the TB incident cases 
will continue the downward trend in the forecasted 
periods of April 2018 through December 2025 with a 
yearly reduction of approximately 3.002%.

A refers to the SARIMA model; B stands for the SARI-
MA-GRNN hybrid model; C signifies the SARIMA-NARNN 
hybrid model; D represents the SARIMA-NARNNX the 
hybrid model.

Discussion
As one of the oldest infectious diseases, many countries 
have been fighting TB for years, but TB is still by far one of 
the foremost public health problems in China and world-
wide.9 Understanding the epidemic patterns of TB may 
facilitate the resolution of this issue. This is the first work 
to construct a hybrid technique (SARIMA-NARNNX) that 
combines a SARIMA model and a NARNN model with a 
time variable to forecast TB incidence, which may offer the 
base data and theoretical support to build and assess the 

Figure 5  The corresponding time series response plots 
of outputs and targets for the best-undertaking SARIMA-
NARNN and SARIMA-NARNNX hybrid models at various 
time points. (A) Response plot of the outputs and targets 
for the best-undertaking SARIMA-NARNN hybrid model; 
(B) Response plot of the outputs and targets for the best-
undertaking SARIMA-NARNNX hybrid model. NARNN, 
non-linear autoregressive neural network; NARNNX, non-
linear autoregressive neural network with exogenous input; 
SARIMA, seasonal autoregressive integrated moving average; 
TB, tuberculosis. 

https://dx.doi.org/10.1136/bmjopen-2018-024409
https://dx.doi.org/10.1136/bmjopen-2018-024409
https://dx.doi.org/10.1136/bmjopen-2018-024409
https://dx.doi.org/10.1136/bmjopen-2018-024409
https://dx.doi.org/10.1136/bmjopen-2018-024409


8 Wang Y, et al. BMJ Open 2019;9:e024409. doi:10.1136/bmjopen-2018-024409

Open access�

control measures of TB. We compared the results derived 
from this data-driven method with the most widely used 
SARIMA model and the best-performing SARIMA-GRNN 
and SARIMA-NARNN combined approaches in the domain 
of epidemiological predictions. This SARIMA-NARNNX 
hybrid technique significantly outperforms the single 
SARIMA model, as well as the traditional SARIMA-GRNN 
and SARIMA-NARNN combined methods in both the 
simulating facet and the forecasting facet. Using this hybrid 
model, the performance-improvement percentages from 
the MAE, MER, MAPE and RMSE evaluation indices over 
the basic SARIMA method are 48.930%, 50.000%, 43.284% 
and 49.112%, respectively, in the training set and 37.775%, 
37.705%, 36.667% and 30.777%, respectively, in the testing 
set. From these indices, the simulation and prediction 
errors are reduced using this hybrid method compared 
with the best-performing SARIMA-GRNN and SARI-
MA-NARNN combined approaches. In a similar fashion, we 

also adopted the basic NARNN method, along with the ETS 
approach to model TB incidence data; the ETS approach 
was recently shown to be a fairly effective tool for simulating 
incidence time series of infectious diseases (online supple-
mentary figures S16–S19 and online supplementary tables 
S6 and S7).11 23 Likewise, the SARIMA-NARNNX technique 
is the best-performing method based on the aforemen-
tioned four measures (online supplementary table S8). 
Furthermore, in the present study, we observed that the 
SARIMA-NARNNX hybrid approach perfectly models and 
predicts the TB incidence data based on the MAPE measure, 
which is generally regarded as a useful index to judge the 
accuracy of a forecast. In terms of predictive ability, when 
the MAPE value is less than 5%, the forecast model is consid-
ered perfect. A model with a MAPE value falling within (5%, 
10%) is considered highly accurate; a model with a MAPE 
value lying within (10%, 20%) is considered good; a model 
with MAPE value falling within (20%, 50%) is considered 
reasonable; and a model with a MAPE value greater than 
50% is considered inaccurate.24 The trends fitted and 
predicted by the hybrid model show a very similar fluctu-
ation pattern to the actual data (figure 6). In our experi-
ments, all these results confirm that the SARIMA-NARNNX 

Table 4  Comparison of in-sample fitting and out-of-sample predicting performances among the best-performing approaches 
chosen

Models

Simulating power Predictive power

MAE MER MAPE RMSE MAE MER MAPE RMSE

 � SARIMA 5636.303 0.062 0.067 8781.186 5726.262 0.061 0.060 7104.34

 � SARIMA-GRNN 4437.958 0.049 0.054 6939.078 5415.985 0.058 0.059 6155.964

 � SARIMA-NARNN 3283.274 0.035 0.043 5265.82 5259.556 0.056 0.055 6418.445

 � SARIMA-NARNNX 2878.484 0.031 0.038 4468.578 3563.179 0.038 0.038 4917.829

Percentage reductions (%)

 � D versus A 48.930 50.000 43.284 49.112 37.775 37.705 36.667 30.777

 � D versus B 27.668 29.032 23.881 28.134 32.356 32.787 35.000 17.428

 � D versus C 7.182 6.452 7.463 9.079 29.625 29.508 28.333 21.123

GRNN, generalised regression neural network; MAPE, mean absolute percentage error; MER, mean error rate; MAE, mean absolute error; 
NARNN, non-linear autoregressive neural network; NARNNX, non-linear autoregressive neural network with exogenous input; RMSE, root 
mean square error; SARIMA, seasonal autoregressive integrated moving average. 

Figure 6  The comparison graph of the 
fitting and forecasting results among various 
models. GRNN, generalised regression neural network; 
NARNN, non-linear autoregressive neural network; NARNNX, 
non-linear autoregressive neural network with exogenous 
input; SARIMA, seasonal autoregressive integrated moving 
average.

Figure 7  The comparison graph between the estimated 
epidemic trends of TB incidence from 2018 to 2025 and the 
milestones goals suggested by WHO. TB, tuberculosis. 
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hybrid model is mechanically more robust and accurate and 
can better reflect internal regularities and track the future 
trends of TB incidence than the other methods. In addi-
tion, although the fitting and prediction accuracies of the 
other three models were lower than our proposed hybrid 
model, in terms of the modelling indices,24 the SARIMA, 
SARIMA-GRNN and SARIMA-NARNN models still do well 
in the prediction of TB notified cases, and the combined 
techniques of SARIMA-GRNN and SARIMA-NARNN give a 
better performance over the SARIMA method. In general, 
among these two combined approaches (SARIMA-GRNN 
and SARIMA-NARNN), the latter is superior to the 
former. This finding is fully aligned with previous studies 
concerning predictions for communicable diseases.9 14 19 
The developed SARIMA-NARNNX hybrid model can serve 
as an effective tool for identifying the future trends of TB 
incidence in mainland China, and we also provide evidence 
that the time variable is conducive and instrumental in 
increasing the prediction accuracy. This parameter fails to 
be neglected when a disease displays notable seasonality 
and cyclicity. In this regard, our combined model seems 
to be appropriate for estimating the TB morbidity in other 
settings. However, it is worthwhile to note that, with the 
rapid development of data mining technology, much work 
is still needed to develop more accurate and precise tech-
niques for evaluating and analysing the notified TB cases in 
mainland China.

It is well accepted that the accurate identification of 
seasonality plays a major role in timely responses and 
reasonably allocated resources for TB epidemics.3 In our 
present research, TB infection can occur during all seasons, 
but a clear seasonality with a periodicity of 12 months was 
noted with the aid of the HP technique from January 1997 
to March 2018, and there was a peak in March and April 
of every year. Similar findings have already been verified 
in previous studies with the SARIMA-GRNN model, which 
was also constructed by using the nationally reported TB 
reported cases.3 7 At present, the seasonal variation of TB 
incidence has been observed in other countries or regions 
across the world.25 26 The evidence from a prior review 
containing 12 reports demonstrated that high-risk season-
ality prevailingly occurred in the spring and summer.25 
Two peaks of TB notifications were found in the Eastern 
Cape and in northern India, where the first stronger peak 
mainly spanned from April to June, and the weaker peak 
was annually observed from October to December.15 27 In 
China, a variety of complicated factors appear to be respon-
sible for the TB incidence peak in the early spring, with 
the following reasons being of especial concern. The envi-
ronment is gradually being destroyed by air pollution in 
China, and China has been under growing pressure, as 
PM2.5, PM10, NO2 and SO2, the key indicators of air pollu-
tion, increasingly hits new records in the winter in almost 
all the large cities. Importantly, few studies have revealed a 
positive correlation between air pollution and the seasonal 
risk of TB, and the potential hazards of air pollution on 
health exhibit an obvious lagged effect.28–31 In addition, 
the climatic characteristics of winter with low temperature 

and airflow compel people to conduct most social activities 
indoors, which may contribute to TB transmission due to 
poor ventilation and overcrowding.7 15 Perhaps the primary 
reason for the peak in the early spring is that the Lunar 
New Year, the most important annual festival in China, 
generally falls in the winter. This festival is associated with 
the largest annual population movement across the country 
by different means of transportation. In consideration of 
the length of the TB latent period, this festival effect may be 
a contributory factor in TB transmission.3 7 In addition, the 
other possible reasons for the risk seasonality of TB entail 
further investigation.

By characterising the TB notified cases in mainland 
China, a slight downturn since 2006 has been noted. 
Moreover, China has been on track to achieve the goal of 
reducing TB morbidity and mortality rates by 50% in 2015 
relative to 1990.32 However, with the initiation of the ambi-
tious goal to end TB around the world, WHO has proposed 
milestones targets for the TB incidence rate, mortality rate 
and incidents for 2020, 2025 and 2030 relative to 2015, 
along with the final elimination goal in 2035.10 Whether 
the targets can be achieved is still unknown, but our addi-
tional test results also support long-term projections of TB 
incidence. Hence, the SARIMA-NARNNX hybrid approach 
was rebuilt based on all the observations to understand the 
epidemiological situation in advance of the coming years. 
The results indicate that the TB incidence rate has already 
reached the target of less than 85 cases per 100 000 popu-
lation before 202010 and the morbidity cases will continue 
to drop by a yearly average percentage of 3.002%. However, 
as presented in figure 7, the number of new cases may be 
far from the milestone targets by 2020 and 2025, and the 
expected cases of TB remain comparatively high, meaning 
that China will be  still under the threat of TB for a long 
time. Therefore, to achieve the target of ending TB world-
wide, more attention on further strengthening the compre-
hensive intervention strategies and proactively exploring 
new effective prophylactic methods for TB is expected 
(eg, the introduction of new vaccines, advanced diagnostic 
techniques and therapeutic techniques; comanagement of 
TB comorbidities; and the actualisation of universal health 
coverage and social protection).

In this work, we concentrate on the epidemic trend anal-
ysis of TB incidence and have succeeded in developing and 
assessing a hybrid technique with a potential for forecasting 
the long-term TB incidence data in mainland China. More-
over, the important findings drawn from this work are 
based on a sufficiently large TB incidence dataset spanning 
29 years and a comprehensive comparison of models that 
are, currently, either the most extensively adopted or the 
most efficient for predicting infectious diseases incidence 
data. Nonetheless, several limitations still need to be consid-
ered. First, there is a lack of standardised methods that can 
be employed to identify the best-performing configuration 
and key parameters of ANNs; in applications, repeated 
attempts are required. Second, the underestimation of 
the total number of monthly incident cases is inevitable in 
passive contagious disease reporting systems as a result of a 
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mixture of under-reporting of detected cases and underdi-
agnosis (eg, individuals may fail to access healthcare or they 
may fail to be diagnosed when they do). Third, weekly data 
may allow a greater examination of the temporal differ-
ences between years. Nevertheless, we do not perform 
further analysis due to the lack of available data. Fourth, the 
model was established without taking other drivers related 
to TB occurrence and development into consideration 
in addition to the case numbers and months. Fifth, this 
model should be regularly updated with new notified data 
to ensure its prediction accuracy. Lastly, this work is only 
focused on the TB incidence data forecasting in mainland 
China. Further studies involving predictions for various 
regions and different types of infectious diseases exhibiting 
marked seasonal and cyclic variations are required to verify 
the potential application of the SARIMA-NARNNX hybrid 
technique.

Conclusions
In summary, our proposed SARIMA-NARNNX method 
offers more accurate predictions for TB case notifi-
cations than that of the basic SARIMA, NARNN and 
ETS(M,A,A) methods, as well as the traditional SARI-
MA-GRNN and SARIMA-NARNN hybrid approaches. 
This model may be conducive and instrumental for 
government officials to rationally allocate health 
resources and appropriately formulate long-term 
preventive and control plans for TB. Additionally, the 
projected incidents display a potential slight downturn 
but still retain a fairly high morbidity level, so urgent 
action is needed to formulate additional comprehen-
sive prevention, control and intervention strategies.

Acknowledgements  We thank all members involving the collection of TB data. 

Contributors  YW, CX and JY conceived and proposed this work. SZ and ZW 
collected and analysed the data. LY and YZ improved the paper. All authors agreeed 
to submit this article.

Funding  This work was supported by the Graduate Student Innovation Fund of 
Hebei Province (no. CXZZBS2017130).

Competing interests  None declared.

Patient consent for publication  Not required.

Ethics approval  The ethical approval is not warranted for our present work as the 
monthly monitoring data of TB morbidity are publicly available in China. 

Provenance and peer review  Not commissioned; externally peer reviewed.

Data sharing statement  All data were enclosed to the online supplementary 
materials.

Open access This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://​creativecommons.​org/​licenses/​by-​nc/​4.​0/.

References
	 1.	 Zhao Y, Li M, Yuan S. Analysis of transmission and control of 

tuberculosis in Mainland China, 2005-2016, based on the age-

structure mathematical model. Int J Environ Res Public Health 
2017;14:1192.

	 2.	 WHO. Global tuberculosis report 2018. http://www.​who.​int/​tb/​
publications/ global_report/en/ (Accessed on 4 Dec 2018).

	 3.	 Cao S, Wang F, Tam W, et al. A hybrid seasonal prediction model 
for tuberculosis incidence in China. BMC Med Inform Decis Mak 
2013;13:56.

	 4.	 Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and 
national incidence and mortality for HIV, tuberculosis, and malaria 
during 1990-2013: a systematic analysis for the Global Burden of 
Disease Study 2013. Lancet 2014;384:1005–70.

	 5.	 Moosazadeh M, Khanjani N, Nasehi M, et al. Predicting the Incidence 
of Smear Positive Tuberculosis Cases in Iran Using Time Series 
Analysis. Iran J Public Health 2015;44:1526–34.

	 6.	 Pan HQ, Bele S, Feng Y, et al. Analysis of the economic burden of 
diagnosis and treatment of tuberculosis patients in rural China. Int J 
Tuberc Lung Dis 2013;17:1575–80.

	 7.	 Wang H, Tian CW, Wang WM, et al. Time-series analysis of 
tuberculosis from 2005 to 2017 in China. Epidemiol Infect  
2018;5.

	 8.	 Ade S, Békou W, Adjobimey M, et al. Tuberculosis case finding in 
Benin, 2000-2014 and beyond: a retrospective cohort and time 
series study. Tuberc Res Treat 2016;2016:1–9.

	 9.	 Wang KW, Deng C, Li JP, et al. Hybrid methodology for tuberculosis 
incidence time-series forecasting based on ARIMA and a NAR neural 
network. Epidemiol Infect 2017;145:1118–29.

	10.	 WHO. The end TB strategy. http://www.​who.​int/​tb/​strategy/​en/ 
(Accessed on 19 May 2018).

	11.	 Wang Y, Xu C, Zhang S, et al. Temporal trends analysis of human 
brucellosis incidence in mainland China from 2004 to 2018. Sci Rep 
2018;8:15901.

	12.	 Zhang X, Zhang T, Young AA, et al. Applications and comparisons of 
four time series models in epidemiological surveillance data. PLoS 
One 2014;9:e88075.

	13.	 He F, Hu ZJ, Zhang WC, et al. Construction and evaluation of two 
computational models for predicting the incidence of influenza in 
Nagasaki Prefecture, Japan. Sci Rep 2017;7:7192.

	14.	 Zhou L, Yu L, Wang Y, et al. A hybrid model for predicting the 
prevalence of schistosomiasis in humans of Qianjiang City, China. 
PLoS One 2014;9:e104875.

	15.	 Azeez A, Obaromi D, Odeyemi A, et al. Seasonality and trend 
forecasting of tuberculosis prevalence data in eastern cape, south 
africa, using a hybrid model. Int J Environ Res Public Health 
2016;13:757.

	16.	 Yan W, Xu Y, Yang X, et al. A hybrid model for short-term bacillary 
dysentery prediction in Yichang City, China. Jpn J Infect Dis 
2010;63:264–70.

	17.	 Zhang G, Huang S, Duan Q, et al. Application of a hybrid model for 
predicting the incidence of tuberculosis in Hubei, China. PLoS One 
2013;8:e80969.

	18.	 Wei W, Jiang J, Gao L, et al. A new hybrid model using an 
autoregressive integrated moving average and a generalized 
regression neural network for the incidence of tuberculosis in heng 
county, China. Am J Trop Med Hyg 2017;97:799–805.

	19.	 Zhou L, Xia J, Yu L, et al. Using a hybrid model to forecast the 
prevalence of schistosomiasis in humans. Int J Environ Res Public 
Health 2016;13:355.

	20.	 Wu W, Guo J, An S, et al. Comparison of two hybrid models for 
forecasting the incidence of hemorrhagic fever with renal syndrome 
in Jiangsu Province, China. PLoS One 2015;10:e0135492.

	21.	 Wang Y, Xu C, Wang Z, et al. Seasonality and trend prediction of 
scarlet fever incidence in mainland China from 2004 to 2018 using a 
hybrid SARIMA-NARX model. PeerJ 2019;7:e6165.

	22.	 Zhang X, Hou F, Li X, et al. Study of surveillance data for class 
B notifiable disease in China from 2005 to 2014. Int J Infect Dis 
2016;48:7–13.

	23.	 Ke G, Hu Y, Huang X, et al. Epidemiological analysis of hemorrhagic 
fever with renal syndrome in China with the seasonal-trend 
decomposition method and the exponential smoothing model. Sci 
Rep 2016;6:39350.

	24.	 Pao HT. Forecasting energy consumption in Taiwan using hybrid 
nonlinear models. Energy 2009;34:1438–46.

	25.	 Fares A. Seasonality of tuberculosis. J Glob Infect Dis  
2011;3:46–55.

	26.	 Wubuli A, Li Y, Xue F, et al. Seasonality of active tuberculosis 
notification from 2005 to 2014 in Xinjiang, China. PLoS One 
2017;12:e0180226.

	27.	 Thorpe LE, Frieden TR, Laserson KF, et al. Seasonality of 
tuberculosis in India: is it real and what does it tell us? Lancet 
2004;364:1613–4.

http://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.3390/ijerph14101192
http://www.who.int/tb/publications/ global_report/en/
http://www.who.int/tb/publications/ global_report/en/
http://dx.doi.org/10.1186/1472-6947-13-56
http://dx.doi.org/10.1016/S0140-6736(14)60844-8
http://www.ncbi.nlm.nih.gov/pubmed/26744711
http://dx.doi.org/10.5588/ijtld.13.0144
http://dx.doi.org/10.5588/ijtld.13.0144
http://dx.doi.org/10.1155/2016/3205843
http://dx.doi.org/10.1017/S0950268816003216
http://www.who.int/tb/strategy/en/
http://dx.doi.org/10.1038/s41598-018-33165-9
http://dx.doi.org/10.1371/journal.pone.0088075
http://dx.doi.org/10.1371/journal.pone.0088075
http://dx.doi.org/10.1038/s41598-017-07475-3
http://dx.doi.org/10.1371/journal.pone.0104875
http://dx.doi.org/10.3390/ijerph13080757
http://www.ncbi.nlm.nih.gov/pubmed/20657066
http://dx.doi.org/10.1371/journal.pone.0080969
http://dx.doi.org/10.4269/ajtmh.16-0648
http://dx.doi.org/10.3390/ijerph13040355
http://dx.doi.org/10.3390/ijerph13040355
http://dx.doi.org/10.1371/journal.pone.0135492
http://dx.doi.org/10.7717/peerj.6165
http://dx.doi.org/10.1016/j.ijid.2016.04.010
http://dx.doi.org/10.1038/srep39350
http://dx.doi.org/10.1038/srep39350
http://dx.doi.org/10.1016/j.energy.2009.04.026
http://dx.doi.org/10.4103/0974-777X.77296
http://dx.doi.org/10.1371/journal.pone.0180226
http://dx.doi.org/10.1016/S0140-6736(04)17316-9


11Wang Y, et al. BMJ Open 2019;9:e024409. doi:10.1136/bmjopen-2018-024409

Open access

	28.	 You S, Tong YW, Neoh KG, et al. On the association between 
outdoor PM2.5 concentration and the seasonality of tuberculosis for 
Beijing and Hong Kong. Environ Pollut 2016;218:1170–9.

	29.	 Blount RJ, Pascopella L, Catanzaro DG, et al. Traffic-related air 
pollution and all-cause mortality during tuberculosis treatment in 
California. Environ Health Perspect 2017;125:097026.

	30.	 Smith GS, Van Den Eeden SK, Garcia C, et al. Air pollution and 
pulmonary tuberculosis: a nested case-control study among 

members of a northern california health plan. Environ Health 
Perspect 2016;124:761–8.

	31.	 Lai TC, Chiang CY, Wu CF, et al. Ambient air pollution and risk of 
tuberculosis: a cohort study. Occup Environ Med 2016;73:56–61.

	32.	 Wang L, Zhang H, Ruan Y, et al. Tuberculosis prevalence in China, 
1990-2010; a longitudinal analysis of national survey data. Lancet 
2014;383:2057–64.

http://dx.doi.org/10.1016/j.envpol.2016.08.071
http://dx.doi.org/10.1289/EHP1699
http://dx.doi.org/10.1289/ehp.1408166
http://dx.doi.org/10.1289/ehp.1408166
http://dx.doi.org/10.1136/oemed-2015-102995
http://dx.doi.org/10.1016/S0140-6736(13)62639-2

	Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model
	Abstract
	Introduction﻿﻿
	Materials and methods
	Data sources
	Statistical analysis
	Developing the SARIMA-NARNNX hybrid model

	Performance measures among models
	Patient and public involvement

	Results
	General information
	The best-performing SARIMA model
	The best-performing ARIMA-GRNN hybrid technique
	The best-performing SARIMA-NARNN hybrid technique
	The best-performing SARIMA-NARNNX combined technique
	Performance comparison

	Discussion
	Conclusions
	References


