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Pathogenic nsSNPs 
that increase the risks of cancers 
among the Orang Asli and Malays
Nurul Ain Khoruddin1,2, Mohd NurFakhruzzaman Noorizhab1,3, Lay Kek Teh1,3, 
Farida Zuraina Mohd Yusof1,2 & Mohd Zaki Salleh1,3*

Single-nucleotide polymorphisms (SNPs) are the most common genetic variations for various 
complex human diseases, including cancers. Genome-wide association studies (GWAS) have identified 
numerous SNPs that increase cancer risks, such as breast cancer, colorectal cancer, and leukemia. 
These SNPs were cataloged for scientific use. However, GWAS are often conducted on certain 
populations in which the Orang Asli and Malays were not included. Therefore, we have developed a 
bioinformatic pipeline to mine the whole-genome sequence databases of the Orang Asli and Malays 
to determine the presence of pathogenic SNPs that might increase the risks of cancers among them. 
Five different in silico tools, SIFT, PROVEAN, Poly-Phen-2, Condel, and PANTHER, were used to 
predict and assess the functional impacts of the SNPs. Out of the 80 cancer-related nsSNPs from the 
GWAS dataset, 52 nsSNPs were found among the Orang Asli and Malays. They were further analyzed 
using the bioinformatic pipeline to identify the pathogenic variants. Three nsSNPs; rs1126809 (TYR), 
rs10936600 (LRRC34), and rs757978 (FARP2), were found as the most damaging cancer pathogenic 
variants. These mutations alter the protein interface and change the allosteric sites of the respective 
proteins. As TYR , LRRC34, and FARP2 genes play important roles in numerous cellular processes 
such as cell proliferation, differentiation, growth, and cell survival; therefore, any impairment on 
the protein function could be involved in the development of cancer. rs1126809, rs10936600, and 
rs757978 are the important pathogenic variants that increase the risks of cancers among the Orang 
Asli and Malays. The roles and impacts of these variants in cancers will require further investigations 
using in vitro cancer models.

Single nucleotide polymorphisms (SNPs) are the major type of genetic variation in humans (~ 90%). Thus far, 
around 500,000 SNPs have been reported on the coding regions of the human  genome1. Among these, the non-
synonymous SNPs (nsSNPs) change the residues of amino acids of the protein sequences and may have damaging 
or neutral effects on the protein functions or  structures2,3. Damaging nsSNPs may affect the function or structure 
of a protein by modifying the protein charge, geometry,  hydrophobicity4, stability, dynamics, translation, and pro-
tein  interactions5,6. These are probably the significant factors that contribute to the functional diversity of encoded 
proteins in the human  population7. Therefore, many human diseases could be due to these damaging nsSNPs.

Previous studies have shown that nsSNPs cause numerous genetic disorders such as inflammatory and autoim-
mune disorders and  cancers8–10. With the massive human genome sequence data now available and we are yet to 
know the functional effects of some of the SNPs, a more cost-effective approach is required to unravel the func-
tions of the unknown SNPs effects. Many studies have used bioinformatics tools to predict the deleterious effects 
of nsSNPs on the functions of proteins that result in diseases before expensive in vitro or in vivo experiments 
are conducted. Two nsSNPs on the ABCB1 gene had been associated with breast cancer, and these SNPs were 
predicted for their deleterious effects, which caused the change in protein conformation using comprehensive 
bioinformatics  analysis11. A similar study using functional and structural bioinformatics tools had identified 
three damaging nsSNPs that alter the functions and structures of the RNASEL gene. These nsSNPs are most 
likely pathogenic and associated with the increase of prostate cancer  susceptibility12. nsSNPs in the KRAS gene 
have been found to be associated with lung cancer due to their damaging effects on the structural features of the 
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protein. The structure and function of the native proteins were found to be altered due to the nsSNPs using a 
pipeline comprised of several bioinformatics  tools13. A recent study had identified the deleterious nsSNPs on the 
hOGG1 gene that altered the secondary structure of the expressed protein and destabilized its local conforma-
tion, which increases the risks for lung  cancer14. Furthermore, in-silico modeling has been widely used to assess 
the functional impacts of nsSNPs and their possible roles in  cancers15,16. in-silico modeling has the advantage 
of being able to make rapid predictions for the mechanisms of actions of a wide range of compounds in a high-
throughput mode. Another advantage is that prediction can be made based on the structure of a compound 
before it  issynthesized17.

Databases of human variants have been developed with different scopes and contents used to predict  diseases18 
in achieving personalized  medicine19. The genome-wide association study (GWAS) database (https:// www. ebi. 
ac. uk/ gwas/) is widely used to associate SNPs with diseases. Although there are other existing human variant 
databases such as ClinVar, COSMIC, SwissVar, and Humsavar, GWAS is the only database that gives a world of 
information or catalogs on disease mutations in different populations. This database also provides information 
on the statistically significant variants and the increase/decrease associated risks for each  phenotype20.

The application of genomics, bioinformatics, and the availability of data generated from high-throughput 
technologies are the fundamental tools for implementing precision medicine not only for cancer diseases but 
also for other common and rare  diseases21,22. Various tools have been used to predict the functional effects of 
nonsynonymous coding variants using basic sequence  homology23–25; empirically derived  rules26; structural 
and functional  features27–29; a weighted average of the normalized  scores30; decision  trees31,32; support vector 
 machines33–36; and Bayesian  classifiers27. A comprehensive systematic evaluation study on the performances of 
these widely used prediction methods to identify the pathogenicity of the SNPs is  required37. While new and 
more algorithms are being developed, the accuracy of prediction using a combination of the different algorithms 
should be validated. It is recommended that different computational methods are used to determine the impact of 
different SNPs during the screening step, and further validation should be incorporated in studying the impacts of 
nsSNPs on specific  proteins38. In addition, complementary methods could be combined in a meta-server to yield 
more reliable  predictions39. Several recent studies had reported on the use of a combination of various methods 
to uncover the potential impact of the nsSNPs in understanding the molecular mechanisms of various diseases, 
which includes  cancers40–44. The combination of these tools allows more accurate prediction using the multiple 
conservation, structural, or combined methods (conservation and structural). Therefore, combined methods 
and meta-prediction methods (predictors that integrate multi-predictor results) are important for biomedical 
applications. This is because they can be applied to a much greater number of single nucleotide variants, consid-
ering that many human proteins do not currently have an experimentally defined structure or a close homolog 
to construct a model. Thus, combined and meta-prediction methods have a wide range of potential applications 
using the combinations of features yet to be  explored45. As GWAS is usually conducted on a large population size 
using a high throughput detection method and is costly, some world populations were not studied. Therefore, 
their disease risks are not available. The Orang Asli are still practicing traditional healing methods, therefore the 
record on the incidence of cancers among the Orang Asli is lacking. This has posed challenges to the authorities 
to strategize health programs to ensure the sustainability of the Orang Asli. Due to the lack of phenotypic data 
on cancers, mining the genomes of the Orang Asli to predict their susceptibility for the different types of cancers 
would provide important data that allows the scientists to strategize research focus areas and for the authorities to 
provide relevant funding. In this study, we aimed to develop and validate a bioinformatics pipeline to detect and 
annotate the cancer-associated nsSNPs of a genome database and predict the structural and functional impacts 
of these nsSNPs that might increase the risks of cancers among the Orang Asli. Using the same pipeline, we also 
investigate the cancer risks of the Malays, which constitute the biggest population in Malaysia. The database of 
the Malay genomes was provided by Wong et al.46 and lacks information on the phenotypic traits, therefore it is 
interesting to predict the cancer susceptibility risks for this cohort using the established pipeline. The pipeline 
is developed using multiple bioinformatic tools in order to analyze the most deleterious and damaging nsSNPs 
associated with cancers. It includes the steps used for mining and annotating the genotypes and in silico modeling 
to predict the structural and functional impacts of the genetic variants with unknown functions. The new variants 
with potential impacts would be subsequently investigated in our laboratory using zebrafish models, and geno-
typing methods targeting the nsSNP would be developed for population study. In this study, three-dimensional 
(3D) protein models of the native and their variants (or mutant) were prepared. This is the first report which 
covers a comprehensive in silico analysis of three (3) nsSNPs, rs1126809, rs10936600, and rs757978 for TYR, 
LRRC34, and FARP2 proteins, respectively. This study is a part of our initiatives to enhance precision health in 
our country. The bioinformatics pipeline developed in this study will be used in the future to predict genomic 
variations associated with different diseases.

Methods
Whole genome sequences. The whole-genome sequences of ninety-eight (98) healthy and unrelated 
Orang Asli from six different sub-tribes were retrieved from the Whole-Genome-Sequence Database at Integra-
tive Pharmacogenomics Institute (iPROMISE) in the form of a bam file. The Orang Asli were recruited from 
sub-tribes that are located in the (i) northern region of the Peninsular Malaysia [( Bateq, n = 22; Gua Musang, 
Kelantan), ( Lanoh, n = 16; Lenggong, Perak) and ( Kensiu, n = 19; Baling, Kedah); (ii) in the central region [(Che 
Wong, n = 18; Kuala Gandah, Pahang) and (Semai, n = 16; Kuala Lipis, Pahang); in the southern region [(Kanaq, 
n = 7; Kota Tinggi, Johor)]. The mean coverage of whole-genome sequences of Orang Asli across all the 98 sam-
ples was 37.39 × (minimum of 18.44 × to a maximum of 46.02x) and was checked using Qualimap version 2.2.1.

The genomic DNA (gDNA) of each of the 98 Orang Asli individuals was isolated from 300 µl of whole 
blood using the Wizard Genomic DNA Purification Kit (Promega, Wisconsin, USA). A microvolume 
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spectrophotometer (NanoDrop 2000, Thermo Scientific) was used to evaluate DNA quantity. Whole-genome 
sequencing of the 98 Orang Asli were then performed using the Genome Analyzer System (GA IIx) with a target 
of > 30 × coverage. The whole-genome sequences of Orang Asli were then assembled by the in-house bioinformat-
ics workflow. Quality on the raw sequence data was checked with FastQC (https:// www. bioin forma tics. babra 
ham. ac. uk/ proje cts/ fastqc/) and trimmed with Trimmomatic version 2.596 (https:// softw are. broad insti tute. org/ 
gatk/ best- pract ices/) recommended by the Genome Analysis Toolkit (GATK) Best Practices. Briefly, the reads 
were aligned using BWA version 0.6.1-r104 to the reference human genome GRCh37/hg1997 and duplicates were 
labeled and extracted using Picard version 1.119 (http:// broad insti tute. github. io/ picard/).

Whole-genome sequences of ninety-six (96) healthy Singaporean Malays were obtained in the form of bam 
files from Singapore Sequencing Malay Project (http:// www. state gen. ns. edu. sg/ ~SSMP)46. Malays are Austro-
nesians-speaking ethnic group who mainly live in Malaysia, Indonesia, and Singapore in the Southeast Asian 
 region46. The mean coverage of the whole-genome sequences of Singapore Malays across all the 96 samples was 
47.6x. The depth of coverage for each sample ranged from 35.5 × to 81.9x. All the genomic DNA of 96 Malays 
individuals was collected from the Singapore BioBank. Picogreen was used to measure fluorescence intensity, 
and the SpectraMax Gemini EM microplate reader was used to confirm that the DNA content was greater than 
50 ng/l using spectrophotometric settings at 480/520 nm (Ex/Em). Subsequently, DNA samples were sent to the 
Defense Medical and Environmental Research Institute for preparation. Whole-genome sequencing of 96 Malays 
were then performed using the Illumina HiSeq 2000 with a target of > 30 × coverage.

Variant calling pipeline was performed using HaplotypeCaller and BaseRecalibrator (GATK v2.5)98 for each 
sequence data (bam file format) of the Orang Asli and Malays. The HaplotypeCaller was used to detect variants 
and BaseRecalibrator was used for base quality score recalibration (BQSR). Vcf files for each sample were gener-
ated for quality-filtering. Variant filtering was performed using SelectVariants (GATK v2.5)98, to extract SNPs 
and exclude variants with a read depth of less than 5 or a quality Phred score of less than 30.

The study protocol was approved by Universiti Teknologi MARA Research Ethics Committee [600-RMI 
(51/6/01) & 600-RMI (5/1/6)] and the Department of Orang Asli Development (Jabatan Kemajuan Orang Asli 
Malaysia, JAKOA) Research Ethics Committee [JAKOA.PP.30.052 Jld 5(62)].

Bioinformatics workflow. High-risk nsSNPs associated with cancer were classified using the GWAS-
Catalog as the source of the dataset, and various bioinformatics tools were employed in the workflow (Fig. 1).

Nonsynonymous SNPs datasets for validation. The sensitivity, specificity, and accuracy of the func-
tional effect prediction were determined using a combination of five different algorithms (SIFT, PolyPhen-2, 
Condel, PROVEAN, and PANTHER), with and without conservation (Consurf) and protein stability (I-Mutant). 
The standard dataset used comprised of nsSNPs associated with breast cancer from ClinVar. The ClinVar dataset 
includes a total of 100 clinically tested nsSNPs in which 50 nsSNPs were reported as pathogenic while the other 
50 nsSNPs were reported as benign (Table S1). The 100 nsSNPs training dataset were randomly chosen out of 
1020 clinically tested nsSNPs associated with breast cancer reported in the ClinVar as it is one of the most com-
monly studied cancer dataset. Although the dataset is primarily associated with breast cancer, the main purpose 
of using the training dataset is to test the ability of the pipeline to detect all the deleterious nsSNPs. Additionally, 
the sample size chosen also is sufficient as concluded by Thusberg et al., that the analysis result of using a small 
dataset (100SNPs) is comparable to a larger size (1000 SNPs) for a training  dataset37. Datasets of different types 
of cancer and a larger sample size may also be used to achieve the same objective.

Analytical parameters of studied tools were calculated using Eqs. (1), (2), and (3) according to  Fletcher99 
and  Glantz100.

Sensitivity (Se) is a proportion of the true-positive results (correct identification of pathogenic variants), 
according to Eq. (1).

where TP denotes true-positive cases, and FN denotes false-negative cases.
Specificity (Sp) is a proportion of the true negative results (correct identification of benign variants), accord-

ing to Eq. (2).

where TN denotes true negative cases, and FP denotes false-positive cases.
Accuracy (Ac) is the ratio of complete, correct predictions to the total number of predictions, according to 

the following Eq. (3).

Datasets. Information on the genetic variants associated with cancers (SNP ID) was retrieved from the 
GWAS-Catalog database (https:// www. ebi. ac. uk/ gwas). Residue change, risk allele frequency, phenotype, and 
protein accession number were retrieved from The NHGRI GWAS  Catalog20. The dataset was built after 179,365 
genetic variants were filtered based on the keywords’ cancer’, ’carcinoma’, ’glioma’, ’leukemia’, ’lymphoma’, ’mela-
noma’, and ’sarcoma’ (Table S2).

(1)Se =
TP

TP + FN
× 100%

(2)Sp =
TN

TN + FP
× 100%

(3)Ac =
TP + TN

TP + TN + FP + FN
× 100%

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
http://broadinstitute.github.io/picard/
http://www.stategen.ns.edu.sg/~SSMP)
http://www.ebi.ac.uk/gwas
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Figure 1.  A workflow diagram for predicting high-risk cancer-related nsSNPs. The training dataset used was 
ClinVar to validate the capability of the pipeline to identify pathogenic variants based on the prediction of 
functional effect, conservation, and stability of cancer-related variants reported in Clinvar. The red dotted line 
represented the results for the training dataset.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16158  | https://doi.org/10.1038/s41598-021-95618-y

www.nature.com/scientificreports/

Retrieval of SNPs from the whole-genome sequences. The SNPs that are associated with cancer 
risks were identified using  VCFtools102 based on the dataset (Table S2). The variants were then annotated to 
identify the associated genes, allele frequency (AF), location of the SNPs in the genome sequences, the position 
of amino acid change in protein sequences, and codon changes using Variant Effect  Predictor103. hg19/GRCh37 
was used as the reference genome for the analyses.

Identification of the damaging nsSNPs. The functional effects of identified nsSNPS were predicted by 
using five different bioinformatics tools. These algorithmic programs included Sorting Intolerant From Toler-
ant (SIFT) [http:// sift. jcvi. org/ www/ SIFT_ seq_ submi t2. html]25, Polymorphism Phenotyping v2 (PolyPhen-2) 
[http:// genet ics. bwh. harva rd. edu/ pph2/]27, Consensus Deleterious (Condel) [http:// bbglab. irbba rcelo na. org/ 
fanns db/ query/ condel]50, Protein Variation Effect Analyzer (PROVEAN) [http:// prove an. jcvi. org/ index. php]104, 
and Protein Analysis Through Evolutionary Relationships (Panther v14.1) [http:// www. panth erdb. org/ tools/ 
csnpS core. do]52. SIFT predicts the effects of an amino acid substitution on protein functions. The sequence 
homology and the physiochemical characteristics were computed using a normalized probability score (SIFT 
score) for each  substitution25. PolyPhen-2 predicts the potential effect of an amino acid substitution on both 
protein structure and function using a combination of multiple homolog sequence alignment-based methods 
and protein 3D structure. The prediction is provided as benign, possibly damaging, and probably damaging 
according to the scores differences of the position-specific independent count (PSIC) between 2 variants (native 
amino acid and mutant amino acid)27. Condel predicts the effect of coding variants on protein function based 
on the ensemble score of multiple prediction tools (SIFT, PolyPhen-2, FATHMM, and Mutation Assessor)50. 
PROVEAN predicts the functional effects of protein sequence variations, including single or multiple amino 
acid substitutions and in-frame insertions and  deletions104. PANTHER estimates the likelihood of a particu-
lar nsSNP to cause a functional effect on the protein using position-specific evolutionary  preservation52. The 
description of the tools used is presented in Table 1.

The nsSNPs were considered high-risk if they were predicted to be damaging or deleterious by at least four 
bioinformatics tools. They were then subjected to further analysis.

Analysis on conservation of protein evolutionary. ConSurf (consurf.tau.ac.il/) is a bioinformatics 
tool that was utilized to predict the evolutionary conservation of amino acid in CACFD1, RREB1, LRRC34, 
ETFA, CPVL, INCENP, FARP2, and TYR protein. It is a web server that builds phylogenetic relationships 
between homologous sequences to estimate the evolutionary conservation of amino acid positions in a protein 
or DNA molecule. The conservation analysis on the target proteins was performed to show the significance 
of each residue position for the protein structure or function. The rate of evolution was determined based on 
the evolutionary relationship between the protein or DNA, its homologs, and the similarity between amino 
(nucleic) acids as expressed in the substitutions matrix. Furthermore, Consurf offers an accurate estimation of 
the evolutionary rate using either an empirical Bayesian approach or a maximum probability (ML)  method47. 
Protein sequence in FASTA format was used as the input. UniProtKB accession numbers for the sequences are: 
CACFD1, Q9UGQ2; RREB1, Q92766; LRRC34, Q8IZ02; ETFA, P13804; CPVL, Q9H3G5; INCENP, Q9NQS7; 
FARP2, O94887; and TYR, P14679. Consurf created an output consists of the protein sequence and multiple 
sequence alignment colored by conservation scores. The conservation score ranged from 1 to 9, where 1 to 4 is 
considered as variable, 5 to 6 as intermediate, and 7 to 9 as conserved amino acid position. We selected those 
residues with a high score for the high-risk nsSNP for further analysis.

Analysis of protein stability. I-Mutant Suite is a web server (http:// gpcr2. bioco mp. unibo. it/ cgi/ predi 
ctors/I- Mutan t3.0/ I- Mutan t3.0. cgi) 54 that was used to predict the stability of protein changes caused by a single 
point mutation. This tool is trained on a ProTherm-derived data set which is the most extensive database on 
experimental thermodynamic data on free energy changes, which measures protein stability due to  mutations107. 
We submitted the protein sequences of selected nsSNPs to predict the impact on the protein stability of the 
damaging nsSNPs. UniProtKB accession numbers for the sequences are: CACFD1, Q9UGQ2; RREB1, Q92766; 
LRRC34, Q8IZ02; ETFA, P13804; CPVL, Q9H3G5; INCENP, Q9NQS7; FARP2, O94887; and TYR, P14679. The 
output included the indicator of the prediction (increase/decrease) of protein stability based on the reliability 
index (RI) and the predicted Gibbs free energy change (ΔΔG or DDG). The DDG value (kcal/mol) is computed 
from the unfolding Gibbs free energy value of the mutant protein minus the unfolding Gibbs free energy value of 
the native protein. The RI ranges from 0 to 10, where 10 is the highest  reliability107. The free energy change values 
were categorized into three classes: (i) DDG < − 0.5 kcal/mol as destabilizing mutations; (ii) DDG > 0.5 kcal/mol 
as stabilizing mutations; (iii) − 0.5 <  = DDG <  = 0.5 kcal/mol as neutral  mutations108.

Three-dimensional (3D) protein modeling. The 3D structures of native and mutant (due to nsSNPs) 
proteins were constructed to explore the differences in the structural stability between the native and mutant 
proteins. The iterative threading assembly refinement (I-TASSER) server is an integrated platform that pro-
vides automated protein structure and function prediction based on the sequence-to-structure-to-function 
 framework109. It was employed for the prediction of 3D protein models of native and mutant protein structures 
with high-risk nsSNPs. It has the most advanced algorithm to build high-quality 3D protein model from amino 
acid sequences. I-TASSER generates a full-length model of proteins by excising continuous fragments from 
threading alignments and then reassembling them using replica-exchanged Monte Carlo simulations. SPICKER 
clusters low-temperature replicas (decoys) generated during the simulation, and the top five cluster centroids 
are selected for generating full atomic models. The accuracy of the predicted model is reflected in the form of 
the confidence score (C-score). The C-scores range is between 5 and 2. The greater values of the C-score display 

http://sift.jcvi.org/www/SIFT_seq_submit2.html
http://genetics.bwh.harvard.edu/pph2/
http://bbglab.irbbarcelona.org/fannsdb/query/condel
http://bbglab.irbbarcelona.org/fannsdb/query/condel
http://provean.jcvi.org/index.php
http://www.pantherdb.org/tools/csnpScore.do
http://www.pantherdb.org/tools/csnpScore.do
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi)54
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi)54
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Program 
(website) Algorithm

Input 
parameters Evolutionary analysis

Structural 
attributes

Computing 
tools Effect Score Prediction References

SIFT (http:// 
sift. jcvi. org)

Evolutionary 
conservation dbSNP rs ID Multiple Sequences Align-

ment / Matrix Dir-
ichlet

Effect of 
amino acid 
substitution 
on structure/
function of 
protein

0.00—1
 < 0.05 = “Damag-
ing” > 0.05 = “Toler-
ated”

25

Polyphen-2 
(http:// genet 
ics. bwh. harva 
rd. edu/ pph2/)

Protein 
structure/
function and 
evolutionary 
conservation

dbSNP rs ID PSIC profiles
Homolog 
mapping/pre-
dictions

Naive Bayes-
ian classifier

Effect of 
amino acid 
substitution 
on structure/
function of 
protein

0.00—1

0.0—0.15 = “Benign” 
0.15—1.0 = “Pos-
sibly damaging” 
0.85—1.0 = “Probably 
damaging”

2

Condel 
(http:// bg. 
upf. edu/ fanns 
db/)

Protein 
structure/
function and 
evolutionary 
conservation

Genomic 
coordinate (s), 
variant(s)

SIFT, PolyPhen-2, 
MutationAssessor,FATHMM

Homolog 
mapping/
predictions 
(PolyPhen-2)

Weighted 
average of the 
normalized 
scores from 
multiple 
methods

Effect of 
amino acid 
substitution 
on structure/
function of 
protein

0.00—1 0.0 = “Neutral” 
1.0 = “Deleterious”

30

PROVEAN 
(http:// prove 
an. jcvi. org/ 
index. php)

Evolutionary 
conservation/ 
alignment and 
measurement 
of similarity 
between vari-
ant sequence 
and protein 
sequence 
homolog

Genomic 
coordinate (s), 
variant(s)

BLASTP /
Blocks Substi-
tution Matrix 
(BLOSUM62)

Functional 
effect on 
protein

(− 40–12.5)
 ≥—2.5 = “Deleteri-
ous” ≤—2.5 = “Neu-
tral”

104

PANTHER 
(http:// www. 
panth erdb. 
org/ tools/ 
csnpS coreF 
orm. jsp)

Evolutionary 
conservation/ 
alignment and 
measurement 
of similarity 
between vari-
ant sequence 
and protein 
sequence 
homolog

Protein 
sequences, 
substitution(s)

Multiple Sequence alignment
(PANTHER library) /

Alignment 
scores Hidden 
Markov Mod-
els (HMM)

Functional 
effect on 
protein

0.00—4200

 > 450 = "Probably 
damaging"
450—200 = "Possibly 
damaging
 < 200 = "Probably 
benign"

52

Consurf
(https:// consu 
rf. tau. ac. il/)

Evolutionary 
conservation/ 
alignment and
measurement 
of similarity 
between vari-
ant sequence 
and protein 
sequence 
homolog

Protein 
sequences
(FASTA 
format),
substitution(s)

PSI-BLAST,
Multiple sequence alignment 
(MAFFT (default), PRANK, 
T-COFFEE, MUSCLE or 
CLUSTALW)

/

Neighbor-
joining
Empirical 
Bayesian 
or Machine 
learing,
Heuristic 
algorithm

Evolutionary 
conservation 1–9

1 = “Most variable 
positions” (turquoise)
5 = “intermediate 
conserved positions 
(white),
9 = “Most conserved 
positions” (maroon)

47

I-Mutant
(http:// gpcr2. 
bioco mp. 
unibo. it/ cgi/ 
predi ctors/I- 
Mutan t3.0/ 
I- Mutan t3.0. 
cgi)

Protein stabil-
ity changes 
upon single-
site mutations 
from the pro-
tein sequence 
or protein 
structure

Protein 
sequences
(FASTA 
format),
substitution(s)

Multiple Sequence alignment

Relative 
Solvent 
Accessible 
Area (DSSP 
Program, 
DDGMut 
dataset)

Support Vec-
tor Machine 
(SVM)

Protein 
Stability 
changes

DDG >  = 0, 
DDG < 0]

ΔΔG ≤ − 0.5 kcal/
mol = ”Destabilizing 
mutations”
ΔΔG ≥ 0.5 kcal/
mol = ”Stabilizing 
mutations”
− 0.5 kcal/
mol ≤ ΔΔG ≤ 0.5 kcal/
mol = “Neutral muta-
tions”

54

TM-align
(https:// zhang 
lab. ccmb. med. 
umich. edu/ 
TM- align/)

Alignment 
and measure-
ment of simi-
larity between 
two protein 
structures 
of known/
unknown 
equivalence

Protein 
Structure
(PDB format)

/
Superposi-
tion of two 
structures
(TM-Score)

Heuristic 
dynamic 
programming 
iterations

Protein struc-
ture changes 0–1

 ≤ − 0.5 = “Randomly 
chosen unrelated 
proteins”
 > 0.5 = “same fold in 
SCOP/CATH”

69

ModPred
(http:// www. 
modpr ed. 
org/)

Post-
trasnlational 
Modification

Protein 
sequences
(FASTA 
format)

PSI-BLAST
Homolog 
mapping/
predictions

Position-
specific scor-
ing matrices 
(PSSM)

Identifica-
tion of 
PostTtrans-
lational 
Modification 
Sites

0–1

 > 0.5 = “High confi-
dence”
0.5 = “ Medium”
 < 0.5 = “Low confi-
dence”

105
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higher confidence for the predicted  model109. The best model for each query protein was selected according to 
C-score values. Default parameters were used for each of the protein structures. The amino acid sequences of 
the proteins to be modeled were prepared in the FASTA format as input for the server to predict the native and 
mutant models. The predicted structures were loaded into PyMOL to visualize their molecular structures. PyMol 
was used to visualize the molecular structures in high-quality 3D images.

The qualities of all predicted protein structures were then validated by ERRAT tools (https:// servi cesn. mbi. 
ucla. edu/ ERRAT/)110, and Ramachandran Plot. (https:// zlab. umass med. edu/ bu/ rama/)111. ERRAT program ana-
lyzed the statistics of noncovalent interactions between three types of atoms, which are carbon (C), nitrogen 
(N), and oxygen (O). Consequently, six types of interactions are possible (CC, CN, CO, NN, NO, and OO). 
Ramachandran Plot illustrates the statistical distribution of the combinations of the backbone dihedral angles ϕ 
and ψ. in protein structures. The number of residues in the allowed or disallowed regions of the Ramachandran 
plot determines the quality of the model. Template modeling aligns (TM-align) was used for comparison between 
the predicted native and mutant protein models. Its algorithm identifies the best structural alignment between 
the protein pairs based on the combination of template modeling-score (TM-score), root means square deviation 
(RMSD), and the superposition of the  structures69. TM-score scores range from 0 to 1, where 1 represents the 
ideal match between two protein structures. In contrast, the higher value of RMSD represents a more significant 
difference between native and mutant structures.

Identification of functional and structural properties. MutPred v1.2 and HOPE were used to identify 
the functional and structural properties of the selected nsSNPs. MutPred is a web application tool that effec-
tively classifies amino acid substitution as being associated with a disease or neutral in human (http:// mutpr 
ed. mutdb. org/). This tool also helps in predicting the deleterious amino acid substitution or molecular cause of 
 disease112. It focuses on a wide range of structural and functional properties, including secondary structure, sig-
nal peptide and transmembrane topology, catalytic activity, macromolecular binding, PTMs, metal-binding, and 
 allostery106. Protein sequences (FASTA format) of the identified genetic variants and their amino acid substitu-
tions were submitted. MutPred v1.2 generated output scores indicating the probability of deleterious or disease-
associated amino acid substitution. The top five features with P value impact on the functional and structural 
properties would be recorded. The predicted scores were classified based on three hypotheses; (i) g > 0.5 and 
p < 0.05 as actionable hypotheses; (ii) g > 0.75 and p < 0.05 as confident hypotheses; (iii) g > 0.75 and p < 0.01 as 
very confident hypotheses.

HOPE is a web service tool that was used to identify the structural effects of a point mutation on human 
protein sequence (www. cmbi. ru. nl/ hope)113. The protein sequences of the selected nsSNPs were submitted as 
input. HOPE generated results based on the collected and combined information from several web services and 
databases. Initially, the algorithm included BLAST against PDB and UniProt to obtain details on the tertiary 
structure to build a homology model. It was followed by the prediction of the protein features using the Distrib-
uted Annotation  System114.

ModPred (http:// www. modpr ed. org/)105 is a web server tool that was used for the prediction of post-trans-
lational modification (PTM) sites in proteins based on sequence-based features, physicochemical properties, 
and evolutionary features. A total of 34 logistic regression models were used in ModPred for 23 different PTM 
sites to simultaneously predict and analyze multiple types of PTM sites to obtain information on the functional 
and structural impacts of multiple PTM protein regulatory mechanisms. The 34 ensembles of logistic regression 
models were trained independently for 23 PTMs on a total collection of 126,036 experimentally tested non-
redundant protein sites extracted from various public databases such as SwissProt, HPRD, PDB, Phospho.ELM, 
PhosphoSitePlus & PHOSIDA and  literatures105. The PTM sites were predicted to have either low, medium, or 
high confidence scores. Sites with low confidence have scores of at least 0.5. In contrast, PTM sites with medium 
and high confidence have different predictor scores that were based on sensitivity and specificity estimates for 
each of the modifications models as given by ModPred.

Prediction of protein–protein interactions. STRING is a database and web resource dedicated to pro-
tein–protein interactions network, including direct (physical) and indirect (functional)  interactions115. The data-
base contains data from genomic context, experimental repositories, co-expression, and collections of public 
 text116. The available information in the database will allow us to identify and further understand the experimen-
tal and/or theoretical interaction for TYR, FARP2, and LRRC34 for this study.

Table 1.  Description of the functional prediction tools.

Program 
(website) Algorithm

Input 
parameters Evolutionary analysis

Structural 
attributes

Computing 
tools Effect Score Prediction References

MutPred2
(http:// mutpr 
ed. mutdb. 
org/)

Evolutionary 
conservation/ 
alignment and 
measurement 
between vari-
ant sequence 
and protein 
sequence 
homolog, 
molecular 
alterations

Protein 
sequences
(FASTA 
format),
substitution(s)

PSI-BLAST
Homolog 
mapping/
predictions

Neural 
network 
ensemble,
Machine 
learning 
(ML)

Effect of 
amino acid 
substitution 
and their 
molecular 
mechanisms

0–1  ≥ 0.5 = “Pathogenic”
 ≤ 0.5 = “Benign”
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Molecular docking. The effect of the deleterious point mutations over the binding affinity of FARP2, 
LRRC34, and TYR, were determined by molecular docking using UCSF Chimera 1.15  tools60 with Autodock 
Vina  instruments61. Protein and the peptide molecule were given as input for the docking experiments. The 
protein three-dimensional (3D) crystal structure, MYNN (PDB ID:2vpk), SRC (PDB ID:2h8h), and DCT (PDB 
ID: 4hx1) from RCSB Protein Data Bank (PDB)117 were used as receptors for LRRC34, FARP2, and TYR respec-
tively. The peptide sequences from native and mutant FARP2, LRRC34, and TYR protein structures were used 
as the ligands for the docking procedure. The peptide sequences of at least nine amino acid residues of each 
of the native and mutant FARP2, LRRC34, and TYR proteins were converted into Simplified Molecular-Input 
Line-Entry System (SMILES) strings by using the online tool PepSMI (https:// www. novop rolabs. com/ tools/ 
conve rt- pepti de- to- smiles- string). The peptide sequences used for the analysis were SGIQQLCDAL, FQGTT-
KINT, and FEQWLRRHR from native LRRC34, FARP2, and TYR protein and SGIQQICDAL, FQGTNKINT 
and FEQWLQRHR from mutant LRRC34, FARP2 and TYR protein, respectively. The three-dimensional struc-
ture for each ligand was then generated by the Build Structure tool within UCSF Chimera 1.15 software using 
SMILES as an input. Target proteins and ligands were optimized using the Dock Prep tool from UCSF Chimera 
1.15  software118 with default parameters before docking analysis. These steps include removing solvents, add-
ing hydrogens, and determining the charge. We maximized the grid box size along with the axes X, Y and, Z 
accordingly to define the binding sites for conducting the docking. The grid box size was set at 40.4399, 37.7452, 
39.3645 along the x, y, and z points, respectively, for MYNN (PDB ID:2vpk) , 69.2063, 68.8481, 75.7427 SRC 
(PDB ID:2h8h) and 73.99757, 63.0875, 65.1247 DCT (PDB ID: 4hx1). The Autodock from UCSF Chimera 1.15 
 tools60 predicted and evaluated ten (10) protein binding sites for each interaction of receptors and ligands. The 
same binding sites of native and mutant proteins were compared. The PDB format of these input receptors and 
ligands were converted into a pdbqt format. The docking result and the binding interaction between ligand and 
receptor proteins were visualized by UCSF Chimera 1.15 tool.

Results
Standard dataset. The dataset contains a total of 100 nsSNPs in which 50 nsSNPS were reported as patho-
genic, and 50 nsSNPs were reported as benign (Table S1). The parameters investigated were compared and are 
presented in Table 2. The sensitivity, specificity, and accuracy of the prediction for the clinical significance of the 
nsSNPs were calculated for four (4) models (Model A, B, C, and D). Model A represents at least one tool that 
predicted nsSNPs as deleterious or benign, and it showed the highest sensitivity (100%), followed by Model B 
(92%), Model C (90%), and Model D (84%). For specificity and accuracy, Model D showed the highest percent-
ages (specificity 94%, and accuracy 89%) followed by Model C (specificity 80%, and accuracy 85%), Model B 
(specificity 64%, and accuracy 78%), and Model A (specificity 50%, and accuracy 75%). Further analyses were 
conducted using the combination of five functional effect tools which investigate the conservation and stabil-
ity (Model A3, B3, C3, and D3). These models resulted in lower sensitivity of deleterious and benign nsSNPs 
compared to Model A, B, C and D. Interestingly, Model D3 showed the highest specificity (96%) compared to 
other models (Model A, B, C, D, A3, B3, and C3). However, Model A3, and B3 showed higher accuracy (88%) 
compared to Model D (89%) and Model C (85%).

Table 2.  Performance of 8 different prediction models (Model A, B, C, D, A3, B3, C3 and D3) using functional 
effect prediction tools (SIFT, PolyPhen-2, Condel, PROVEAN, and PANTHER) and conservation (Consurf) 
and protein stability (I-Mutant). The prediction tools’ performance was assessed on a standard dataset with 
all statistical parameters; TP, FN, TN, FP, sensitivity, specificity, and accuracy. TP = True Positive; FN = False 
Negative, TN = True Negative and, FP = False Positive.

Statistical 
parameters Model A Model B Model C Model D Model A3 Model B3 Model C3 Model D3

TP (N) 50 46 45 42 48 44 39 38

FN (N) 0 4 5 8 2 6 11 12

TN(N) 25 32 40 47 40 44 46 48

FP(N) 25 18 10 3 10 6 4 2

Sensitivity (%) 100 92 90 84 96 88 78 76

Specificity (%) 50 64 80 94 80 88 92 96

Accuracy (%) 75 78 85 89 88 88 85 86

Annotation

Model A
is the combina-
tion
of five
different
tools which
at least one
tool predicted
nsSNPs as delete-
rious/
neutral

Model B
is the combination
of five
different
tools which
at least two tools 
predicted
nsSNPs as delete-
rious/
neutral

Model C
is the
combination
of five
different
tools which
at least three
tools predicted
nsSNPs as delete-
rious/
neutral

Model D
is the combination
of five
different
tools which
at least four
tools predicted
nsSNPs as delete-
rious/
neutral

Model A3 is the 
combination of 
Model A with 
the prediction of 
conservation and 
protein stability

Model B3 is the 
combination of 
Model B with 
the prediction of 
conservation and 
protein stability

Model C3 is the 
combination of 
Model C with 
the prediction of 
conservation and 
protein stability

Model D3 is the 
combination of 
Model D with 
the prediction of 
conservation and 
protein stability

https://www.novoprolabs.com/tools/convert-peptide-to-smiles-string
https://www.novoprolabs.com/tools/convert-peptide-to-smiles-string
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SNPs dataset. The database included a total of 3,608 SNPs (excluded redundant nsSNPs entries), 80 are 
nsSNPs, 21 are sSNPs, 73 in the 3’UTR, 23 in the 5’UTR, 1,922 in the intronic region, 1,078 in the intergenic 
region, and the remaining are variants in the coding sequence regions, transcription factor binding site, stop- 
gained region, splice region, regulatory region, splice-acceptor, noncoding transcript and in-frame insertion. 
The details are provided in the Table S2. For further investigation, only nsSNPs were selected.

Cancer-related nsSNPs for whole-genome sequences of Orang Asli and Malays. All of the iden-
tified SNPs were searched against the SNPs dataset retrieved from GWAS. Out of 80 nsSNPs associated with 
cancers from the dataset, a total of 52 nsSNPs were found among the Orang Asli and Malays (43 in Orang Asli 
and 43 in Malays), as presented in Table 3. Thus, we selected all the 52 identified nsSNPs associated with cancer 
risks among the Orang Asli and Malays for further investigation.

Predicted Deleterious nsSNPs among the Orang Asli and Malays. The SNP effect on protein func-
tion remains unexplained for a large number of nsSNPs in humans. Five different in-silico nsSNPs prediction 
algorithms were successfully used to predict the impact of all the nsSNPs on the function, structure, and sequence 
conservation of the proteins in the Orang Asli and Malays studied in this study. The five tools used were SIFT, 
PolyPhen-2, CONDEL, PROVEAN, and PANTHER. Different algorithms are used by these in silico methods, 
which often resulted in outputs with different significant values. SIFT prediction scores range from 0 to 1, values 
less and equal to 0.05 were considered deleterious; all other values are considered neutral. PolyPhen-2 prediction 
scores range from 0 (benign) to 1 (probably damaging), values near to 1 are more confidently predicted to be 
probably damaging. PROVEAN predicted variants as deleterious when the score is below the threshold value of 
− 2.5 and neutral when it is above this value. Besides, Condel predicted the results as deleterious if the score is 
more than 0.5 and neutral if the score is less and equal to 0.5. PANTHER predicted the length of time (in mil-
lions of years) of a position in protein sequence, threshold more than 450 million years is considered as probably 
damaging, between 450 million years and 200 of millions of years as possibly damaging and less than 200 million 
years as probably benign. This tool used position-specific evolutionary preservation (PSEP) to determine the 
length of time a position has been preserved in its ancestors. It would be more likely to have a deleterious impact 
if the position is in longer preservation. The nsSNPs with greater confidence are expected to be truly deleterious.

In this study, we shortlisted 52 nsSNPs with at least four significant scores out of five algorithmic tools used: 
score < 0.05 in SIFT, > 0.9 in PolyPhen-2, <  − 2.5 in PROVEAN, 1.0 in CONDEL, and > 450 million years in 
PANTHER. Therefore, only the most deleterious nsSNPs would be studied. Based on the scores, 6 out of 43 
nsSNPs in the Orang Asli and 6 out of 43 nsSNPs in the Malays were shortlisted. Interestingly, four nsSNPs were 
found in both populations (Table 3). As a result, the analysis identified eight deleterious amino acid substitutions 
responsible for the high-risk nsSNP associated with cancers (Table 3). The nsSNPs which are classified as high 
risk are rs3124765, rs9379084, rs10936600, rs1801591, rs117744081, rs2277283, rs757978 and rs1126809. They 
are located on different genes, which are CACFD1, RREB1, LRRC34, ETFA, CPVL, INCENP, FARP2, and TYR 
, respectively. According to the GWAS database, the eight (8) nsSNPs were associated with the risk of specific 
cancers, as shown in Table 3. Thus, these eight (8) nsSNPs were further investigated.

Conservation profile of high-risk nsSNPs. ConSurf was further used to investigate the potential impact 
of the most deleterious nsSNP. It was used to measure the degree of evolutionary conservation of the protein 
for each amino acid residue. It identifies amino acid positions known to have functional and structural impor-
tance through the combination of evolutionary conservation data and solvent accessibility  predictions47. In this 
study, all residues of each protein obtained from Consurf were assigned with conservation levels graded with 
scores ranging from 1 to 9. However, we concentrated only on residues that mapped to the locations of eight (8) 
high-risk nsSNPs, which we had identified. The server predicted D1171N, I58M, L286, T171I, Y168H, M506T, 
R402Q, and T260N as highly conserved (Table 4) and their functional and structural importance. The findings 
further indicated that these eight (8) high-risk nsSNPs were certainly deleterious to the protein functions and 
structures.

Predicted stability modification. We predicted the stability modifications due to nsSNPs in CPVL, 
FARP2, CACFD1, RREB1, LRRC34, ETFA, TYR, and INCENP proteins with the help of I-Mutant. The eight 
(8) nsSNPs that were found associated with cancers were submitted to the I-Mutant 3.0 server to predict the 
changes in the stability in terms of their free energy change value (ΔΔG) and reliability index (RI). Based on 
the ΔΔG values, all of these nsSNPs have decreased the stability of the respective proteins (Table 5). However, 
we had excluded two of them, rs1801591 (RI = 0) and rs117744081 (RI = 4), from analysis as they had RI below 
five (< 5). The higher RI value shows higher accuracy in the prediction for  stability48. Thus, the other six nsSNPs 
(rs3124765, rs9379084, rs10936600, rs2277283, rs757978, and rs1126809) were further analyzed.

Homology modeling of protein. The three-dimensional (3D) structures of 6 native and mutant pro-
teins were predicted by I-TASSER. In generating the mutant models, all six sequences were submitted to the 
I-TASSER, where each nsSNP was substituted into the native sequence. UniProtKB accession numbers for the 
native sequences used are LRRC34, Q8IZ02; FARP2, O94887; and TYR, P14679. The available top 10 templates 
protein models in PDB which are structurally closest to the query protein sequence were used to model the 
native and mutant proteins of LRRC34, FARP2 and TYR using I-TASSER. Among the six predicted models for 
each query protein (LRRC34, TYR, FARP2), the best model was selected based on the highest confidence score 
(C-score), as shown in S3 Table. C-score is the score of confidence for the prediction of pairwise comparison 
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SNP ID Cancer risk Location Gene Symbol Amino acid change SIFT PolyPhen-2 ConDel PROVEAN PANTHER

rs12621643 Acute lymphoblastic
leukemia (childhood) 2:223,917,983 KCNE4 D145E Tol benign Neu Neu -

rs13014235 Basal cell carcinoma 2:202,215,492 ALS2CR12 V43L Tol benign Neu Neu Prob_ben

rs1050529 Basal cell carcinoma 6:31,324,615 HLA-B A65T Del_low_con benign Neu Neu Prob_ben

rs1126809** Basal cell carcinoma or 
squamous cell carcinoma 11:89,017,961 TYR R402Q Del Prob_dam Del Neu Prob_dam

rs11543198* Bladder cancer 15:74,912,328 CLK3 R78H Tol_low_con - - Neu -

rs35273427 Breast cancer 1:120,436,751 ADAM30 T737A Tol benign Neu Neu Prob_ben

rs6964587 Breast cancer 7:91,630,620 AKAP9 M463I Del benign Neu Neu -

rs1053338 Breast cancer 3:63,967,900 ATXN7 K264R Tol benign Neu Neu Prob_dam

rs3124765 Breast cancer 9:136,328,657 CACFD1 I58M Del Prob_dam Del Neu -

rs11552449 Breast cancer 1:114,448,389 DCLRE1B H61Y Del benign - Neu Prob_ben

rs3815308 Breast cancer 19:2,226,676 DOT1L G1386S Tol_low_con benign Neu Neu Prob_ben

rs11205303 Breast cancer 1:149,906,413 MTMR11 M159V Tol benign - Neu -

rs9379084 Breast cancer 6:7,231,843 RREB1 D1171N Del Prob_dam Del Del Prob_dam

rs8050871 Breast cancer 16:71,509,796 ZNF19 Q218H Del pos_dam Del Neu Prob_ben

rs757978** Chronic lymphocytic
leukemia 2:242,371,101 FARP2 T260N Del Prob_dam Del Del Prob_dam

rs11539086** Colorectal cancer 3:58,552,329 FAM107A E141Q Tol Prob_dam Del Neu Prob_dam

rs4836891 Colorectal cancer 9:125,273,574 OR1J2 R165Q Tol_low_con benign Neu Neu Prob_ben

rs7248888 Colorectal cancer 19:46,974,003 PNMAL1 C97Y Tol benign Neu Neu Prob_ben

rs16845107 Colorectal cancer 3:113,127,991 WDR52 K284N Tol benign - Neu Prob_dam

rs3184504 Colorectal or
endometrial cancer 12:111,884,608 SH2B3 W262R Tol benign Neu Neu Prob_ben

rs1129506 Endometrial cancer 17:29,646,032 EVI2A S23R Del_low_con benign - Neu Pos_dam

rs2278868
Endometriosis or
endometrial cancer
(pleiotropy)

17:46,262,171 SKAP1 G161S Tol benign Neu Neu Prob_ben

rs1229984 Esophageal cancer 4:100,239,319 ADH1B H48R Tol benign Neu Neu Prob_ben

rs671 Esophageal cancer 12:112,241,766 ALDH2 E504K Del pos_dam Del Del -

rs2274223 Esophageal cancer 10:96,066,341 PLCE1 H1927R Tol benign Neu Neu Prob_ben

rs3765524 Esophageal cancer
and gastric cancer 10:96,058,298 PLCE1 T1777I Tol benign Neu Neu Prob_ben

rs20541 Hodgkin’s lymphoma 5:131,995,964 IL13 Q144R Tol benign Neu Neu -

rs3734542* Lung cancer in
ever smokers 6:26,468,326 BTN2A1 R378Q Tol benign Neu Neu Prob_ben

rs10936600 Multiple myeloma 3:169,514,585 LRRC34 L286I Del Prob_dam Del Neu Prob_dam

rs7193541 Multiple myeloma 16:74,664,743 RFWD3 I564V Tol benign Neu Neu Prob_ben

rs34562254 Multiple myeloma 17:16,842,991 TNFRSF13B P251L Tol benign Neu Neu Prob_ben

rs1052501 Multiple myeloma 3:41,925,398 ULK4 A542P Del benign Neu Neu Prob_ben

rs2272007 Multiple myeloma
(hyperdiploidy) 3:41,996,136 ULK4 K39R Tol benign Neu Neu Prob_dam

rs6793295 Multiple myeloma and
monoclonal gammopathy 3:169,518,455 LRRC34 S249G Tol benign Neu Neu Prob_ben

rs1801591 Non-glioblastoma
glioma 15:76,578,762 ETFA T171I Del Prob_dam Del Del -

rs117744081* Non-melanoma
skin cancer 7:29,132,279 CPVL Y168H Del Prob_dam Del Del Prob_ben

rs11170164** Non-melanoma
skin cancer 12:52,913,668 KRT5 G138E Del pos_dam Del Del Pos_dam

rs1229984 Oral cavity and
pharyngeal cancer 4:100,239,319 ADH1B H48R Tol benign Neu Neu Prob_ben

rs1494961 Oral cavity and
pharyngeal cancer 4:84,374,480 HELQ V306I Tol benign Neu Neu -

rs763780 Pancreatic cancer 6:52,101,739 IL17F H161R Tol benign Neu Del Prob_ben

rs2257205 Pancreatic cancer 17:56,448,297 RNF43 R117H Tol pos_dam Neu Neu Pos_dam

rs3795244 Pancreatic cancer 17:30,692,396 ZNF207 A240S Tol benign Neu Neu Prob_dam

rs130067* Prostate cancer HSCHR6_MHC_
MANN:31,163,464 CCHCR1 D275E Tol benign Neu - Prob_dam

rs2066827 Prostate cancer 12:12,871,099 CDKN1B V109D Tol benign Neu Neu Prob_ben

rs2277283* Prostate cancer 11:61,908,440 INCENP M506T Del Prob_dam Del Del Prob_dam

rs2292884 Prostate cancer 2:238,443,226 MLPH H347R Tol benign Neu Neu Prob_ben

Continued
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with values ranging from − 5 to 2. A greater level of C-score indicates a model with great confidence and vice-
versa. Then, PyMol was used to visualize the structures. Structural analysis of demonstrated that the mutants of 
LRRC34, FARP2, and TYR had structures with deviated orientation compared to the native LRRC34, FARP2, 
and TYR, respectively (Fig. 2). Compared to the native structure of LRRC34, FARP2, and TYR proteins, their 
mutant structures have more helixes as presented in Table 6. The numbers of beta-sheets were also different 
between the native and mutant proteins. The native protein structure of LRRC34 and TYR have more beta sheets 
when compared to their mutants. In contrast, the native protein structure of FARP2 has three fewer beta-sheets 
than its mutant. There are three and two more buried residues in the native LRRC34 (432) and FARP2 (1007) 
proteins compared to their mutants, respectively. However, buried residues in the native TYR (509) are less than 
its mutant protein.

TM-scores and RMSD values of each mutant model were calculated using TM-align. TM-score measures the 
similarity of topological models for native and mutant proteins, whereas RMSD evaluated the average distance 
from native α-carbon backbones to mutant models. The mutant model with the highest TM-score value is T171I 
(0.975), followed by R402Q (0.938), L286I (0.934), T260N (0.929), and Y168H (0.909). The highest TM-score 
value indicates that the mutant models generated are still in the same folding dimension of the native models 
but not perfectly the same. Besides, these mutant models were found to be different from the native based on 
RMSD values shown in Table 5. The nsSNP models of I58M, D1171N, and M506T have very low TM-score values 
of 0.346, 0.319, and 0.262, respectively, which correspond to randomly chosen unrelated  proteins49. Hence, we 

SNP ID Cancer risk Location Gene Symbol Amino acid change SIFT PolyPhen-2 ConDel PROVEAN PANTHER

rs11071896 Testicular germ
cell tumor 15:66,821,250 ZWILCH S344G Tol benign Neu Neu Prob_ben

rs6793295 Thyroid cancer 3:169,518,455 LRRC34 S249G Tol benign Neu Neu Prob_ben

Table 3.  List of 52 nsSNPs identified among the Orang Asli and the Malays and functional effect predicted by 
five in silico programs. Del = Deleterious, Tol = Tolerated, Pro_dam = Probably damaging, Pos_dam = Possibly 
damaging, Prob_ben = Probably benign, Neutral = Neu,—= Not predicted. *nsSNPs which are found in Orang 
Asli only. **nsSNPs which are commonly found in Malays only. The highlighted rows were the selected nsSNPs 
for further investigation.

Table 4.  Conservation profile of amino acids in proteins with high-risk nsSNPs by ConSurf. 1 ≤ conservation 
score ≤ 4 = variable, 5 ≤ conservation score ≤ 6 = intermediate, and 7 ≤ conservation score ≤ 9 = highly conserved.

SNP ID
UniprotKb
Accession Number Amino Acid Change Conservation Score Prediction

rs9379084 Q92766 D1171N 9 Highly conserved

rs3124765 Q9UGQ2 I58M 8 Highly conserved

rs10936600 Q8IZ02 L286I 9 Highly conserved

rs1801591 P13804 T171I 9 Highly conserved

rs117744081 Q9H3G5 Y168H 8 Highly conserved

rs2277283 Q9NQS7 M506T 9 Highly conserved

rs1126809 P14679 R402Q 8 Highly conserved

rs757978 O94887 T260N 8 Highly conserved

Table 5.  I-Mutant 3.0 and TM-align predictions for nsSNPs associated with cancers among the Orang Asli 
and Malays. RI = Reliability Index. RMSD = Root Mean Square Deviation. ΔΔG ≤ − 0.5 kcal/mol = destabilizing 
mutations, ΔΔG ≥ 0.5 kcal/mol = stabilizing mutations, − 0.5 kcal/mol ≤ ΔΔG ≤ 0.5 kcal/mol = neutral mutations. 
0.0 < TM-score < 0.30 = random structural similarity, 0 ± 0.3 and 0.5 < TM-score < 1.00 = in about the same fold 
0.5 ± 1. Highlighted rows are the excluded nsSNPs.

nsSNP ID Amino Acid Change Gene Symbol Stability RI ΔΔG (kcal/mol) TM-Score
RMSD
(Å)

rs3124765 I58M CACFD1 Decrease 8 − 1.19 0.346 4.84

rs9379084 D1171N RREB1 Decrease 7 − 1.74 0.319 4.41

rs10936600 L286I LRRC34 Decrease 5 − 1.00 0.934 2.06

rs1801591 T171I ETFA Decrease 0 − 0.48 0.975 1.13

rs117744081 Y168H CPVL Decrease 4 − 1.50 0.909 2.66

rs2277283 M506T INCENP Decrease 6 − 0.88 0.262 2.56

rs757978 T260N FARP2 Decrease 5 − 1.01 0.929 3.21

rs1126809 R402Q TYR Decrease 9 − 1.39 0.938 2.56
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Figure 2.  Graphical representations of amino acid changes due to the most deleterious nsSNPs and close-up 
view for substitution of amino acids (green = native residue; red = mutant residue). (a) Superimposed structures 
of native LRRC34 protein and its mutant with substitution from Leucine to Isoleucine at position 286. (b) 
Superimposed structures of wild type FARP2 protein and its mutant having substitution from Threonine to 
Asparagine at position 260. (c) Superimposed structures of the native TYR protein and its mutant having 
substitution from Arginine to Glutamine at position 402.
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finally selected only three mutants L286I, T260N, and R402Q, for further analysis, based on the results provided 
by I-Mutant and TM-align (Table 5).

The modeled structures were validated using ERRAT program and Ramachandran Plot Server to check 
the reliability of predicted protein structures. The ERRAT results showed that the qualities for the native and 
mutant LRRC34, FARP2, and TYR protein were good with scores of 93.86, 57.17, 75.15, 87.28, 70.27, and 73.51, 
respectively (Table S3). Ramachandran plots for the native and mutant LRRC34, FARP2, and TYR protein models 
showed 87.74%, 71.75%, 85.00%, 87.50%, 69.16, and 85.00% of the residues were located in the allowed regions, 
and only a few amino acids were deviated (Table S3)].

Those three selected mutant protein models were then superimposed on the native protein models to show 
the location of observed mutations (Fig. 2). The details of the selected native and mutant protein models included 
the protein templates used to predict the structures and C-score are provided in the Table S3.

Functional and structural modifications of genetic variants. Three (3) nsSNPs were shortlisted and 
submitted to the MutPred2 server. MutPred2 predicts the modification of structural and functional protein 
structures, including the altered order or disordered interface, transmembrane protein, metal binding, DNA 
binding, loss of allosteric site, and gain of allosteric site. Based on Table 7, the R402Q mutation showed the 
highest probability score (0.78), followed by T260 mutation (0.73) and L286 mutation (0.55). An amino acid 
substitution is predicted as pathogenic if a probability score is 0.50 and above.

HOPE was further used to explore the structural effects of these three amino acid substitutions. It was shown 
that the substitution of L286, T260, and R402 were highly conserved. Based on Fig. 3, the L286I mutation is 
buried in the core domain, whereas the R402Q mutation was changed to a smaller size amino acid while T260N 
was changed to a bigger size amino acid than the residue in native protein. Besides, the substitution of amino 
acid R402Q and T260N had resulted in the change of the net charge of TYR protein and hydrophobicity value 
of FARP2 protein.

ModPred tools predict possible post-translational modification (PTM) sites to investigate the effects of PTMs 
on the three substitutions of amino acid L286I, T260N, and R402Q in LRRC34, FARP, and TYR proteins, 
respectively. Post-translational modifications (PTMs) play a crucial role in regulating many biological processes, 
such as protein–protein interaction network, protein stability and enzymatic activity, and others. ModPred tool 
had predicted proteolytic cleavage sites of the substituted amino acids L286I, T260N, and R402Q in LRRC34, 
FARP, and TYR proteins, respectively (Table 7). Proteolytic cleavage is a PTM that induces activation, inactiva-
tion, entirely changed protein structure, excision of new N or C termini with growth factor activity from the 
parent molecule of an extracellular matrix and regulates a vast range of biological processes. These involve 
DNA replication, cell proliferation, cell cycle progression, and cells death, and inflammatory processes such as 

Table 6.  The top 10 templates used for homology modeling, and the alpha helix, beta sheet and exposed/
buried residues used by I-TASSER.

LRRC34 FARP2 TYR 

L286 (Native) 286I (Mutant)
T260
(Native)

260 N
(Mutant)

R402
(Native)

402Q
(Mutant)

Templates
(PDB id)

1a4yA, 2bnh, 4perA, 
4k17A, 6b5bA, 4kxfK, 
2p1pB, 3ogmB,
5hywA, 4q62A

4perA, 1a4yA, 1dfjI, 
4k17A, 6b5bA, 2p1pB, 
3ogmB, 4kxfK, 5hywA, 
4q62A

4gzuA, 4h6yA, 3vkhA, 
6ez8A, 5xjcA, 3jb9A, 
6ar6A, 6bcuA, 5h64A, 
5d06A

4gzuA, 4h6yA, 3jb9A, 
5xjcA, 2vz8B, 5ganA, 
5yz0A, 6bcuA, 5cskA, 
5h64A

5m8lA, 4z11A, 5zrdA, 
3w6qA, 4ouaB, 6elsA, 
3nm8A, 4j3pA, 6hqiA, 
4bedB

5m8lA, 3w6qA, 4ouaB, 
5zrdA 4z11A, 6elsA, 
3nm8A, 4bedB, 4j3pA, 
6hqiA

Alpha Helix 15 17 13 14 11 15

Beta sheet 14 13 15 18 11 14

Exposed residue 432 429 1007 1005 509 513

Buried residues 32 35 47 49 20 16

Table 7.  Probability scores and top prediction features of deleterious mutations by MutPred2 and ModPred. 
MutPred2: P values < 0.05 = confident and P values < 0.01 = very confident; MutPred2 score < 0.5 = neutral and 
MutPred2 score > 0.5 = pathogenic. ModPred scores: < 0.7 = low, ≥ 0.7 = medium, and ≥ 0.9 = high.

Gene Symbol Mutation

MutPred2 ModPred

Top Prediction Features Score PTMs Score

LRRC34 L286I Altered Ordered interface (P value = 0.01)
Altered Metal binding (P-value = 0.04) 0.55 Proteolytic cleavage 0.07

FARP2 T260N
Altered DNA binding (P value = 2.8e−03)
Gain of Allosteric site at F265 (P value = 0.03)
Altered Disordered interface (P-value = 0.04)

0.70 Proteolytic cleavage 0.49

TYR R402Q
Altered Disordered interface (P value = 0.03)
Loss of Allosteric site at R403 (P value = 6.3e−03)
Altered DNA binding (P-value = 9.1e-03)
Altered Transmembrane protein (P-value = 4.6e-03)

0.74 Proteolytic cleavage 0.58
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arthritis, cancer, cardiovascular disease, and inflammation. This represents a remarkably significant prediction 
by ModPred (Table 7).

Protein–protein interactions analysis. The STRING server was used to investigate the interaction of 
HLA-G with various proteins. The interaction analysis revealed that LRCC34 is related to Leucine-rich repeat-
containing 32 (LRRC32), Leucine-rich repeat containing 31 (LRRC31), Leucine-rich repeats and IQ motif con-
taining 4 (LRRIQ4), Actin related protein T3 (ACTRT3), Myoneurin (MYNN), Protein FAM196B (FAM196B), 
Transmembrane protein 174 (TMEM174), Ly6/PLAUR domain-containing protein 6 (LYPD6), Aspartyl amin-
opeptidase (DNPEP) and DAZ-associated protein 1 (DAZAP1) as shown in Fig. 4.

While FARP2 is related to cell division control protein 42 homolog (CDC42), Proto-oncogene tyrosine-
protein kinase Src (SRC), Tyrosine-protein kinase Fyn (FYN), Neuropilin-1 (NRP1), Plexin-A1 (PLXNA1), 
Plexin-A2 (PLXNA2), Plexin-A3 (PLXNA3), Plexin-A4 (PLXNA4), Semaphorin-3A (SEMA3A), and Tyrosine-
protein kinase Fes/Fps (FES) as shown in Fig. 4.

The interaction analysis also revealed that TYR is related to Short transient receptor potential channel 1 
(TRPC1), Tyrosine 3-monooxygenase(TH), Phenylalanine hydroxylase (PAH), Aromatic-L-amino-acid decar-
boxylase (DDC), Thyroid peroxidase (TPO), L-dopachrome tautomerase (DCT), Melanocyte protein PMEL 
(PMEL), Melanoma antigen recognized by T-cells 1 (MLANA), P protein (OCA), and Microphthalmia-associated 
transcription factor (MITF) as shown in Fig. 4.

Molecular docking analysis. Autodock Vina, UCSF Chimera 1.15 tools predicted and evaluated a total of 10 pro-
tein binding sites along with hydrogen bond interaction and their binding affinities from the docking analysis. 
The resulting interactions between the native and mutant LRRC34, FARP2, and TYR were compared with those 
calculated docking results in the same protein binding sites using the exact dimensions of the grid boxes. Thus, a 
binding site was predicted for each receptor-ligand docking. Molecular docking of SRC, DCT, and MYNN with 
native and mutant FARP2, TYR, and LRRC34 modeled structures showed differences in the binding affinities 
(Table 8). The binding affinity of SRC with native FARP2 was − 8.2 kcal/mol, while for mutant was − 7.8 kcal/ 
mol. The binding affinity of DCT with native TYR was − 8.1 kcal/mol, while for mutant was − 8.0 kcal/mol. The 
binding affinity of MYNN with native LRRC34 was − 5.4 kcal/mol, while for mutant L286I was 5.2 kcal/mol. In 

Figure 3.  Schematic structures of the original (left) and mutant (right) amino acid for each mutation. The 
backbone, which is the same for each amino acid, is colored red. The side chain, unique for each amino acid, is 
colored black. Data obtained from HOPE project.
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addition, SRC, DCT, and MYNN were bound to the same binding pockets for the native and mutant FARP2, 
TYR, and LRRC34 proteins, respectively. From the analysis of the binding pose, these three proteins (SRC, DCT, 
and MYNN) showed significant deviations between the native and mutant protein complexes (Fig. 5). Moreover, 
interaction analysis of SRC, DCT, and MYNN with the native and mutant FARP2 TYR and LRRC34 proteins 
showed a reduction in the number of hydrogen bonds with residues in mutant proteins (Table 8). Five residues 
such as Lys68, Tyr65, Leu5, Ser164, and Gln167 have interactions with SRC in native FARP2 but were absent in 
mutant proteins. Three residues, Lys152, Ser134, and Lys152, interact with DCT in native TYR but were absent 
in mutant proteins. Two residues, Asn39 and Ala42, have interactions with MYNN in native LRRC34, but Asn39 
was absent in mutant protein.

Discussion
The exponential increase in the number of nsSNPs detected makes the investigation of the biological significance 
of each nsSNP by wet laboratory experiments impossible. Alternatively, in silico programs may be used to predict 
the effects due to mutations and explain the underlying biological mechanisms. nsSNPs in the coding regions 
can lead to amino acid change and alterations in protein function and account for susceptibility to disease. 
Identification of deleterious nsSNPs from tolerant nsSNPs is important in analyzing individual susceptibility to 
disease and understanding disease pathogenesis.

In this study, we have developed a pipeline (Fig. 1) to identify the pathogenic nsSNPs associated with cancers. 
Although there are various computational tools available to predict the deleterious or damaging effects of nsSNPs 
on protein structure and function, we had used five different tools (SIFT, PolyPhen-2, Condel, PROVEAN, and 
PANTHER) to determine the nsSNPs functional effects, while Consurf was used to estimate the evolutionary 
conservation of the amino/nucleic acid positions in a protein/DNA and protein. I-Mutant 3.0 was used to predict 
the impact of nsSNPs on the functions or structures of the pathogenic proteins. Among them, SIFT algorithm is 
the most commonly used tool for SNP characterization to determine deleterious nsSNPs. This method computes 
a conservation score that provides an insight into the impact of nsSNPs on the functional property of  proteins25. 
PolyPhen-2 is considered one of the most reliable tools to predict the functional impact of nsSNPs based on pro-
tein sequence, phylogenetic information, and structural  information27. Condel on the other hand integrates and 
reflects the combination of scores from different methods (SIFT, PolyPhen2, Mutation Assessor, FATHMM) to 

Figure 4.  Protein–protein interaction network of proteins; (a) LRRC34, (b) FARP2, and (c) TYR using 
STRING server. The red node represents the studied proteins.

Table 8.  Docking results of SRC, DCT and MYNN with native and mutant FARP2, TYR and LRRC34 
proteins respectively.

Protein

FARP2 TYR LRRC34

T260 (Native) N260 (Mutant) R402 (Native) Q402 (Mutant) L286 (Native) I286 (Mutant)

Binding Affinity (kcal/
mol) − 8.2 − 7.8 − 8.1 − 8.0 − 5.4 − 5.2

Interacting residue(s)
(Hbond)

Residue Distance Residue Distance Residue Distance Residue Distance Residue Distance Residue Distance

Lys68
Tyr65
Leu5
Ser164
Gln167

2.496 Å
1.925 Å
2.467 Å
2.125 Å
1.956 Å

Lys152
Ser134
Lys152

2.366 Å
2.312 Å
1.967 Å

Tyr1
Tyr1
Ser2

1.911 Å
2.384 Å
2.087 Å

Asp29 2.009 Å Ala43
Gly83

2.025 Å
2.297 Å Ala42 2.155 Å

Number of hydrogen bond 14 5 8 5 8 3
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classify the nsSNPs. It provides insight into the impact of the mutation on the biological activities of the proteins 
 affected50. PROVEAN algorithm is capable of predicting the functional impacts of the amino acid substitution 
on a protein sequence with commensurable performance and accuracy. It utilizes alignment-based scores to 
measure the change in sequence variation correlated with the biological function of a  protein51. Additionally, 
SIFT, PolyPhen-2, Condel, and PROVEAN, are easy and quick to employ, which allows direct batch queries. 
Other tools include PANTHER, a powerful and unique method with a curated database of protein families, 
trees, subfamilies and functions, and evolutionary relationships. It uses phylogenetic trees, multiple sequence 
alignments, and statistical technique to evaluate the deleterious effects of nsSNPs, making it a viable platform 
for SNP  characterization52,53. Consurf is another widely used tool that can pinpoint critically important sites 
(nsSNPs) within the functional regions. It is a statistically robust approach that estimates the evolutionary rates 
due to amino acids substitutions and maps them onto the homologous sequence and/or  structures47. I Mutant 
3.0 tool measures the change in protein-free energy caused by a specific  mutation54. It helps to detect the changes 
in protein 3D conformation stability. The tools used in this study cover a wide range of prediction techniques 
(Table 1), combining the findings from each tool in the pipeline will help to identify the most deleterious nsSNPs 
more accurately. Specific targeted genotyping assays could be developed to detect these nsSNPs identified to be 
impactful and further investigated in a local cohort of cancer patients. The prediction can also help scientists 
to focus their study on understanding the impact of these nsSNPs by prioritizing the most deleterious nsSNPs.

Figure 5.  Images of the superimposed native and mutant structural models docked against target proteins with 
high probabilities values that affect protein functions. (a) Superimposed image of SRC (orange) docked against 
native (blue) and mutant (green) FARP2 protein and interaction of SRC with (b) native and (c) mutant FARP2 
protein structures. (d) Superimposed image of DCT (blue) docked against native (yellow) and mutant (pink) 
TYR protein and interaction of DCT with (e) native and (f) mutant TYR protein structures. (g) Superimposed 
image of MYNN (purple) docked against native (blue) and mutant (red) LRRC34 protein and interaction of 
MYNN with (h) native and (i) mutant LRRC34 protein structures. Hydrogen bonds are presented in a straight 
blue line.
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The bioinformatics workflow developed was validated using the breast cancer dataset from ClinVar, which 
acts as a standard dataset. The standard dataset has been annotated and we believe it is the most appropriate 
dataset for functional effect prediction. The standard dataset contained a total of 100 nsSNPS that were clinically 
associated with breast cancer (Table S1). The sensitivity, specificity, and accuracy of four models (Model A, B, C, 
and D) in predicting the clinical significance were determined. Model D represents at least four tools that pre-
dicted nsSNPs as deleterious or benign, and it showed the highest percentages of specificity (94%), and accuracy 
(89%,) followed by Model C (specificity 80%, and accuracy 85%), Model B (specificity 64%, and accuracy 78%) 
and Model A (specificity 50%, and accuracy 75%). While Model A has the highest sensitivity (100%) followed by 
Model B (92%), Model C (90%), and Model D (84%). The highest sensitivity scores mean that fewer potentially 
deleterious nsSNPs were missed. Thus, we concluded that Model D using at least four out of five tools had the 
best performance in predicting the most deleterious nsSNPs.

Further analyses using the combination of five functional effect tools with conservation and stability tools 
showed that Model D3 had the highest specificity (96%), but the lowest sensitivity (76%) in identifying deleteri-
ous and benign nsSNPs. Despite not having the highest accuracy, Model D3 was able to classify both pathogenic 
and benign SNVs accurately (86%). The validated workflow is adequate with good sensitivity, specificity, and 
accuracy to classify the deleterious and neutral nsSNPs in ClinVar using a combination of SIFT, PolyPhen-2, 
Condel, PROVEAN, PANTHER, Consurf, and I-Mutant.

The GWAS database was used to identify nsSNPs associated with cancer risks as it is the most extensive SNPs 
 database20. We only focused on nsSNPs as they are capable of altering protein function, structure, conformation, 
and interaction which cause the increased risk of  cancer8–10,56–58. Out of the 80 nsSNPs associated with cancer 
risks from the GWAS dataset, a total of 52 nsSNPs were identified among the Orang Asli and Malays (43 in Orang 
Asli and 43 in Malays). They were subjected for further analysis.

Hence, we conducted the concordance analysis with SIFT, PolyPhen-2, Condel, PROVEAN, PANTHER, Con-
surf, I-Mutant, ModPred, and MutPred tools to predict the most deleterious nsSNPs among the Orang Asli and 
Malays (Table 3). From the functional effect prediction analysis, a total of 8 out of 52 nsSNPs which were associ-
ated with cancers from both populations were identified as the most deleterious nsSNPs by SIFT, PolyPhen-2, 
Condel, PROVEAN, and PANTHER (Table 3). The most deleterious nsSNPs were identified based on the criteria 
that at least four scores out of five algorithmic tools used were significant, which are score < 0.05 in SIFT, > 0.9 in 
PolyPhen-2, <  − 2.5 in PROVEAN, 1.0 in Condel, and > 450 million years in PANTHER. The identified nsSNPs 
were rs3124765 (CACFD1), rs9379084 (RREB1), rs10936600 (ETFA) rs1801591 (LRRC34), rs117744081 (CPVL), 
rs2277283 (INCENP), rs757978 , (FARP2) and rs1126809. (TYR). In terms of the useability of these five tools 
for prediction, different algorithms for evolutionary conservation, protein function or structure, alignment, and 
measurement of similarity between variant sequences and protein sequence homologs were analyzed. Hasan 
et al.,59 had reported that the combination of the best individual tools, FATHMM, iFish, and Mutation Assessor, 
in one classifier called Meta (Combined Scores through J48 "CSTJ48") enhances the predictive power of these 
tools. However, no specific classifier outperforms overall datasets in pathogenic predictability. Additionally, these 
tools have proven performance in identifying deleterious  nsSNPs60,61, and these make them useful for our study. 
Thus, these eight (8) nsSNPs identified were further investigated.

The Consurf server had predicted the eight (8) variations, D1171N, I58M, L286, T171I, Y168H, M506T, 
R402Q, and T260N, were highly conserved (Table 4), and this emphasizes their functional and structural impor-
tance. Evolutionary information is essential to understand the mutations potentially affect human  health26. The 
evolution of amino acids influence their properties such as size, shape, hydrophobicity, and charge of amino acids 
at the molecular  level62. For example, 53 missense mutations that caused cystic fibrosis were found within highly 
conserved positions. These regions were significant for conserving the structural and functional integrity of the 
CFTR  protein63. Besides, functional sites of proteins like DNA interaction sites, protein–protein interaction sites, 
and enzymatic sites are essential for biological  functions64,65. This may suggest that the nsSNPs found in these 
conserved regions have higher deleterious effects than other non-conservative nsSNPs and may significantly 
affected the biological  functions66. The findings further indicated that these eight (8) high-risk nsSNPs were 
indeed deleterious to the protein functions and structures.

I-Mutant predicts the protein stability of mutants based on the free energy change value (ΔΔG) and reliability 
index (RI). I-Mutant predicted 6 out of 8 variants (rs3124765, rs9379084, rs10936600, rs2277283, rs757978, and 
rs1126809) to have decreased stability. Protein stability is important for the protein structural and functional 
 behavior67. Protein stability affects the conformational structure of the protein, such as protein misfolding, aggre-
gation, and degradation, and thus determines its  function67,68. From the results, we believe that the six variants 
might had affected the proteins function by affecting their stability.

For structural analysis, the six native and mutant protein structures (CACFD1, RREB1, LRRC34, INCENP, 
FARP2, and TYR) were successfully generated using I-TASSER as there are no available close homologous tem-
plates. I-TASSER generates full-length models by the iterative structural fragment reassembly method, which 
consistently drives the threading alignment relative to the native state. They were then verified by ERRAT and 
Ramachandran Plot Server, which proved the stability, reliability, and consistency of the tertiary structures of 
the proteins. The three-dimensional structures for the native and mutant proteins predicted by I-TASSER clearly 
revealed the structural changes resulting from amino acids substitutions (Fig. 2). Furthermore, the changes 
predicted on the sequence-based homology modeling between the native and mutant on the LRRC34, FARP2, 
and TYR proteins, support the prediction of the pathogenicity of the deleterious substitutions.

TM-align were utilized to calculate the comparison between the predicted native and mutant protein struc-
tures based on TM-score and RMSD value. In most cases, common protein structure modeling tools may con-
struct realistic full-length models with an RMSD value less than 6.5 Å if alignment has a TM-score of more than 
0.569. Following the criteria of RMSD < 6.5 Å and TM-score > 0.5, three mutants, I58M (CACFD1), D1171N 
(RREB1), and M506T(INCENP) with TM-scores below 0.5, were excluded. TM-scores below 0.5 correspond to 
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randomly chosen unrelated proteins, meaning that those models were generated from random proteins and had 
different folding compared to the native  protein49. Hence, we finally selected only three mutants, L286I (LRRC34), 
T260N (FARP2), and R402Q (TYR), those with a score higher than 0.5 and which generally assumed the same 
fold in SCOP/CATH (Table 5). Several studies have shown the importance of using various bioinformatics tools 
to determine the phenotypic changes and protein function associated with the structure–function relationship 
of various genes and  proteins70,71. These studies may provide novel therapeutic markers for a variety of diseases.

The three shortlisted nsSNPs were submitted to MutPred2, HOPE, and ModPred tools to predict the modi-
fication of structural and functional protein structures. MutPred2 predicts the modification of structural and 
functional protein structures, including the altered ordered or disordered interface, transmembrane protein, 
metal binding, DNA binding, loss of allosteric site, and gain of allosteric site. HOPE was used to further explore 
the structural effects of these three amino acid substitutions. It was shown that the substitution of L286, T260, 
and R402 were highly conserved, and they are likely to damage the structures. Based on Fig. 3, the substitution 
of L286, T260, and R402 caused changes to the LRRC34, FARP2, and TYR protein structures. Modification of 
protein charge, mass, and hydrophobicity are known to affect the networks of protein–protein  interactions72,73. 
Thus, those modifications can alter the ability of proteins to interact with other proteins. Based on these predic-
tions, we believed that several nsSNPs might cause the functional and structural alterations of these proteins and 
be responsible for the increased risks of cancer. ModPred tools predict possible post-translational modification 
(PTM) sites to investigate the effects of PTMs further. ModPred tool had predicted proteolytic cleavage sites of the 
substituted amino acids L286I, T260N, and R402Q in LRRC34, FARP, and TYR proteins, respectively (Table 7). 
Proteolytic cleavage is a PTM that induces activation, inactivation, fully changed protein structure, excision of 
new N or C termini with growth factor activity from the parent molecule of an extracellular matrix and regulates 
a vast range of biological processes. These involve DNA replication, cell proliferation, cell cycle progression, and 
cells death, as well as inflammatory processes such as arthritis, cancer, cardiovascular disease, and inflammation. 
This represents a remarkably significant prediction by ModPred (Table 7). The function or structural changes in 
TYR protein (rs1126809) has been associated with basal cell carcinoma or squamous cell carcinoma. The TYR 
protein is vital for the production of an enzyme called tyrosinase, which catalyzes the conversion of tyrosine to 
dopachrome in melanin  biosynthesis74. We believed that the changes at the PTM site caused by rs1126809 variant 
of tyrosinase might lead to dysregulation of melanin synthesis within the melanosomes. This resulted in the vari-
ation in skin pigmentation, which may lead to basal cell carcinoma or squamous cell carcinoma. As for LRRC34 
and FARP2 proteins, the scores given by ModPred for this PTM was very low for proteolytic cleavage (Table 7). 
The LRRC34 is a nucleolar protein that plays a role in the ribosome biogenesis of pluripotent stem cells. Muta-
tions in some of the related proteins or modifications at ribosome biogenesis may result in severe implications 
for the organism, depending on the degree of the modification and the involvement of the  tissue75. The changes 
at the PTM site might alter the structure of LRRC34 protein, which may lead to multiple myeloma. For example, 
impaired or modified ribosome synthesis due to the mutation of the ribosomal proteins was reported in many 
cancers such as chronic lymphocytic leukemia, colorectal cancers, and  glioma76. FARP2 has been reported as a 
potential regulator of chronic lymphocytic leukemia pathogenesis that influences protein activity encoded by 
MYC gene. MYC gene is known as a proto-oncogene and produces a nuclear phosphoprotein that plays a role in 
the cell cycle progression, apoptosis, and cell transformation. The mutation may disrupt the MYC protein activity. 
Although the effect of modification at proteolytic cleavage sites on these proteins has still not been published, 
numerous studies have shown that this alteration can significantly change the protein function by modifying its 
position, stability, or inter-protein interactions  others77. Proteolytic cleavage of modified residues in the protein 
may be necessary for some of the essential functions of the protein. Besides, those nsSNPs can disrupt proteins 
that could probably increase the damage caused by PTM impairment.

Protein–protein interaction network analysis showed the interactions of LRRC34, FARP2, and TYR with 
ten different proteins. This analysis is important in predicting the functionality of interacting genes or proteins 
and understanding the functional relationships and evolutionary conservation of the interactions among the 
genes. Besides, our literature search demonstrated that LRRC34, FARP2, and TYR interact with other proteins. 
LRRC34 interacts with two major nucleolar proteins, Nucleophosmin (NPM1) and Nucleolin (NCL), in ribo-
some biogenesis of pluripotent stem  cells78. The mutation in LRRC34 might affects ribosome biogenesis and 
lead to tumorigenesis. FARP2 interacts with PLXN4, SEMA3A, and NRP1 in Sema3A-Nrp1/PlxnA4 signaling 
pathway that controls dendritic  morphogenesis79. The mutation in FARP2 might disrupt the formation of axonal 
and dendritic morphologies for the neurodevelopment that ultimately lead to risks of cancers. TYR interacts 
with TH, MITF, and PAH in the melanogenesis  pathway80. Due to the nonsynonymous mutation in TYR, the 
melanin synthesis might be disrupted, leading to tumorigenesis. Therefore, any changes in these protein func-
tion/structure would have an impact on many disease pathways.

The structural analysis was performed by using molecular docking. The study aims to identify the correct 
poses of ligands in the binding pocket of a protein and to predict the affinity between the ligand and the protein, 
which may enhance or inhibit its biological  function81.

The molecular docking analysis of SRC, DCT, and MYNN with native and mutant FARP2, TYR, and LRRC34 
modeled structures showed a difference in binding affinity, reduction in the number of hydrogen bonds with 
residues in mutant proteins (Table 8), and a significant deviation between native and mutant protein complexes 
(Fig. 5), respectively. SRC proto-oncogene plays an essential role in development, growth, progression, and 
metastasis of some human cancers, including those of the colon, breast, pancreas, and  brain82–85. FARP2 were 
identified as guanine nucleotide exchange factors (GEFs) for RhoGTPases that play regulatory roles in neuronal 
development, and several studies have revealed the genetic alterations in Ras homologous RhoGEFs in several 
human  cancers86–88. Thus, the deviation observed in the bound SRC molecule with mutant FARP2 protein might 
disrupt the protein interaction, leading to cancers. A previous study had reported that mutations of melano-
genic enzyme tyrosinase (TYR) result in hypopigmentation of the hair, skin and  eyes74. Besides, DCT is one of 
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the related enzymes that catalyzes different post-TYR reactions in melanin biosynthesis. TYR and DCT also 
have been proposed to interact with and stabilize each other in multi-enzyme  complexes80. Thus, the deviation 
observed in the bound DCT molecule can reduce the catalytic efficiency of TYR. LRRC34 is a member of the 
leucine-rich repeat-containing protein family that has been suggested to be implicated in the maintenance and 
regulation of pluripotency. MYNN protein is a member of the BTB/POZ and zinc finger containing family 
involved in transcriptional regulation. It has also been shown to interact with a few other proteins, including 
LRRC34, which are part of the transcription factors that participate in DNA  repair89. A study showed that dis-
ruption of LRRC34 protein function could result in reduced expression of some pluripotency genes. Its altered 
expression impacts the pluripotency-regulating genes and interacts with other proteins known to be involved in 
ribosome  biogenesis78. This molecular docking analysis further evaluates our hypothesis as to whether T260N, 
R402Q, and L238I mutants have deleterious effects on FARP2, TYR, and LRRC34 proteins, respectively. The 
most prominent change was noticed in T260N, R402Q, and L238I, where a significant loss of H-bond interac-
tions within the binding pocket residues can be observed compared to that in the native protein. These H-bonds 
were disrupted when the amino acid in mutants was replaced with other amino acids, which altered the binding 
affinity. The change in the number of hydrogen bonds indicates the deleterious effect of amino-acid substitution. 
Therefore, an increase or decrease of hydrogen bonds of the native form could destabilize the protein and affect 
protein  functions90–93. As a result, genetic mutation which alters the protein structure, therefore influences how 
the protein interacts with its ligands, potentially leading to a disease condition. This method has previously been 
used to discover functionally significant variants that may play a role in disease  mechanisms70,94,95. Molecular 
docking analysis conducted in this study revealed that T260N, R402Q, and L238I mutants could significantly 
affect the functional activity of FARP2, TYR, and LRRC34 proteins, respectively.

Conclusion
With the advancement of genomics, predicting and preventing diseases that are preventable will definitely bring 
a new facet to medical practice. We had illustrated that with the availability of a local genome database, we could 
predict disease risks in our population using a validated bioinformatics pipeline and the established GWAS and 
ClinVar database. The pipeline will help strategize experimental research to prioritize studies on the SNPs with 
predicted functional impact as thousands and millions of SNPs with unknown functions are detected using 
whole-genome sequencing technologies.

In this study, a bioinformatics pipeline was developed and validated to predict the effects of nsSNPs, 
rs1126809, rs757978, and rs10936600 on the functional and structural changes on TYR, FARP2, and LRRC34 
proteins, respectively. The analysis also provides significant insight into the deleterious effects of these nsSNPs 
on the protein structures.

These three (3) nsSNPs were predicted to confer high risks of multiple myeloma, chronic lymphocytic leu-
kemia, and basal cell carcinoma or squamous cell carcinoma in the Orang Asli and Malays population. The 
prediction pipeline developed in this study helps to reduce the number of extensive investigations and wet 
lab experiments which are required to explain the impacts of these nsSNPs on the structures and functions of 
these proteins. We intend to analyze further the risks conferred by these SNPs in the cancer patients in the local 
population.

We believed that a similar approach could be used to develop and validate bioinformatics pipelines in annotat-
ing and predicting the functional effects of SNPs related to other diseases. This study also allows us to establish 
a database of predicted phenotypes based on the new SNPs identified in our population.
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