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Abstract
Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex inter-

play of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellu-

lar fluxes using stable isotopic tracers is essential if we are to understand metabolic function

and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation

and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude

the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology

that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining sur-

rogate modeling and machine learning, we trained a predictor to specialize in estimating

flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually,

which makes it fast, user-friendly, applicable to experimental design and robust in terms of

experimental noise and exchange flux magnitude. Collectively, we predict that SUMO-

FLUX's properties realistically pave the way to high-throughput flux analyses.

Author Summary

Living cells adapt to ever-changing environments by regulating metabolic fluxes, the rates
of nutrient flow through the metabolic network, to produce metabolites that are currently
in demand. 13C-labeling techniques coupled with metabolic flux analyses are widely used
to estimate metabolic fluxes and provide insights into cellular physiology and adaptation
relevant in biological, biomedical and biotechnological applications. However, the existing
methods are either computationally costly, or applicable to a limited amount of biological
systems. Here, we combined surrogatemodeling with machine learning to present
SUMOFLUX, a generalized method for 13C flux ratio analysis. We validated our method
by resolving canonical flux ratios in eight Escherichia colimutants with known metabolic
phenotypes and estimated a novel flux ratio for this dataset. We demonstrated scalability
of SUMOFLUX and its application for experimental design by applying it to a cohort of
121 Bacillus subtilismutants. SUMOFLUX, alone or in combination with global flux anal-
ysis methods, can be applied to resolve flux ratios in virtually any biological setup, and
paves the way to high-throughput flux profiling.
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Introduction
Metabolic fluxes describe the in vivo flow of organic matter through the biochemical reaction
network, as defined by enzymes and transporters. An improved knowledge of metabolic fluxes
is crucial if we are to understand how cells utilize nutrients, and how they regulate metabolism
in the face of dynamic environmental conditions, or in stressed pathologic states [1–4]. Meta-
bolic fluxes, as an emergent property of cellular systems, are prohibitively hard to predict using
proteomics or metabolomics data, and are not, per-se, measurable. Hence, the task of assessing
metabolic fluxes indirectly represents something of an analytic and mathematic tour-de-force.

The most informative approach to estimate metabolic fluxes involves stable isotope labeling.
Cells grown in the presence of 13C-enriched substrates incorporate heavy isotopes throughout
their metabolic networks according to carbon fluxes and produce characteristic 13C patterns in
metabolites and products. Some of these can be measured by mass spectrometry or nuclear
magnetic resonance and can ultimately be used to deduce fluxes using two basic approaches.
The first is global isotopomer balancing, which seeks to estimate all metabolic fluxes by itera-
tive fitting [5–10]. The power of this approach is that it integrates all available data simulta-
neously in order to estimate metabolic fluxes across the entire system. The downside is that
this approach is ill suited for high-throughput analyses as it necessitates quantification of all
uptake and production rates, and analyzes each sample individually. In addition, the fitting
procedure is mathematically cumbersome, and for complex or poorly calculable problems, can
require extensive computation time. Finally, troubleshooting heavily relies on expert knowl-
edge [8].

The alternative approach is to use flux ratio analysis, which focuses on the resolution of
local fluxes, centered on metabolic nodes of particular interest [11–16]. For this purpose, flux
ratio analysis adopts a targeted strategy in which relative (fractional) information on contribu-
tions from alternative pathways are calculated from a small subset of 13C-data using predefined
analytic formulas. The advantage of this approach is that it is mathematically simple, rapid,
well suited for large scale analyses [16], and easily used by the non-expert user. However, this
process suffers from the time-consuming procedure of deriving analytic formulas for each flux
ratio of interest. These formulas, manually derived for each metabolic network, tracer, and
environment, generally incorporate a mix of human intuition together with tacit assumptions
regarding flux. Over the past 20 years, only a dozen have been derived to describe the central
metabolism of microbes growing on single carbon sources. In practice, most experimental con-
ditions cannot be addressed due to the lack of validated flux ratio predictors. In response to
these limitations, automated tools have been developed to estimate flux ratios [17,18],
although, thus far, these have been limited to linear cases and consequently have failed to find
any broader application.

Here we present SUMOFLUX, a conceptually novel method to analyze, in a targeted fash-
ion, flux ratios based on 13C-data. Our workflow circumvents concerns over the relevance and
limitations of flux analyses by exploiting machine learning. A machine learning predictor is
trained using in silico 13C-data, generated by surrogate modeling. The combination of surro-
gate modeling and machine learning permits the rapid estimation of flux ratios for virtually
any metabolic network, label configuration, or available measurement. We now illustrate the
proposed workflow for both canonical and novel flux ratios for central carbon metabolism.
The speed and generality provided by machine learning makes SUMOFLUX particularly useful
for optimizing experimental design, selecting metabolites to be measured, and merging data
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from several experiments. Moreover, we believe that the SUMOFLUX workflow provides a real
prospect of high-throughput flux analyses.

Results

Surrogate modeling and the workflow of 13C-flux ratio analysis
In 13C-metabolic flux ratio analysis, the goal is to estimate a flux ratio of interest. Typically, this
is a number that indicates the relative fraction of a specific metabolite flowing through a chosen
reaction or pathway. Flux ratios are estimated based on a stoichiometric model, knowledge of
the 13C-configuration of all of the relevant substrates, and the labeling patterns of metabolites
as measured by mass spectrometry (or nuclear magnetic resonance). We formulated the deri-
vation of flux ratio estimates from 13C data as a nonlinear regression task to be solved using
machine learning. By definition, the flux ratio of interest is the dependent variable that we aim
to predict; measured 13C isotope labeling patterns of intracellular metabolites are the indepen-
dent variables, or the input features for the algorithm. A random forest predictor [19] is then
trained to build a functional relationship between the 13C data and flux ratios using a training
dataset. To build a generalized predictor, the training dataset should comprise hundreds, if not
thousands of representative examples for which a flux ratio and 13C data are available. Unfortu-
nately, such a dataset is not accessible experimentally. First, because flux estimates are not ame-
nable to direct measurement. Second, in the majority of cases it is impossible to select, or to
construct, a cohort of cells with a phenotypic diversity that adequately represents the wide vari-
ety of fluxes and flux ratios that might exist. To overcome this fundamental problem, we have
used surrogatemodeling (hence the term SUMOFLUX). We built, in silico, a synthetic cohort
of representative data points. Each data point is defined by a complete set of fluxes that fulfill
the stoichiometric constraints of the metabolic network. This allows us to calculate a ratio (or
any other derivative value) for the fluxes of interest, and to simulate the 13C-labeling patterns
of each metabolite, which is made possible because each flux distribution leads to a unique
intracellular labeling pattern [20]. It is therefore possible to construct an in silico dataset com-
prising thousands of data points, with flux ratios spanning the feasible range, and correspond-
ing metabolite 13C-labeling patterns. The synthetic in silico dataset is used to train, cross-
validate, and then test the flux ratio predictor.

The full SUMOFLUX workflow for flux ratio estimation consists of five steps (Fig 1). First, a
reference dataset of several thousand flux-maps is sampled from that space of flux-maps that
fulfills certain stoichiometric constraints (mass balances) of the metabolic network. Extracellu-
lar flux constrains can be further refined by the availability of substrates and a working knowl-
edge of the major secreted products. Second, the 13C-labeling patterns of the metabolites
included in the network are simulated independently for each reference data point. Label prop-
agation is simulated using the existing algorithms [9], given the 13C-label of the substrate(s),
and the map of the atom transition within the network. At this point, the simulated 13C data,
does not, as yet, reflect actual measurements. Third, to capture measurement data, we select
only those 13C features that are analytically accessible, and then superimpose noise values cor-
responding to those measured. Fourth, flux ratios of interest are calculated for all of the data
points within the reference dataset, as the dependent variable in regression analyses. Fifth, we
divide the reference dataset into independent training and test subsets, using the former to
train a random forest with which to predict the calculated flux ratios from simulated 13C data.
We then assess the predictor’s performance on the test dataset by calculating the mean absolute
error of the predictions made. If the performance is insufficient (e.g. mean absolute error
MAE> 0.05), we iteratively optimize our experimental strategy by changing the substrate
label, or available measurements, then repeat the training. If the performance is judged to be
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satisfactory, we finally use the predictor to estimate flux ratios using real experimental data. To
provide prediction intervals, we use quantile regression forests, which give a non-parametric
and accurate estimates of conditional quantiles based on the full conditional distribution of the
dependent variable [21].

The most time consuming aspect of the workflow is the simulation of 13C data in the refer-
ence dataset, which scales according to the number of samples and carbon atoms in the metab-
olites. For the model of central carbon metabolism, with 39 reactions and 21 measured
metabolites and fragments (S1 Fig, S1 and S2 Tables), 0.2 seconds are needed to simulate the
labeling patterns for a single data point. Using a parallelization technique, this process can be
accelerated to simulate the several thousand data points necessary for training and testing
within a few minutes. Without parallelization, the simulation procedure for 20,000 data points
takes ~1.5 hours, whereas the flux sampling and random forest training steps require less than
a minute.

Overall, the SUMOFLUX workflow requires information on the stoichiometry of the meta-
bolic network, and the carbon atom arrangement for all of the metabolites within the network.
The choice of 13C-tracer depends on the flux ratio of interest [8,22], but in practice is primarily
constrained by commercial availability and costs. Hence, it is quite common to test flux calcul-
ability using multiple configurations of tracers [23–25], which can be easily accomplished
using the SUMOFLUX workflow due to its rapid computational time. In the following sections,
we demonstrate the performance, generality, and scalability of SUMOFLUX, as well as its ver-
satility in terms of feature selection and experimental design.

Analyses of flux ratios for central carbon metabolism
We chose to demonstrate SUMOFLUX by deriving estimates of the flux ratios for central car-
bon metabolism using the model organism, Escherichia coli. Its metabolic network includes the
highly conserved pathways of glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose
phosphate pathway (PPP). Furthermore, it includes alternative pathways such as the Entner-
Doudoroff pathway and the glyoxylate shunt that conveys additional metabolic elements that
might complicate flux estimates. As a reference, we considered the study of glucose metabolism
in E. coli as described by flux ratio analyses using manually derived analytic equations [15]. We

Fig 1. SUMOFLUXworkflow for targeted flux ratio analysis. Input data are depicted in the dashed-line rectangles.

doi:10.1371/journal.pcbi.1005109.g001
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used our method to estimate five key flux ratios based on the labeling patterns measured by gas
chromatography mass spectrometry (GC/MS) of proteinogenic amino acids upon silylation.
We then sampled a reference dataset of 60,000 flux distributions using the E. coli central carbon
metabolism network (S1 Fig, S1 Table), and simulated the labeling patterns of 21 intracellular
metabolites and their fragments (S2 Table), assuming growth on either 100% [1-13C] glucose,
or a mix of 20% [U-13C] glucose and 80% naturally labeled glucose.

Several parameters had to be defined prior to predictor training. The performance of the
random forest depends on the number of decision trees in the forest (ntree), and the number of
input features used at each tree node (mtry). To choose these parameters we used five-fold
cross-validation on the training dataset. We tested 16 combinations of ntree andmtry values
for the five E. coli flux ratios. The combination of 100 prediction trees (ntree) with 20mtry fea-
tures delivered a good balance between predictor accuracy and computation time (S2a Fig).
These two parameters were then applied throughout the study. The number of simulated
points used for training also influences predictor accuracy and computation time. Our tests
demonstrated that ~10,000 simulated points were generally adequate in terms of generating a
sufficiently accurate estimate of the key flux ratios in the E. coli dataset; thereafter, any further
increase in the number of data points provided no tangible improvement in accuracy (S2b Fig).
We took these results into account when extracting the training sets for the predictors (see
Materials and Methods for details).

We trained predictors for the five E. coli flux ratios on the simulated training dataset and
then assessed their performance on an independent simulated test dataset. In all cases, the
mean absolute error was< 0.1 (Fig 2, second column). For comparison, we also applied the
analytic formulas manually derived for the E. coli study [15] (S3 Table) to the same simulated
test dataset. For all tested flux ratios, SUMOFLUX outperformed the analytic formulas in
terms of mean absolute error on the test dataset (Fig 2, fourth column). This possibly reflects
the fact that the flux estimates for the test dataset were obtained through sampling of the entire
solution space, and do not comply with some of the implicit simplifications and assumptions
for the network, fluxes, and reaction reversibility, that are generally used to derive the analytic
formulas [15]. For example, in calculating the fraction of oxaloacetate from phosphoenolpyr-
uvate, the flux through the glyoxylate shunt was assumed to be zero, whereas in the test set it
possessed a wide range of values (Fig 2e). Furthermore, the analytic formula for estimating the
malic enzyme flux ratio provides only a lower bound value (Fig 2d). We also compared flux
estimates generated by the two approaches using the real experimental 13C data from this
study (Fig 2, third column, and S4 Table); both produced concordant estimates (Pearson corre-
lation coefficient, PCC> 0.89 for all ratios).

To further demonstrate the scalability and generality of SUMOFLUX, we applied the same
approach and parameters to estimate four flux ratios using the GC-MS data for amino acids
collected for 121 Bacillus subtilis transcription factor mutants grown on a mix of 80% [1-13C]
glucose and 20% [U-13C] glucose [16]. Again, the random forest predictor outperformed the
analytic formulas for the in silico test dataset (S3 Fig). For three flux ratios, the two approaches
provided consistent estimates for the experimental data (PCC> 0.65). However, the malic
enzyme ratio could not be resolved with sufficient precision using either method. Presumably,
the mix of tracers chosen was poorly suited to this task.

In order to highlight the scope of SUMOFLUX applicability in context of global 13C flux
analysis methods, we compared it with the classical 13C-metabolic flux analysis by global isoto-
pomer balancing (13C-MFA) approach, which seeks for a global flux solution that provides the
best fit to the experimental data—measured metabolite labeling patterns and physiological
parameters. We applied 13C-MFA to the data for the same eight E. coli strains and added glu-
cose uptake rates [15] as an additional input. With INCA [9], we calculated the best flux fit and
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Fig 2. Comparison of SUMOFLUX and analytic formula estimates for flux ratios in E. coli central carbonmetabolism. From left to right: a
schematic representation of the flux ratio; density plot representing SUMOFLUX estimates versus the true flux ratios for in silico data; comparison of
the SUMOFLUX and analytic formula estimates for the experimental data; density plot representing analytic formula estimates versus the true flux
ratios for in silico data. Vertical error bars in the third panel represent [10–90%] SUMOFLUX prediction quantiles, horizontal error bars represent
standard deviation provided with the analytic formula estimate. (a) Glycolysis versus PPP. (b) Pyruvate fraction from the E-D pathway. (c) PEP
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flux confidence intervals using parameter continuation procedure (S5 Table). SUMOFLUX
and 13C-MFA differ in the demand of input information and produce different outcomes (net
fluxes vs. flux ratios). To compare, we calculated flux ratios from the net fluxes estimated by
13C-MFA and directly compared to SUMOFLUX results. Confidence intervals on flux ratios
for 13C-MFA were obtained by repeating the optimization procedure 1000 times for each
strain. Because it employs less input data, SUMOFLUX is expected to be worse than 13C-MFA.
In general, however, the flux ratio estimates obtained with the two methods were in good agree-
ment (PCC>0.83 for all ratios calculated for the best fit to either [1-13C] data, [U-13C] data, or
combined dataset, S4 Fig). Surprisingly, in several cases the confidence intervals of 13C-MFA
flux ratio estimates were much larger than the prediction quantiles of SUMOFLUX and the
accuracy of flux ratio estimates depended on the experimental dataset used for the fitting, per-
haps pointing to the presence of inconsistent or overly noisy data that decrease the precision of
13C-MFA estimates. This example illustrates the complementarity of the two approaches.
13C-MFA provides global flux solutions, but in some cases the targeted approach performs bet-
ter in resolving local fluxes.

Collectively, the E. coli and B. subtilis results demonstrate that SUMOFLUX is broadly
applicable to real experimental data with an accuracy that is comparable, if not better, than
that of manually derived formulas. Even though there is no guarantee that a specific flux ratio
can be accurately estimated for a given metabolic network, tracer, or experimental data,
SUMOFLUX does allow for rapid verification and ad-hoc experimental design. Beyond the
speed and ease with which predictors can be generated for calculating metabolic flux ratios
from 13C data, SUMOFLUX offers the additional benefits of robust prediction, the option to
vary and optimize experimental design, and the estimation of novel ratios that we explore in
the next sections.

SUMOFLUX is robust in terms of experimental noise and reversible
reactions
Excessive measurement noise and underestimates of exchange flux of bidirectional reactions
are two frequent causes of inaccurate flux estimates. We set out to assess their influence on
SUMOFLUX by performing an in silico experiment using E. coli, varying the values of the
superimposed measurement noise by up to 0.10, i.e. 10-fold higher than that routinely obtained
with careful peak integration. We also used exchange flux values of up to 100-fold that of the
net flux value, i.e. a model approximation of full equilibration of the reactants. To exclude
potential prediction accuracy differences arising from different training and test datasets, we
used one set of flux vectors, divided into training and test subsets. Addition of four different
noise levels and variation of four exchange flux magnitude values resulted in 16 datasets, which
differ only in these two parameters. We again trained the predictors for each of the datasets
using the training subset and calculated the mean absolute error (MAE) on an independent test
subset. As a rule of thumb, we consider a ratio to be accurately predictable if the MAE< 0.05.
This criterion was met by the Entner-Doudoroff, glycolysis/PPP, and anaplerosis ratio predic-
tors, within the normal ranges for noise (~ 0.01) and exchange flux (~10 times the net flux
value) (Fig 3a). The other two tested predictors were less precise, and are better suited to the

fraction from gluconeogenesis. (d) Pyruvate fraction from the malic enzyme flux. (e) Oxaloacetate fraction from anaplerosis from PEP. Ratios (a)-(c)
were estimated from [1-13C] glucose experiment, ratios (d) and (e) were estimated from 20% [U-13C] and 80% naturally labeled glucose experiment.
6PG– 6-phosho-D-gluconate; αKG– α-ketoglutarate; AcCoA—acetyl-CoA; E-D—Entner-Doudoroff pathway; F6P –fructose-6-phosphate; Fum—

fumarate; G6P –glucose-6-phosphate; Gox—glyoxylate; ICT—isocitrate; KDPG—2-Keto-3-deoxy-6-phosphogluconate; MAE—mean absolute
error; Mal—malate; PCC—Pearson correlation coefficient; PEP—phosphoenolpyruvate; PGA—phosphoglycerate; PPP—pentose phosphate
pathway.

doi:10.1371/journal.pcbi.1005109.g002
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analysis of substantial flux changes. Alternatively, different tracers and measurement tech-
niques could be tested, as outlined below, to achieve more accurate analyses. We also performed
robustness analyses of the analytic equations, and found that only the formula for the Entner-
Doudoroff pathway was sufficiently robust in terms of noise and flux exchange that were within
the normal ranges (S5 Fig). The remaining four formulas were either extremely sensitive to
noise (gluconeogenesis ratio), or were poorly suited to the entire range of flux maps.

Another important aspect that can be assessed with this type of analysis is to what extent
erroneous assumptions in the training dataset affect the accuracy of the flux estimates in the

Fig 3. SUMOFLUX is robust in terms of experimental noise and exchange flux magnitude. (a) Mean absolute errors on the testing dataset of five
flux ratio predictors applied to in silico data with different amount of measurement noise and exchange flux magnitude. The dashed rectangle indicates
the normal range of noise (0.01) and exchange flux magnitude (10 times the net flux). (b) Mean absolute errors on the testing datasets with different
noise levels of five flux ratio predictors trained on datasets with different amount of measurement noise. The exchange flux magnitude was set to 1 for all
datasets. (c) Mean absolute errors on the testing dataset with different exchange flux magnitudes of five flux ratio predictors trained on datasets with
different values of exchange flux magnitude. The noise level was set to 0.01 for all datasets. E-D—Entner-Doudoroff pathway, MAE—mean absolute
error; PPP—pentose phosphate pathway.

doi:10.1371/journal.pcbi.1005109.g003
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test dataset. We used the simulated data described above to test the effects of noise and
exchange flux magnitude values separately. First, we fixed the exchange flux magnitude to 1,
and calculated the accuracy of the flux ratio predictors trained and tested on 16 combinations
of train and test subsets with the four independently added noise levels. Notably, we observed
that for all ratios underestimating the level of noise in the data was detrimental for the flux
ratio prediction accuracies. On the contrary, overestimating the noise in the training data
resulted in better flux estimates in the less noisy test datasets compared to the test data with the
same levels of noise as in training (Fig 3b). In practice, it is always desirable to only superim-
pose a realistic level of noise to in silico data, as the addition of noise inevitably decreases the
prediction accuracy. However, it is advisable to adopt a conservative over-estimate noise to
avoid overfitting.

Adequate magnitude of exchange fluxes appears to be even more important for predictor
accuracy. We observed that both under- and over-estimated exchange flux magnitude values
resulted in lower accuracy compared to the accuracy on the test dataset corresponding to the
training (Fig 3c, diagonal values). Remarkably, in these simulated datasets we set one exchange
value as upper bound for all reversible fluxes in the model, which presumably has a greater
effect on prediction accuracy than an exchange flux magnitude of a single reaction. In biologi-
cal systems, we expect large differences in the reversible flux magnitudes of different enzymes,
and it is beneficial to include this information in the model, when available.

One way to control whether the simulated data used for training and testing adequately rep-
resents the experimental data, is to compare the distributions of inter-quantile ranges of the
flux ratio estimates for the experimental data to the ones of the test data. In our examples, the
distributions of the inter-quantile ranges of the flux estimates for under-estimated noise or
inappropriately estimated exchange flux estimates were significantly different (p<0.01,
Wilcoxon-Mann-Whitney test, S6 Fig). In practice, it is advisable to compare the inter-quantile
range distributions of the flux ratio predictions for in silico and experimental data, although
statistical tests should be used with caution due to very different sample sizes.

In summary, SUMOFLUX provides flux ratio predictors that are generally robust to noise
and exchange fluxes, both of which are major confounding factors in labeling experiments.
This robustness is dependent on flux ratio, labeling strategy, and the available measurements
used for prediction, and can easily be assessed, if required, in each particular case.

Estimation of a novel flux ratio for the glyoxylate shunt
The glyoxylate shunt plays an essential role in bacterial adaptation to alternative carbon
sources, such as acetate and fatty acids, as it replenishes the TCA cycle with C2 carbon frag-
ments. Hence, this pathway has an important anaplerotic function besides phosphoenolpyr-
uvate carboxylase. No analytic formulas were developed to resolve the relative contribution of
the glyoxylate shunt due to the complexity of carbon rearrangement at this branch point, the
additional complication introduced by multiple cycling in the TCA cycle, and the similarity of
the labeling patterns of the relevant metabolites. Here, we opted to tentatively resolve this path-
way using SUMOFLUX, and the 13C-data available from GC-MS analyses of protein-bound
amino acids in E. coli [15]. Using the same simulated dataset described above, we trained two
more predictors to estimate flux contributions to the formation of oxaloacetate, one derived
from the glyoxylate shunt, and the other, from the TCA cycle (Fig 4a). The accuracy of the pre-
dictors achieved for the in silico test dataset was acceptable (MAE< 0.07) (Fig 4b and 4c). Col-
lectively, these two novel ratio predictors, and the one previously trained to estimate the
anaplerotic reaction from phosphoenolpyruvate to oxaloacetate (Fig 2e), allowed us to compre-
hensively assess the metabolic source of oxaloacetate. The prediction intervals of the estimates
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for the experimental data were in the range of 10% due to the difficulty of precisely resolving
the glyoxylate shunt based on the available data. Nevertheless, the estimated values reflect
those expected from the literature. Specifically, the differences between strains were consistent
with their genotype (Fig 4d, S7 Fig, S6 Table). The estimated glyoxylate shunt contribution for
wild type bacteria was 16 ± 10%, with the highest glyoxylate shunt ratio (32 ± 15%) estimated
for the Δpgi mutant, which is consistent with other studies [26,27]. In contrast, both the double
Δmdh Δsdh mutant and the ΔfumA mutant, in which the pathway from succinate to malate is
disrupted, had an almost zero glyoxylate shunt and TCA cycle activity, with the major contri-
bution to the oxaloacetate pool being the flux derived from phosphoenolpyruvate. The Δzwf
mutant, with a compromised oxidative pentose phosphate pathway, exhibited the highest frac-
tion for the TCA cycle flux (49 ± 18%), which reflects a compensatory response to ensure
NADPH equilibrium via isocitrate dehydrogenase [26]. The glyoxylate shunt example shows
how novel quantitative flux predictors can be rapidly generated using our approach.

Experimental design
In the context of metabolic analyses, a priori experimental design aims at identifying the best
settings from simulated data with which to accurately estimate the fluxes of interest. In global
isotopomer balancing and fitting, numerical simulations have been frequently used to optimize
tracer selection for one specific flux state, e.g. that of an unperturbed wild-type strain [23–25].
In targeted flux ratio analysis with manually derived analytic equations, simulation-assisted
experimental design is not possible, as each equation is formulated for a specific experimental
condition chosen by the researcher, and no simulation procedure is employed to assess its
accuracy. In contrast, the speed and simplicity of SUMOFLUX facilitates the rapid testing of
altered metabolic models, tracer choices, or data sets for the derivation of a flux ratio of interest.
This enables us to systematically, yet rapidly, identify the optimal experimental strategy from
those available.

We demonstrated this feature of SUMOFLUX by testing different settings for the B. subtilis
labeling experiment. Using the same reference flux dataset as above, we simulated the 13C
metabolite labeling patterns for eight different glucose-labeling strategies. For each label, we sim-
ulated the measurements that could be obtained using four different measurement techniques:

Fig 4. SUMOFLUX resolves a novel flux ratio in central carbonmetabolism of E. coli. (a) A schematic representation of the glyoxylate shunt, TCA
cycle and anaplerosis from PEP flux fractions. (b) Density plot representing SUMOFLUX estimates for the flux fraction from glyoxylate shunt versus the
true flux ratios for in silico data. (c) Density plot representing SUMOFLUX estimates for the flux fraction from the TCA cycle versus the true flux ratios for in
silico data. Both ratios were resolved for experiment with 20% [U-13C] and 80% naturally labeled glucose. (d) Predictions for the three flux fractions for the
experimental data. αKG– α-ketoglutarate; AcCoA—acetyl-CoA; Fum—fumarate; Gox—glyoxylate; ICT—isocitrate; MAE—mean absolute error; Mal—
malate; PEP—phosphoenolpyruvate; TCA—tricarboxylic acid cycle.

doi:10.1371/journal.pcbi.1005109.g004
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GC-MS analyses of amino acids, liquid chromatography LC–MS of intact intracellular metabo-
lites, LC-MS/MS analyses of intact metabolites and their fragments [28] (S7 Table), and all indi-
vidual MS/MS traces used in multiple reaction monitoring of metabolites (S8 Table). For each of
the 32 experimental setups, we rapidly trained random forest predictors for the malic enzyme,
gluconeogenesis, and glycolysis/PPP flux ratios, and assessed their performance in silico on the
test dataset. To compensate for the different number of features, and avoid over-fitting, we intro-
duced a feature selection procedure using cross-validation on the training dataset prior to train-
ing (see Materials and Methods for details). As expected, flux calculability depends on the flux
ratio of interest, the tracer, and the measurement platform (Fig 5). For the malic enzyme and gly-
colysis ratios, LC-based methods are preferable to GC-MS. Tracers such as [6-13C], [5,6-13C], or
[4,5,6-13C] glucose offer the best overall accuracy (MAE< 0.05). Any of these tracers could be
selected to quantify the three flux ratios in a single experiment. For specific flux ratios, the aver-
age error was reduced to about MAE 0.02–0.03 by selecting specific tracers. However, when tak-
ing into account the cost of tracers, a labeling experiment using 50% [U-13C] and 50% naturally
labeled glucose might be seen as a compromise between prediction accuracy and cost. This anal-
ysis underlines the ease with which an experimental design, targeted to address specific biologi-
cal questions, can be implemented using the SUMOFLUX workflow.

Discussion
We have developed a generalized method for targeted analysis of 13C metabolic flux ratios, that
builds on surrogate modeling (SUMOFLUX), i.e. uses a synthetic dataset to train a machine
learning predictor to estimate a given flux ratio directly from 13C-data. Synthetic datasets are
constructed in silico on the sole basis of four easily accessible inputs: a stoichiometric model of
metabolism, a list of possible metabolic substrates and their byproducts, a configuration of the
13C-substrate, and a list of measurable metabolites with measurement error. These inputs are
sufficient to generate a representative synthetic dataset covering a broad range of fluxes and
flux ratios. A random forest predictor is then trained on this dataset to capture the relationship
between simulated 13C-data and the flux ratio of interest, that holds true for all of the simulated
data points. Therefore, the same predictor can be used to estimate flux ratios for normal cells,
as well as for knock-out mutants without the need for additional information on physiological
parameters or their uptake/consumption rates. Due to the fact that the SUMOFLUX predictor

Fig 5. Optimizing experimental design to improve the estimation of three flux ratios in Bacillus subtilis central
carbonmetabolism.Mean absolute errors on the test dataset of three flux ratio predictors applied to in silico data
simulated with different experimental setups. GC-MS—gas chromatography mass spectrometry, LC-MS—liquid
chromatography mass spectrometry; LC-MS/MS—liquid chromatography-tandemmass spectrometry; LC-MRM—

liquid chromatography with multiple reaction monitoring information; MAE—mean absolute error; PPP—pentose
phosphate pathway.

doi:10.1371/journal.pcbi.1005109.g005
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targets only a single flux ratio at a time, it is very efficient in assessing calculability and eventu-
ally estimating flux values from real data. This feature is particularly relevant when tackling
complex fluxes [29,30], as dozens of different experimental designs can be trialed within a few
hours. If necessary, measurement data from parallel experiments using different 13C tracers
can be combined and passed as input features into the SUMOFLUX workflow. This approach
has been proven to improve flux estimates in certain cases [31,32]. The surrogate modeling of
cells grown in rich media with multiple substrates is made possible because carbon labeling
experiments can be simulated for large or even genome-wide networks [33], inclusive of all the
key metabolic pathways. Overall, SUMOFLUX is generally applicable to virtually any combina-
tion of metabolic model (organism), medium composition, isotopic tracer, or measurement
technique.

The crucial step in SUMOFLUX is the construction of the synthetic data used for predictor
training. To obtain representative data, it is extremely important that the surrogate model be
based on realistic assumptions of the metabolic network and experimental measurement accu-
racy. Prior knowledge can be integrated into the sampling procedure to limit the space of flux
distributions and potentially improve the predictor’s performance. Network simplification and
constraining bear some risks. The metabolic model should encode all possible metabolic reac-
tions such that 13C-patterns can be correctly assigned to the underlying flux states. If a reaction
is omitted from the surrogate model, the predictor will provide biased estimates. Although the
omission of reactions from a model leads to better accuracy in silico, that step would only be
justified if the reaction was proven to be inactive under all conditions tested, e.g. by biochemi-
cal assay or enzyme quantification. Unless such information is available, it is recommended
that all reactions be included in the model in order to achieve robust predictor training. For
similar reasons, it is equally important to provide a real-life or conservative error model of the
measurement data. According to in silico testing, overestimating noise in the simulated dataset
does not lead to overestimating predictor’s accuracy, on the contrary to underestimating noise.
In our experience, a valid sanity check is to verify that the simulated data distribution covers
the measured mass isotopomer fractions by comparing the distributions of simulated and
experimental data. Another indicator of potential discrepancies between the simulated and
experimental data is the difference between the distributions of inter-quantile ranges of the
flux ratio predictions, which can be tested with a nonparametric test, such as Wilcoxon-Mann-
Whitney. With these simple procedures, errors in the metabolic model, substrate composition,
or experimental measurement can be detected.

Targeted flux ratio analysis using SUMOFLUX is best suited to the assessment of flux ratio
to a high accuracy, on selected metabolic nodes, or when mid to large throughput is necessary.
High-throughput is made possible by the speed of the approach and by the fact that only 13C-
data are required. Once trained, the predictor can be applied to estimate flux ratios for all tested
samples simultaneously. A further optimization of experimental measurement time can be
explored by including feature selection during training to identify the most informative as well
as negligible 13C-features. SUMOFLUX complements the alternative global isotopomer balanc-
ing and iterative fitting method (13C-MFA), which requires measurements of uptake/consump-
tion rates, and more detailed analyses of each dataset, but provides net flux estimates for all
reactions in the model. Our short comparison with the data of 8 E. coli strains demonstrated
that the two approach deliver consistent flux ratio estimates. In some instances, the confidence
of SUMOFLUX estimates was better. Hence, it could be used before 13C-MFA to increase its
performance. In this case, multiple flux ratios could be estimated independently to obtain
experimental information on different degrees of freedom prior to applying global 13C flux
analysis methods [34].
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In principle, the concept of SUMOFLUX can be extended to isotopically non-stationary
data. The simulation of dynamic 13C-data can be completed with the inclusion of metabolite
concentrations in the sampling procedure with simulation of 13C dynamics at predefined time
points to be matched in the experiment. The training of flux predictors from isotopically non-
stationary data can use the same procedure outlined for stationary data, even though it is sub-
stantially more demanding because of the requirement to sample an increased number of
degrees of freedom and measurable labeling features. However, it must be stressed that non-
stationary labeling experiments are much more labor-intensive and data demanding, and can
be performed only at low throughput [35]. For practical reasons, the traditional approach of
flux estimation by both global [35,36] or local [37] iterative fitting is better suited to the analy-
sis of small-scale non-stationary labeling experiments.

Overall, the concepts underlying the proposed SUMOFLUX workflow are easily transferra-
ble and can be applied alone, or in combination with other methods, to address different flux
analyses questions. We believe that SUMOFLUX has the potential to become a core tool in the
analysis of metabolic fluxes, and opens new possibilities for high-throughput flux profiling of a
wide variety of metabolic systems.

Materials andmethods

Network construction
Metabolic network with carbon atom transitions and the lists of input and output metabolites
are defined by the user and are represented in the mat-file format required by the INCA soft-
ware [9]. In order to reduce the dependency on the biomass vector coefficients, a separate out-
put flux is defined for each of the biomass precursors, therefore biomass precursors are also
added to the list of outputs. The substrates are defined as unbalanced compounds and do not
participate in the stoichiometric equation system.

Flux sampling and ratio calculation
In the flux sampling procedure, the definitions of net, exchange, forward and backward fluxes
are used [38]. By default, the lower and upper bounds for reversible reactions are set to [-100
100], for irreversible reactions to [0 100], and the major uptake flux is set to 10. First, the initial
net flux solution is found by minimizing the sum of squared fluxes with stoichiometric con-
straints, inequality constraints on the output fluxes, and flux bounds using the MATLAB solver
fmincon. Second, a cohort of net flux vectors is generated with Monte Carlo sampling by add-
ing linear combinations of null vectors of the stoichiometric matrix with random coefficients
to the initial flux solution. Third, for each net flux, an exchange flux value is randomly gener-
ated in the order of magnitude relative to the net flux defined by the user (by default 1), and
forward and backward flux values are calculated accordingly. Optionally, to achieve uniform
coverage of values for a particular flux ratio or set of ratios, the ratio range is split into segments
(for example, [0 0.1], [0.1 0.2]. . . [0.9 1]), and the flux sampling procedure is repeated for each
segment with the end points set as flux ratio constraints in the first step. The flux ratio of inter-
est is calculated for each of the flux vectors with a formula defined by the user.

13C labeling patterns simulation and measured data simulation
Given the label of the substrate(s) and the list of metabolites and fragments, metabolite labeling
patterns are simulated for each flux solution using the INCA software [9]. The INCA ‘simulate’
procedure is integrated into the SUMOFLUX workflow and is called internally for each of the
sampled flux vectors. In case parallel computing is available, this procedure is parallelized.

Targeted 13C Metabolic Flux Ratio Analysis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005109 September 14, 2016 13 / 19



The measurement data is simulated by extracting the measured compounds from the simu-
lated data matrix and adding uniform noise to the measurements (0.01 by default). After add-
ing noise, the mass distribution vectors for each metabolite are normalized.

Prediction procedures
Preparing the training and test samples and building the predictor. For each prediction

task, a subset of data points is extracted from the entire simulated dataset to ensure that the
dependent variable (flux ratio of interest) is uniformly distributed on the feasible range. The flux
ratio values of the whole dataset are binned into segments (for example, [0 0.1], [0.1 0.2] . . .
[0.9 1]), and from each bin an equal amount of samples is drawn without replacement. This
simulated subset is randomly divided in proportion 2:1 to form the training and test subsets.
The MATLAB randomforest package (https://code.google.com/archive/p/randomforest-
matlab/) modified to perform quantile regression [21] is used to build the predictor. The
regRF_train function is called with ntree trees and mtry variables for the node split (by default,
ntree = 100 and mtry = 20) to train the predictor on the training dataset. The predictor’s esti-
mates on the test dataset are obtained with the function regRF_predict, and the performance is
assessed by calculating the mean absolute error between the estimates and the known simulated
flux ratio values.

Cross-validation procedure. The five-fold cross-validation procedure is performed in the
following way: the training dataset is randomly divided into five parts of equal size. One of the
parts is the validation subset and is used to assess the predictor performance, whereas the other
four are used to train the predictor with a certain set of parameters. The procedure is repeated
until all subsets were used as validation subsets once, and the error is averaged across all the
subsets.

Prediction quantile calculation. The prediction quantile calculation is based on the quan-
tile regression forest algorithm [21]. To calculate prediction quantiles for a new data point,
regRF_predict function is called with extra_options parameters (extra_options.predict_all =
true, extra_options.nodes = 1). For each tree in the forest, the terminal node where the new data
point propagated is recorded. The same procedure is repeated for all data points in the training
dataset. For each data point in the training dataset, a weight is calculated based on howmany
times this data point and the new data point propagated to the same terminal node. The data
points in the training dataset are sorted by the value of the dependent variable (flux ratio of
interest), and the weights cumulative function is calculated. This function is used to estimate the
prediction median (50%-quantile) and to report the [10% 90%] prediction interval.

Feature selection. If the number of features (measured labeling patterns) is large, the pre-
dictor’s performance on the test dataset might decrease due to overfitting to the training data-
set. To reduce the chance of overfitting, feature selection is performed using the cross-
validation procedure. First, the predictor is trained based on all available features, and its per-
formance is assessed with cross-validation. Second, the features are ranked according to the
feature importance value calculated during training by regRF_train function. Third, the predic-
tor is trained based on [50%, 25%, 10%, 5%] of the most important features. The mean absolute
error is calculated with cross-validation. The percentage of features with the smallest MAE is
selected for the further training.

Noise and exchange flux magnitude sensitivity analysis. To assess the sensitivity of the
flux ratio predictors to noise and exchange flux magnitude, a set of 60’000 net fluxes was sam-
pled, and the exchange flux values were randomly generated using each of the tested parame-
ters as the upper bound: [0.1 1 10 100]. Isotope labeling was simulated for each of the four flux
datasets as described previously. For each dataset, random noise was added using each of the
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tested parameters as the upper bound: [0 0.01 0.05 0.1]. The same separation into training and
test subsets was used for all 16 simulated datasets. The training and testing was performed on
the subsets with matching parameters. To assess the effect of the mismatched training and test-
ing parameters, datasets with fixed noise level (0.01) and four different exchange flux magni-
tude values, or datasets with fixed exchange flux magnitude (1) and four different noise levels
were used. The inter-quantile range distributions of the testing datasets were compared using
right-tailed Wilcoxon-Mann-Whitney rank sum test (ranksum function in MATLAB).

13C Metabolic flux analysis (MFA). 13C-MFA was performed with INCA software [9] in
MATLAB 2013a (MathWorks Inc). The measured labeling data and glucose uptake rates [15]
were used as inputs to the model. Three sets of data were used to constrain the model: the data
from [1-13C] experiment only, the data from [U-13C] experiment only, and the combined data-
set from both experiments. Each experimental strain was analyzed separately. Best fit flux solu-
tion and 95% flux confidence intervals were calculated with the parameter continuation
procedure (‘continuate’). The [10% 90%] quantiles of the flux ratio distributions were esti-
mated from the 1000 solutions found with the optimization procedure (‘estimate’) for each
experimental strain.

Experimental data
Experimental data for E. coli and B. subtilis central carbon metabolism studies were down-
loaded from the supplementary materials available for the corresponding papers [15,16].

Code availability
MATLAB code for SUMOFLUX and example scripts are available at http://www.imsb.ethz.ch/
research/zamboni/resources.html All scripts are compatible with MATLAB 2013a (Math-
Works Inc).

Supporting Information
S1 Fig. Escherichia coli and Bacillus subtilismetabolic networks used in the study. (a) E. coli
metabolic network used for the simulations. (b) B. subtilismetabolic network used for the sim-
ulations. Biomass precursor fluxes are depicted with a dashed arrow.
(TIF)

S2 Fig. Choosing the SUMOFLUX predictor’s parameters and sample size. (a) SUMOFLUX
performance assessment with 5-fold cross-validation (CV) with different values of ntree and
mtry parameters. (b) SUMOFLUX performance on the test dataset for different sample sizes.
(TIF)

S3 Fig. Comparison of SUMOFLUX and analytic formulas for key flux ratio estimation in
B. subtilis central metabolism. From left to right: a schematic representation of the flux ratio;
density plot representing SUMOFLUX estimates versus the true flux ratios for in silico data;
comparison of the SUMOFLUX and analytic formula estimates for the experimental data; den-
sity plot representing analytic formula estimates versus the true flux ratios for in silico data.
Vertical error bars in the third panel represent [10% 90%] SUMOFLUX prediction quantiles,
horizontal error bars represent standard deviation of the analytic formula estimate. (a) Glycol-
ysis versus PPP. (b) PEP fraction from gluconeogenesis. (c) Pyruvate fraction from the malic
enzyme flux. (d) Oxaloacetate fraction from anaplerosis from pyruvate. Ratios were estimated
for the experiment with 80% [1-13C] and 20% [U-13C] glucose. 6PG– 6-phosho-D-gluconate;
αKG– α-ketoglutarate; AcCoA—acetyl-CoA; F6P –fructose-6-phosphate; Fum—fumarate;
G6P –glucose-6-phosphate; ICT—isocitrate; MAE—mean absolute error; Mal—malate; PCC—
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Pearson correlation coefficient; PEP—phosphoenolpyruvate; PGA—phosphoglycerate; PPP—
pentose phosphate pathway.
(TIF)

S4 Fig. Comparison of SUMOFLUX and 13C-MFA analysis of E. coli central metabolism.
Comparison of the SUMOFLUX and 13C-MFA flux ratio estimates for the experimental data.
Error bars represent [10% 90%] prediction quantiles. (a) 13C-MFA flux ratios were calculated
for the optimal solutions fitted to the combined data of [1-13C] and [U-13C] glucose labeling
experiments. (b) 13C-MFA flux ratios were calculated for the optimal solutions fitted to the
data of [1-13C] glucose labeling experiment only. (c) 13C-MFA flux ratios were calculated for
the optimal solutions fitted to the data of [U-13C] glucose labeling experiment only. E-D—
Entner-Doudoroff pathway; PCC—Pearson correlation coefficient; PPP—pentose phosphate
pathway.
(TIF)

S5 Fig. Robustness analysis of analytic formulas in terms of noise and exchange flux magni-
tude.Mean absolute errors on the test dataset of five analytic formulas applied to in silico data
with different amount of measurement noise and exchange flux magnitude. The dashed rectan-
gle indicates the normal range of noise (0.01) and exchange flux magnitude (10 times the net
flux). E-D—Entner-Doudoroff pathway, MAE—mean absolute error; PPP—pentose phos-
phate pathway.
(TIF)

S6 Fig. Distributions of inter-quantile ranges of the flux ratio predictions might indicate
incompatibility of training and testing datasets. (a) Histograms representing the [10% 90%]
inter-quantile ranges of the pyruvate fraction from the malic enzyme flux ratio predictions on
the test dataset. The noise level in the training dataset is varied along the y-axis, the noise level
in the testing dataset is varied along the x-axis. The exchange flux magnitude was set to 1. The
histograms in black represent cases of compatible training and testing datasets with the same
assumptions on the noise level and exchange flux magnitude. (b) Histograms representing the
[10% 90%] inter-quantile ranges of the pyruvate fraction from the malic enzyme flux ratio pre-
dictions on the test dataset. The exchange flux magnitude in the training dataset is varied along
the y-axis, the exchange flux magnitude in the testing dataset is varied along the x-axis. The
noise level was set to 0.01. The histograms in black represent cases of compatible training and
testing datasets with the same assumptions on the noise level and exchange flux magnitude.
WMW—p-value of the Wilcoxon-Mann-Whitney right tail test comparing the distributions of
inter-quantile range of each testing dataset to the distribution of inter-quantile range of the
testing dataset compatible with the noise and exchange level assumptions of the training data-
set (diagonal plots in black). LowWMW values indicate that the median of the inter-quantile
range distribution of the corresponding testing dataset is significantly larger than the median
of the inter-quantile range distribution of the testing dataset compatible with the assumptions
of the training dataset, which indicates that these assumptions are incompatible with the cur-
rent testing set.
(TIF)

S7 Fig. SUMOFLUX estimates for the relative contributions of fluxes to the oxaloacetate
pool for the published E. coli data. (a) A schematic representation of the glyoxylate shunt,
TCA cycle and anaplerosis from PEP fluxes contributing to the formation of oxaloacetate. (b)
SUMOFLUX prediction of the relative contributions of the anaplerotic flux from phosphoenol-
pyruvate, glyoxylate shunt and TCA cycle flux to the oxaloacetate pool for the in silico test
dataset. The error bars represent [10% 90%] prediction quantiles. Data from experiment with

Targeted 13C Metabolic Flux Ratio Analysis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005109 September 14, 2016 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005109.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005109.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005109.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005109.s007


20% [U-13C] and 80% naturally labeled glucose. αKG– α-ketoglutarate; AcCoA—acetyl-CoA;
Fum—fumarate; Gox—glyoxylate; ICT—isocitrate; Mal—malate; PEP—phosphoenolpyruvate;
TCA cycle—tricarboxylic acid cycle.
(TIF)

S1 Table. E. coli network of central carbon metabolism used throughout the study.
(DOCX)

S2 Table. Metabolites and metabolite fractions inferable from amino-acid measurements
with GC-MS used in E. coli and B. subtilis studies. The metabolites and metabolite fragments
were simulated in the in silico dataset for E. coli and B. subtilis.
(DOCX)

S3 Table. Analytic formulas used to calculate flux ratios in central carbon metabolism of E.
coli and B. subtilis.
(DOCX)

S4 Table. SUMOFLUX predictions and analytic formulas’ estimates of five flux ratios in
central metabolism of E. coli for eight strains grown on 100% [1-13C] or 20% [U-13C] and
80% naturally labeled glucose; and for 121 B. subtilis strains grown on combination of 80%
[1-13C] and 20% [U-13C] glucose. Flux ratio estimates (median) and 10% and 90% prediction
quantiles are reported.
(XLSX)

S5 Table. 13C-MFA analysis of E. coli for eight strains grown on 100% [1-13C] or 20%
[U-13C] and 80% naturally labeled glucose. The best fit flux values and 95% confidence inter-
vals for the fluxes estimated using parameter continuation procedure in INCA software. The
prediction quantiles for the flux ratios were calculated from the flux ratio distributions of 1000
flux solutions found with the optimization procedure.
(XLSX)

S6 Table. SUMOFLUX predictions for metabolic origin of oxaloacetate for eight E. coli
strains grown on 20% [U-13C] and 80% naturally labeled glucose. Flux ratio estimates
(median) and 10% and 90% prediction quantiles are reported.
(DOCX)

S7 Table. Metabolites and metabolite fractions measurable with LC-MS or LC-MS/MS
methods. The metabolites and fragments that were used for in silico experimental design.
(DOCX)

S8 Table. MRM transitions of the metabolites and metabolite fractions measurable with
LC-MS/MS methods.
(XLSX)
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