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Abstract

The personality dimensions of neuroticism and extraversion are strongly associated with emotional experience and
affective disorders. Previous studies reported functional magnetic resonance imaging (fMRI) activity correlates of these
traits, but no study has used brain-based measures to predict them. Here, using a fully cross-validated approach, we predict
novel individuals’ neuroticism and extraversion from functional connectivity (FC) data observed as they simply rested dur-
ing fMRI scanning. We applied a data-driven technique, connectome-based predictive modeling (CPM), to resting-state FC
data and neuroticism and extraversion scores (self-reported NEO Five Factor Inventory) from 114 participants of the Nathan
Kline Institute Rockland sample. After dividing the whole brain into 268 nodes using a predefined functional atlas, we
defined each individual’s FC matrix as the set of correlations between the activity timecourses of every pair of nodes. CPM
identified networks consisting of functional connections correlated with neuroticism and extraversion scores, and used
strength in these networks to predict a left-out individual’s scores. CPM predicted neuroticism and extraversion in novel in-
dividuals, demonstrating that patterns in resting-state FC reveal trait-level measures of personality. CPM also revealed pre-
dictive networks that exhibit some anatomical patterns consistent with past studies and potential new brain areas of inter-
est in personality.
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Introduction

Attempts to predict individuals’ personality traits have perme-
ated through the ages, from Babylonian horoscopic astrology in
second millennium B.C. (Holden, 2013) to modern question-
naires such as the Myers-Briggs personality scale (Carlyn, 1977).
Although machines that read out personality traits from brain
activity have so far only existed in science fiction, such as the
novel Divergent, functional magnetic resonance imaging (fMRI)
may begin to make this a reality. This study demonstrates that

two Big Five personality traits (Eysenck, 1967; Costa and
McCrae, 1990), neuroticism and extraversion, can be predicted
from functional brain connectivity (FC)—the degree to which
fMRI activity in anatomically distinct brain regions are related
through time. Specifically, FC is based on synchronous fluctu-
ations in blood oxygenation level-dependent (BOLD) signals,
which are thought to reflect engagement of these brain areas in
similar or common processes. FC can be calculated from fMRI
data obtained while the subject is at rest or performing a task;
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this study specifically generates predictive models of neuroti-
cism and extraversion based on resting-state FC.

Neuroticism is generally associated with negative affect
(Larsen and Ketelaar, 1989; Robinson et al., 2007) and tendency
to worry and be anxious (Canli et al., 2001), whereas extraver-
sion is characterized as sensitivity to positive and pleasurable
social and environmental cues and generally associated with
positive affect (Larsen and Ketelaar, 1989; Watson and Clark,
1997). Of the five personality dimensions, neuroticism and
extraversion have garnered special interest because of their
connection to emotional experience and development of affect-
ive disorders. These two traits have been found to be the most
predictive of happiness (Hayes and Joseph, 2003) and anxiety
and depressive disorders (Kotov et al., 2010). Furthermore, in a
study involving pharmacological treatment of unipolar depres-
sion, neuroticism was most strongly associated with depressed
mood out of the Big Five traits, whereas extraversion was most
predictive of treatment outcome (Bagby et al., 1995).

Early studies on neural correlates of neuroticism and extra-
version identified localized brain regions whose reactivity to
emotional stimuli was correlated with these traits. The amyg-
dala was especially ubiquitous; neuroticism was correlated with
amygdala activation in response to emotional conflict and
negative stimuli, and extraversion to happy expressions (Canli
et al., 2001, 2002; Haas et al., 2007). Work identifying relation-
ships between these traits and functional brain connectivity
emerged more recently; while participants viewed angry and
fearful faces, connectivity between amygdala and dorsomedial
prefrontal cortex was positively correlated with neuroticism,
whereas connectivity between amygdala and anterior cingulate
cortex (ACC) was negatively correlated with neuroticism, sug-
gesting self-referential processing of negative emotions and
lowered ACC control over amygdala in highly neurotic individ-
uals (Cremers et al., 2010).

In addition to neural correlates identified from task-based
FC, recent studies have examined resting-state FC patterns
associated with neuroticism and extraversion, but mostly in re-
lation to specific regions. Neuroticism and extraversion seem to
be associated with resting-state connectivity of regions consist-
ent with their psychological qualities—neuroticism with areas
associated with fear and self-evaluation, and extraversion with
areas associated with social tendencies, reward-seeking and
motivation (Adelstein et al., 2011). Individuals high on extraver-
sion exhibited increased amygdala connectivity with temporal
pole and insula, suggesting adaptive socioemotional function-
ing (Aghajani et al., 2013). Conversely, higher neuroticism was
associated with decreased amygdala connectivity with these
areas (Aghajani et al., 2013), suggesting impairments in aware-
ness and recognition of socioemotional cues in highly neurotic
individuals, as found in previous literature (McCrae and Costa,
1991). Decreased amygdala and insula connectivity was also
associated with anxiety and depression (Etkin et al., 2009).
Furthermore, neuroticism was associated with increased influ-
ence of amygdala on areas associated with cognitive regulation,
such as the middle frontal gyrus, suggesting modulation on cog-
nitive regulation in neurotic individuals (Pang et al., 2016). In
addition to FC of specific areas, highly neurotic individuals also
exhibited weaker whole-brain FC, with connections that more
resemble those of random networks and functional subnet-
works that were more difficult to cleanly delineate (Servaas
et al., 2015).

Activity and FC patterns have been studied and identified
with regards to known levels of neuroticism and extraversion;
however, this study shows that we can use resting-state FC to

predict the level of these traits in novel individuals based on a
whole-brain, data-driven, cross-validated approach. A new
technique, connectome-based predictive modeling (CPM) (Shen
et al., 2017), has been shown to predict fluid intelligence (Finn
et al., 2015), attention (Rosenberg et al., 2016a,b, 2017, 2018; Yoo
et al., 2018), and reading comprehension (Jangraw et al., 2018)
using whole-brain FC. CPM examines functional connections
between every possible pair of pre-defined nodes in the entire
brain (including cortex, subcortex and cerebellum), identifies
networks consisting of the connections most correlated with
observed trait scores, and uses these networks to generate mod-
els that predict scores. Rather than constraining to specific
areas of interest, CPM considers nodes across the whole brain
and treats each connection independently and equally, assess-
ing the correlation of each connection with observed scores
across subjects. This then gives this method the power to eluci-
date potential new brain areas that might be related to the con-
structs of interest and worthy of further study.

In this study, we obtained resting-state imaging and psycho-
logical assessment data from 114 individuals in the NKI-
Rockland Sample. Neuroticism and extraversion scores were
measured from the NEO-Five Factor Inventory, a self-reported
questionnaire that assesses the individual’s level of each Big
Five trait. To apply CPM, we first divided the brain into 244
nodes using a pre-defined functional atlas. We then generated
244-by-244 connectivity matrices, which consisted of the func-
tional time-course correlation (‘edge’) between every pair of
nodes. Using leave-one-out cross validation, CPM generated
predictive networks consisted of edges most correlated with
neuroticism and extraversion scores and used these networks
on the left-out individual to predict his/her personality scores.
We then correlated the observed and predicted scores of all in-
dividuals to assess the predictive power of these networks.
Using CPM, we show that resting-state whole-brain FC is not
only related to neuroticism and extraversion levels, but can pre-
dict these levels in novel individuals.

Materials and methods
Participants

We used the Nathan Kline Institute Rockland Sample (NKI-RS),
an ongoing study that aims to create and openly share a large-
scale community sample including physiological, psychological
assessment and neuroimaging data (Nooner et al., 2012).
Written consent was obtained from all participants according to
the Institutional Review Boards of NKI and Montclair State
University. We obtained 162 individuals with matched imaging
and psychological assessment data. After excluding individuals
due to excessive motion and poor registrations of anatomical
to functional scans, 114 individuals [age 18–85 (mean ¼ 38), 68
females] remained. Three individuals had a diagnosis of atten-
tion deficit hyperactivity disorder (ADHD), Tourette’s syndrome
or a past eating disorder.

Neuroticism and extraversion assessment

As part of the Rockland Sample, individuals completed the NEO
Five Factor Inventory, a 60-item psychological personality in-
ventory that assesses the five personality domains: openness to
experience, conscientiousness, extraversion, agreeableness and
neuroticism (McCrae and Costa, 2010). It is a shortened version
of the NEO Personality Inventory, intended to measure variabil-
ity in individuals without psychopathology, and has been
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shown to be reliable and consistent (McCrae and Costa, 2004).
Each item is a short description that assesses the traits and ten-
dencies associated with the five domains (e.g. ‘I laugh easily’;
‘At times I have felt bitter and resentful’), and participants were
asked to rate their opinion to each item on a Likert scale of 0–4
(0—strongly agree; 2—neutral; 4—strongly disagree). Each indi-
vidual was scored on each of the five domains, with higher
scores representing higher levels. Since we were most inter-
ested in neuroticism and extraversion because of their associ-
ations with emotional experience and affective disorders, we
only looked at scores for these two domains. Both raw total
scores and T-scores normalized for the individuals’ age range
were available for each domain, but we used raw scores for ana-
lysis since raw and T-scores were highly correlated (neuroticism
r ¼ 0.98, extraversion r ¼ 0.99 for the 114 individuals). Both neur-
oticism and extraversion scores were normally distributed
(neuroticism: mean ¼ 19.11, SD ¼ 8.05, range 2–40; extraversion:
mean ¼ 29.90, SD ¼ 6.18, range 11–44).

Imaging protocols and preprocessing

We obtained the high-resolution T1-weighted anatomical mag-
netization prepared rapid gradient echo (MPRAGE) scan and two
sets of 10-min resting-state functional scans at different tem-
poral resolutions from NKI-RS. Detailed scanning parameters
are detailed on the NKI-RS site (http://fcon_1000.projects.nitrc.
org/indi/enhanced/mri_protocol.html). In brief, the data were
collected on Siemens Magnetom TrioTim syngo MR B17 with
the following parameters: MPRAGE repetition time (TR) ¼ 2900
ms, echo time (TE) ¼ 2.52 ms, slice thickness ¼1 mm; low tem-
poral resolution functional: TR ¼ 1400 ms, TE ¼ 30 ms, slice
thickness ¼ 2.0 mm; high temporal resolution functional: TR ¼
645 ms, TE ¼ 30 ms, slice thickness ¼ 3.0 mm.

The majority of fMRI data processing and analysis was per-
formed using Bioimage Suite (Joshi et al., 2011) and custom
Matlab scripts. Motion correction was performed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Linear and
quadratic shift, mean signal from cerebrospinal fluid, global sig-
nal and a 24-parameter motion model including six motion par-
ameters and temporal derivatives along with their squares were
regressed from the data. Images were temporally smoothed
with a zero mean unit variance Gaussian filter and iteratively
smoothed to a smoothness of 4 mm (Friedman et al., 2006;
Scheinost et al., 2014). Regression of the 24-parameter motion
model and iterative smoothing have been shown to minimize
motion confounds associated with FC (Satterthwaite et al., 2013;
Yan et al., 2013; Scheinost et al., 2014).

Construction of predictive networks

To test the ability of resting-state FC to predict a novel individ-
ual’s personality scores, we applied CPM (Finn et al., 2015;
Rosenberg et al., 2016a; Shen et al., 2017) to the resting-state
fMRI data and neuroticism and extraversion scores (obtained
from the self-reported NEO Five Factor Inventory) of 114 sub-
jects from the NKI-RS. We obtained both sets of functional
scans (TR ¼ 645 and TR ¼ 1400 ms).

We computed FC matrices from each set of scans for each in-
dividual. To do so, we parcellated the brain into 268 nodes using
a predefined functional atlas that maximized the similarity of
voxel-wise time courses within each node (Shen et al., 2013) and
included the whole brain (cortex, subcortex, cerebellum and
brain stem). The 268-node atlas was warped from MNI space
into single-subject space via concatenation of a linear

registration computed using FSL (Jenkinson et al., 2002) and a
non-linear registration (Scheinost et al., 2017) between the func-
tional images, MPRAGE scans, and the MNI brain. All transform-
ation pairs were calculated independently, combined into a
single transform, and inverted, warping the functional atlas into
single participant space. This single transformation reduces in-
terpolation error because the functional atlas is warped to an in-
dividual with only one transformation.

However, because some scans did not include full coverage,
we excluded nodes that were completely missing (0% of voxels
comprising the node were present) in at least one individual.
Twenty-four nodes and their associated edges were excluded
from analysis. Nodes were excluded from the prefrontal, par-
ietal, temporal, limbic and brainstem macroscale regions, with
the most exclusion proportion-wise from the motor (7 out of 21
nodes) and brainstem (2 out of 9 nodes) regions (see
Supplementary Material Section S1 for number of nodes
excluded per region). All subsequent analyses were based on
the remaining 244 nodes.

The time course was calculated for each node by averaging the
BOLD signal time courses of each voxel within the node. The 244-
by-244 connectivity matrices, then, consisted of the Fisher-
normalized Pairwise Pearson correlation (‘edge’) of every node
with every other node. Because of the relatively short run-time (10
min per run) and the high similarity between the connectivity
matrices obtained from the two scans (reported in the ‘Combining
resting-states scans’ section), we used the average of the two
connectivity matrices in CPM. Each edge in the final connectivity
matrix for each individual used in analysis was the mean of that
edge in the individual’s TR645 and TR1400 matrices.

To obtain networks used in prediction, we computed the
Pearson correlation between every edge in the connectivity
matrices and observed scores across individuals, obtaining an
r-value for each edge with an associated P-value. As in prior
studies, with a P-value threshold of 0.01, edges that were
positively correlated with observed scores made up the positive
prediction network, and edges that were negatively correlated
with observed scores made up the negative prediction network.
For each subject, a single summary statistic, ‘network strength’,
was calculated for each network by summing the edges in the
network (Finn et al., 2015, Rosenberg et al., 2016a).

Predicted scores were generated in a leave-one-out basis. For
each set of n�1 individuals, positive and negative networks
were generated and their strengths were calculated. For neur-
oticism, positive network ranged from 388 to 524 edges, and
negative network ranged from 294 to 449 edges; for extraver-
sion, positive network ranged from 235 to 312 edges, and nega-
tive network ranged from 276 to 353 edges. Linear models were
constructed to relate positive and negative network strengths to
observed scores. The models were then applied to the novel in-
dividual’s positive and negative network strengths to generate
predicted scores for the individual. A GLM was also constructed
to combine the positive and negative network strengths to gen-
erate predicted scores.

Combining resting-state scans

Each individual had two connectivity matrices, one calculated
from the TR ¼ 645 ms (TR645) scans and the other from the TR
¼ 1400 ms (TR1400) scans. Using FC fingerprinting (Finn et al.,
2015), we found that the TR645 and TR1400 matrices were very
similar. FC fingerprinting allows us to identify the matrix from a
set of matrices that is most similar to another matrix of interest.
To summarize, we assessed the similarity of each individual’s
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connectivity matrix from one set of scans to every individual’s
connectivity matrices from the other set of scans, where simi-
larity was defined as the Pearson correlation of the vectorized
forms of the two matrices. Then, for every matrix in each set of
scans (target matrix), we found the most similar matrix from
the other set of scans (the matrix with the highest correlation
coefficient with the target matrix). We counted as success if the
target matrix and the most similar matrix were from the same
individual—i.e. we successfully identified the individual’s ma-
trix from the other set of scans based on the individual’s target
matrix (Finn et al., 2015). Success rate identifying individuals
from the TR1400 set using targets from the TR645 set was 91%,
and success rate identifying individuals in the other direction
was 96%. Furthermore, pairs of matrices from the same individ-
ual had an average correlation coefficient of 0.64, whereas pairs
of matrices from different individuals had an average correl-
ation coefficient of only 0.38.

Registration and motion controls

Registrations of anatomical to functional scans were visually
inspected using Bioimage Suite, and individuals with poor regis-
trations were excluded from further analyses. Individuals with
excessive head motion, defined a priori as >2 mm translation,
>3� rotation or >0.15 mm mean frame-to-frame displacement
during the run, were also excluded from analysis (Rosenberg
et al., 2016b). A total of 162 individuals had imaging data with
matching psychological assessment data. Out of the 162 indi-
viduals, 9 were excluded due to excessive head motion in the
high TR scans, another 11 due to excessive head motion in the
low TR scans, another 26 due to poor registrations in either or
both runs, and a final two subjects were excluded due to anomal-
ous distribution of edges in their final connectivity matrices. Data
exclusion was performed prior to all analyses. After exclusions,
114 individuals were left with good registrations and acceptable
levels of head motion for both runs for further analyses.

To further control for potential motion confounds, we also
ran partial Pearson correlation between observed scores with
predicted scores while controlling for head motion (defined as
the average of the mean frame-to-frame motion of both runs).

Permutation testing

To assess the significance of the r-values between observed
scores and predicted scores generated from leave-one-out cross
validation, we conducted permutation testing by running the
leave-one-out pipeline 1000 times, each time using randomly
shuffled observed scores to generate predictive networks and
predicted scores. The 1000 Pearson correlations between
observed and predicted scores composed null distributions of
r-values against which we assessed the r-values presented in
‘Results’ section. P-values were calculated as 1 þ (the number of
permutations that generated r-values equal to or larger than
our presented r-values)/1001.

We used this permutation method to calculate the P-values
for all r-values between observed and predicted scores, i.e. for
our main prediction results and all results from our age-,
motion- and gender-control.

Age-control methods

Our data included participants in a wide age range (18–85 years);
thus, to control for age effects in prediction, we applied three
age-control methods in addition to our main, non-age-
controlled results.

i. Instead of running Pearson correlation at the final correl-
ation between predicted and observed scores, we ran partial
Pearson correlation of predicted and observed scores while
controlling for age (Table 1a in ‘Results’ section).

ii. We excluded any edge that was significantly correlated
with age (P < 0.01) from predictive networks. That is, we
first generated predictive networks by selecting edges that
were correlated with trait scores without regards to age (as
per our method from main results), but before building a
predictive model, we removed any edge significantly corre-
lated with age from these networks. This conservative
method might also filter out edges that covary with trait
scores, potentially decreasing predictive power; however,
we found that this method still produced significant predic-
tions for both neuroticism and extraversion (Table 1b).

iii. Last, we generated predictive networks that uniquely
predicted personality scores when controlling for age.
Instead of filtering out age-correlated edges from our original
predictive networks as in method (ii), we used new predictive
networks composed of edges whose partial Pearson correl-
ation with personality scores while controlling for age passed
the P < 0.01 threshold. This correction should, ideally, reveal
edges that predict personality rather than age (Table 1c).

Gender-control methods

Potential gender differences in FC could confound our analyses.
We controlled for gender in our predictions by a method similar
to age-control method (ii); i.e. we removed from our predictive
networks any edge that significantly differed between males
and females with a two-tailed two-sample t-test (P < 0.05).

Results
Neuroticism and extraversion prediction

Correlating predicted and observed scores (Pearson), we found
that CPM significantly predicted neuroticism [positive network
r ¼ 0.27, P ¼ 0.008; negative network r ¼ 0.14, P ¼ 0.15; general
linear model (GLM) r ¼ 0.22, P ¼ 0.033] and extraversion (positive
network r ¼ 0.22, P ¼ 0.050; negative network r ¼ 0.20, P ¼ 0.082;
GLM r ¼ 0.22, P ¼ 0.045) in novel individuals (Figure 1). The
P-values for these results and all subsequent cross-validation
results were calculated through permutation testing (detailed
method described in ‘Materials and methods’ section). For neur-
oticism, the common positive network (consisted of edges
included in positive prediction in every iteration of leave-one-
out) contained 206 edges (0.69% of the 29 646 total possible
edges), and the common negative network contained 128 edges
(0.43% of all possible edges). For extraversion, the common posi-
tive network contained 101 edges and the common negative
network contained 106 edges (�0.35% of all possible edges).

CPM also reveals the functional anatomy of predictive net-
works. To this end, we divided the 244 nodes into ten macroscale
regions per hemisphere and applied the parcellation to the com-
mon positive and negative networks to look at the number of con-
nections between regions involved in prediction (Figure 2a). To
further investigate the role of functional sub-networks, we used a
parcellation scheme that divides the 244 nodes into eight canon-
ical networks: subcortical-cerebellum (SubC), motor, medial fron-
tal (MF), visual I (VI), visual II (VII), visual association, default
mode (DM) and frontoparietal (FP) (Finn et al., 2015). We applied
the parcellation to the common positive and negative networks
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and looked at the proportion of edges in each network pair that
was utilized in prediction (Figure 2b).

Positive and negative predictive networks involve areas
across the whole brain. However, not all anatomical regions or
subnetworks were involved equally, and some trends emerge:
e.g. the motor region, motor functional network and different
sets of network connections involving the VII functional net-
work were highly involved in all four predictions; the cerebel-
lum was highly involved in prediction, especially negative
prediction of neuroticism. The significance of the involvement
of these networks is further discussed in ‘Discussion’ section.

Age control

Our data included participants in a wide age range (18–85 years),
and neuroticism scores were significantly negatively correlated

with age (r ¼ �0.27, P ¼ 0.0032), while extraversion scores were
not correlated with age (r ¼ 0.071, P ¼ 0.45), as expected based
on previous work (Srivastava et al., 2003). Since FC has been
shown to change with age (Hampson et al., 2012), we wanted to
control for the possibility of CPM predictions being driven by
age rather than personality traits, especially neuroticism. To
control for age effects, we applied three age-control methods, as
described in detail in ‘Materials and methods’ section, in add-
ition to our main, non-age-controlled results. The results for
each are presented in Table 1.

All predictions remained significant (most with P < 0.05, one
with P ¼ 0.063), except for neuroticism prediction when age-
control method (i) was applied. This loss in predictive power
when age was controlled in the final correlation could be ex-
plained by the possibility that predictions were driven by age
when age was not controlled in generating predictive networks.

Table 1. The results of different methods for correcting for age

Neuroticism Extraversion

Main results r ¼ 0.22, P ¼ 0.033 r ¼ 0.22, P ¼ 0.045
a. controlling for age at final correlation r ¼ 0.11, P ¼ 0.21 r ¼ 0.21, P ¼ 0.042
b. filtering out age correlates at edge selection r ¼ 0.22, P ¼ 0.003 r ¼ 0.23, P ¼ 0.008
c. controlling for age at edge selection r ¼ 0.19, P ¼ 0.063 r ¼ 0.23, P ¼ 0.033

Predictions were assessed for three age-control methods and compared with our main, non-age-controlled results. We first controlled for age at the final correlation

between predicted and observed scores (a). Then, we introduced age control in the predictive networks by excluding from prediction edges that were significantly cor-

related with age (b). Finally, we generated predictive networks that uniquely predicted trait scores by using partial correlation to control for age at the edge selection

step (c). GLM predictions are presented for simplicity. P values were determined with permutation testing.

Fig. 1. CPM predicts neuroticism and extraversion scores in novel individuals. Scatterplot of predicted scores vs observed scores for neuroticism and extraversion.

Predicted scores were generated using edges positively correlated with prediction (positive network) and negatively correlated with prediction (negative network).

A GLM was also constructed to combine positive and negative networks to generate predicted scores. P values were determined with permutation testing.
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(a)

(b)

Fig. 2. Canonical network pairs in positive and negative prediction. (a) Edges between macroscale regions. Each semicircle represents a hemisphere of the brain, and

nodes are organized around the circle by anatomical location. Edges are represented by lines; red edges are stronger in individuals with higher scores, and blue edges

are stronger in individuals with lower scores. (b) Proportion of total edges of each canonical functional network pair utilized in prediction, calculated by dividing the

number of edges in each network pair included in prediction by the total number of possible edges between that pair of networks. The higher the proportion, the more

‘utilized’ the network pair is in prediction. Orange represents higher utilization in positive prediction and green represents higher utilization in negative prediction.

Line saturation indicates the proportion of edges of the particular network pair involved in prediction: the darker the line, the higher proportion. Line width indicates

the total number of edges possible in the pair: the thicker the line, the more possible edges. Curves show between-network connections and circles show within-net-

work connections.
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However, attempts to generate predictive networks that more
uniquely predict trait scores instead of age still yielded signifi-
cant predictions (methods (ii) and (iii)), suggesting brain net-
works still predict neuroticism and extraversion levels even
after controlling for age.

It is important to note that though controlling for age is im-
portant for predicting personality trait levels beyond age, our
goal was to build a model and identify brain networks that
could predict neuroticism and extraversion levels. Age seems to
be an inherent factor in neuroticism level and thus could be
treated as an aid in prediction, giving merit to our non-age-
controlled main method despite the drop in predictive power
after factoring in age.

Motion control

Head motion, defined as the average of the mean frame-to-
frame motion of both runs, was negatively correlated with
observed neuroticism scores (r ¼ �0.18, P ¼ 0.050) and positively
correlated with observed extraversion scores (r ¼ 0.13, P ¼ 0.17).
Predicted neuroticism scores were also negatively correlated
with head motion (GLM r ¼ �0.26, P ¼ 0.0054). Predicted extra-
version scores, however, did not correlate with head motion
(GLM r ¼ 0.093, P ¼ 0.33).

To further control for effects of motion, we ran partial
Pearson correlation between observed and predicted scores
while controlling for head motion. We found that prediction
achieved trend-level significance for neuroticism (GLM r ¼ 0.18,
P ¼ 0.075) and significance for extraversion (GLM r ¼ 0.21,
P ¼ 0.048) after controlling for motion.

Gender control

Previous studies have found that resting-state FC differs between
genders. For example, resting-state FC of amygdala sub-regions
with various brain regions differs between adolescent boys and
girls during normal development (Alarcón et al., 2015). Gender dif-
ferences in resting-state FC were also found in various disease
states such as multiple sclerosis (Koenig et al., 2013) and PTSD
(Helpman et al., 2017). Although our sample revealed no statistic-
ally significant gender difference in neuroticism level (mean
male ¼ 18.48; mean female ¼ 19.54; two-tailed two-sample t-test:
P ¼ 0.49) or extraversion level (mean male ¼ 28.93; mean female
¼ 30.56; two-tailed two-sample t-test: P ¼ 0.17), we nonetheless
wanted to minimize potential gender confounds in prediction.
We did so by excluding from our predictive networks all edges
that significantly differed between males and females with a
two-tailed two-sample t-test (P < 0.05). We found that predictions
were still significant for neuroticism (GLM r ¼ 0.25, P ¼ 0.004) and
extraversion (GLM r ¼ 0.18, P ¼ 0.014).

Discussion

This study shows that resting-state FC predicts neuroticism and
extraversion in novel individuals using CPM. Previous studies
have identified neural correlates of neuroticism and extraver-
sion using task-based or resting-state functional imaging.
However, to our knowledge, this is the first study to predict a
novel individual’s neuroticism and extraversion scores from an
fMRI scan. Importantly, significant predictions were obtained
using imaging data collected when individuals were not
engaged in any explicit task. Furthermore, on a broader scale,
this study extends the utility of CPM from predicting cognitive

abilities such as fluid intelligence and attention (Finn et al.,
2015; Rosenberg et al., 2016a,b) to predicting personality traits.

Past studies suggested that neural reactivity might provide a
more direct and objective measure of personality and prediction
of behavioral outcomes than self-reported measures. For ex-
ample, a functional imaging study found that dorsal ACC activ-
ity explained nearly five times the variance of a behavioral
outcome associated with neuroticism than self-reported neur-
oticism scores did (Eisenberger et al., 2005). These results raise
the possibility that functional predictive networks might be less
influenced by subjective factors and capture more individual
variability than self-report measures do, potentially implicating
this method as a more objective identification of neuroticism
and extraversion levels in individuals. Furthermore, it is worth
emphasizing that this study predicted neuroticism and extra-
version scores using resting-state instead of task-based fMRI
data. Resting-state fMRI could alleviate burdens associated with
performing tasks in the scanner, thus allowing prediction on in-
dividuals who might have difficulty doing so.

Personality network characteristics

Some brain regions and networks involved in predicting neur-
oticism and extraversion levels correspond to brain areas asso-
ciated with these traits in past studies. Previous literature on
the FC correlates of these traits mostly concentrated on the
amygdala, such as increased amygdala connectivity with mid-
dle frontal gyrus (Pang et al., 2016) and decreased amygdala con-
nectivity with temporal pole and insula (Aghajani et al., 2013) in
high neurotic individuals. Although the relatively large size of
nodes used in this study (average size 4.8 cm3) prevents us from
inferring specific involvement of the amygdala (average size
1.24 cm3; Brabec et al., 2010), we did see trends that match these
previous results—a connection between temporal region and
the node that contains left amygdala negatively predicted neur-
oticism; on a broader scale, more limbic-prefrontal cortex edges
were included in positive than negative prediction of neuroti-
cism (16 vs 1 edges), and more limbic-insula edges were
involved in negative than positive prediction of neuroticism
(6 vs 0).

Additionally, because CPM identifies predictive network
edges in a data-driven manner, not limited to a priori regions of
interest, it can reveal potential new areas of interest related to
neuroticism and extraversion. Besides the amygdala, a previous
seed-based study found that resting-state FC in primary motor
and sensory regions (such as the occipital cortex) correlated
with personality traits (Adelstein et al., 2011). We also found
that motor region connections with limbic and temporal regions
positively predicted extraversion. Motor functional network
connections with the DM and SubC networks were highly uti-
lized in positive and negative prediction of extraversion, re-
spectively. However, it remains unclear how to interpret the
associations of the motor network with personality traits
(Adelstein et al., 2011). Similarly, connections involving the VII
network were highly utilized in prediction of both traits—e.g.
VII-MF connections were positively predictive of neuroticism,
while VII-SubC and FP connections were positively predictive of
extraversion. Little research has been done on associations
between visual brain networks and personality, but some stud-
ies have shown that individuals high on extraversion and
neuroticism exhibit differences in visual attention and fixation
(Kaspar and Konig, 2012). Thus, VII network might also be
worthwhile to investigate in future studies.

230 | Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 2



Furthermore, the cerebellum was particularly important for
prediction, especially parietal-cerebellar connections and intra-
cerebellar connections in positive and negative prediction of
neuroticism, respectively. Little work has addressed the relation-
ship between the cerebellum and personality traits, but past
studies have observed personality changes following cerebellar
lesions (Mariën et al., 2009; Stoodley and Schmahmann, 2010), and
found that cerebellar volume is associated with higher neuroti-
cism and other personality traits in healthy individuals (Schutter
et al., 2012; Picerni et al., 2013). Similarly, the cerebellum also
played a prominent role in predicting sustained attention using
CPM (Rosenberg et al., 2016a,b), which provided further evidence
of involvement of brain areas other than executive control areas
in ADHD. Therefore, it could be worthwhile to investigate the role
intra-cerebellar and cerebellar-cortical FC in personality traits.

Limitations, implications and future directions

Because each individual node in our study involved a large
group of voxels, the role of specific structures—e.g. the amyg-
dala—is difficult to isolate with precision. A node might include
many other voxels besides the structure of interest, and a struc-
ture might cross multiple nodes; thus, comparisons to FC of
small, specific regions in the brain would be difficult to draw.

Our exclusion of 10% of the nodes from analyses due to sig-
nal dropout or a lack of whole-brain coverage could entail losses
of crucial information both in prediction and identifying regions
and networks involved in neuroticism and extraversion, so fu-
ture studies including these missing nodes could be valuable.

Finally, though we did control for potential major confounds
such as age and motion, other constructs might interact with our
predictions as well. For one, since mood states and personality
traits could interact, mood might be a confound in our predic-
tions. Mood states were not collected at the time of scan; how-
ever, our measure of personality, the NEO Five-Factor Inventory,
has high test-retest reliability and thus is unlikely to reflect tran-
sient mood states (McCrae and Costa, 2004). Second, since neur-
oticism and extraversion were correlated, one trait might
influence predictions of the other; however, controlling for one
trait while predicting the other did not change our central results
(see Supplementary Material Section S2 for prediction results).

Summary

In sum, connectome-based predicting modeling based on
resting-state data is able to predict the level of neuroticism and
extraversion in novel individuals. Although we only assessed pre-
dictions of neuroticism and extraversion using planned compari-
sons based on the strong connections of these traits to emotional
experience and affective disorders, CPM is a general method that
can be extended to predict other traits and clinical constructs.

Supplementary data

Supplementary data are available at SCAN online.
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