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Summary

Looking back fondly on the first 15 years of Micro-
bial Biotechnology, a trend is emerging that biotech-
nology is moving from studies that focus on whole-
cell populations, where heterogeneity exists even
during robust growth, to those with an emphasis on
single cells. This instils optimism that insights will
be made into myriad aspects of bacterial growth in
communities.

Microbial Biotechnology is special to me as my group
published the first two research papers in the new jour-
nal: ‘Pseudomonas aeruginosa PAO1 virulence factors
and poplar tree response in the rhizosphere’, vol. 1
pages: 17–29, 24 August 2007 (cited 73 times to date)
(Attila et al., 2008) and ‘Metabolic engineering to
enhance bacterial hydrogen production’, vol. 1 pages:
30-39, 24 August 2007 (cited 153 times to date) (Maeda
et al., 2008). In the first issue of the second year, we
published another manuscript, ‘Indole and 7-hydroxyin-
dole diminish Pseudomonas aeruginosa virulence’, vol 2
pages: 75–90, 22 December 2008 (cited 188 times to
date) (Lee et al., 2009). I am proud of these three manu-
scripts and congratulate the editors on the successful
launch of their journal. Their vision was to create a jour-
nal where high-quality work could receive rapid review
and dissemination, and they achieved their aims.
In two of these pioneering manuscripts, we used DNA

microarrays to determine the transcriptome of the whole
population of P. aeruginosa cells responding either to
poplar tree roots (Attila et al., 2008) or to indole (Lee
et al., 2009). By measuring the whole-population tran-
scriptome, we discovered seven novel P. aeruginosa vir-
ulence genes this organism uses with plants and

discovered indole is an inter-species signal from Escheri-
chia coli that quenches quorum signalling of non-indole-
synthesizing P. aeruginosa cells without affecting their
growth. This led to numerous discoveries such as indole
(i) prevents the resuscitation of P. aeruginosa persister
cells (Zhang et al., 2019), (ii) kills bacterial and archaeal
persister cells (Hu et al., 2015; Kwan et al., 2015a; Lee
et al., 2016; Megaw and Gilmore, 2017; Li et al., 2019;
Song et al., 2019; Manoharan et al., 2020; Sun et al.,
2020; Yam et al., 2020), (iii) helps prevent infections as
an interkingdom signal in the gastrointestinal tract by
tightening epithelial cell junctions (Bansal et al., 2010;
Shimada et al., 2013), (iv) regulates ageing in mice
(Powell et al., 2020) and (v) influences brain develop-
ment via the aryl-hydrocarbon receptor (Spichak et al.,
2021). Therefore, these early publications that made use
of whole-population studies in Microbial Biotechnology
had a sizeable impact.
It is fascinating now that the field is moving rapidly

from studying whole-cell populations, as we did in the
early Microbial Biotechnology manuscripts, to determin-
ing the transcriptome of single bacterial cells. The logical
progression was from DNA microarrays of whole-cell
populations to RNA-seq of whole-cell populations to
RNA-seq of single cells. For the single-cell studies, to
date, there have been four main contributions of this
RNA-seq technique in bacteria and one single-molecule
fluorescence in situ hybridization (FISH) contribution.
The first published method (25 May 2020, PETRI-seq)
was that of Blatmann et al. (2020) which identified 200
E. coli transcripts per exponentially growing cell as well
as identified rare prophage induction in Staphylococcus
aureus cells. The second published method (17 August
2020, MATQ-seq) was that of Imdahl et al. (2020) which
quantified the impact of growth on expression of 170
Salmonella enterica serovar Typhimurium genes and
102 Pseudomonas aeruginosa genes. Next, Kuchina
et al. (2020) (17 December 2020, microSPLiT) were able
to detect 235 transcripts/cell for E. coli and 397 tran-
scripts/cell for B. subtilis at different growth stages. Most
recently (10 March 2021), McNulty et al. (McNulty et al.,
2021) sequenced 15,000 cells and detected 265 tran-
scripts/B. subtilis cells and 149 transcripts/E. coli cell. In
a different approach, Dar et al. (2021) used par-seqFISH
to spatially resolve and quantify hundreds of transcripts
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within a single P. aeruginosa biofilm cell (25 February
2021). Clearly, this area is moving rapidly, but it already
allows one to determine which genes are expressed in a
single cell as well as to identify in which specific part of
the cell that the expression occurs.
The impact of discerning the response of single cells

will be huge. For example, already for persister cells,
single-cell observations have led to the discovery that
the mechanism by which persister cells form as well as
how they resuscitate is based on their active ribosome
content. Persister cells are a subpopulation of cells
which arise due to stress (e.g. antibiotic, nutritive, oxida-
tive) and weather the stress by becoming dormant
(Wood and Song, 2020). Specifically, single-cell studies
were used to discover that persister cells become dor-
mant by mothballing their protein synthesis machinery by
making 100S ribosome dimers based on (p)ppGpp and
cAMP signalling and through the actions of the ribo-
some-inactivating proteins ribosome-associated inhibitor
A (RaiA), ribosome modulation factor (RMF) and ribo-
some hibernation-promoting factor (Hpf) (Kim et al.,
2018; Song and Wood, 2020; Wood and Song, 2020).
Moreover, dormant persister cells resuscitate, upon the
removal of the stress and the presence of nutrients, by
activating the mothballed ribosomes via nutrient sensing
through membrane chemotaxis proteins and sugar trans-
port proteins, which leads to a reduction in the (p)ppGpp
and cAMP signals and activation of HflX (Yamasaki
et al., 2020). When they wake, the formerly dormant
cells grow exponentially like wild-type cells (Kim et al.,
2018). This ribosome-based mechanism was completely
obscured by the previous whole-cell population studies
that tried to evaluate behaviour based on population lag
times. Critically, since persister cells reconstitute infec-
tions, their mechanism of formation and resuscitation is
important since over two million people a year die from
bacterial infections currently, and this total is projected to
increase to 10 million by 2050 at a cost of $100 trillion
(Thappeta et al., 2020). Furthermore, although inhibiting
cAMP and (p)ppGpp would likely have pleiotropic
effects, these mechanistic insights suggest RaiA, RMF
(conserved in gammaproteobacterial), Hpf (conserved in
bacteria and all domains of life), and Hflx (conserved
GTPase from bacteria to humans) are excellent targets
to prevent persistence; i.e., if cells fail to mothball their
ribosomes, they remain susceptible to antimicrobials.
In a similar manner, the single-cell approach should

lead to breakthroughs regarding our understanding how
toxin/antitoxin (TA) systems function (Bruggeman, 2021,
unpublished data) and how antibiotic resistance arises.
TA systems are categorized into seven main types
based on the function of the antitoxin (Wang et al.,
2020), and multiple TA systems are found in almost all
genomes (Yamaguchi et al., 2011). Although prevalent,

their role in cell physiology is somewhat controversial,
although TA systems have a clear role in phage inhibi-
tion (Pecota and Wood, 1996; Hazan and Engelberg-
Kulka, 2004; Fineran et al., 2009), plasmid stabilization
(Ogura and Hiraga, 1983), mobile genetic element stabi-
lization (Wozniak and Waldor, 2009; Soutourina, 2019),
plasmid copy number control (Ni et al., 2021), and bio-
film formation (Ren et al., 2004; Kim et al., 2009).
As a controversial and well-studied example, the type

II TA system MqsR/MqsA was first identified as active in
E. coli biofilms (Ren et al., 2004) and shown, based on
both deletion and overexpression studies, to protect
E. coli from the bile acid it encounters in the gastroin-
testinal tract (Kwan et al., 2015b) as well as to take part
in the general stress response by regulating the master
regulator of the stress response, sigma factor RpoS
(Wang et al., 2011). MqsR/MqsA have also has been
found to have an effect in non-E. coli systems including
copper stress (Merfa et al., 2016), vesicles (Santiago
et al., 2016), and biofilm formation (Lee et al., 2014) in
Xylella fastidiosa as well as biofilm formation in Pseu-
domonas fluorescens (Wang et al., 2019), and persis-
tence and biofilm formation in Pseudomonas putida (Sun
et al., 2017).
However, two recent reports questioned the impact of

MqsR/MqsA on cell physiology. The Van Melderen group
claimed there was no induction of mqsRA and no pheno-
type upon deleting mqsRA during stress (Fraikin et al.,
2019). A few months later, the Laub group invalidated
the claim of no transcription response during stress by
showing mqsRA was induced dramatically (181 fold) dur-
ing amino acid stress and during oxidative stress (90
fold) (LeRoux et al., 2020). The Laub group also failed
to find a phenotype for MqsR/MqsA during stress (LeR-
oux et al., 2020), although bile acid stress was not
investigated, biofilms were not investigated, and their
results are flawed in that they relied on the use of a TA
system deletion strain that has many non-related muta-
tions (large chromosomal inversions) (Goormaghtigh
et al., 2018). Note the use of TA system deletion strains
with coding errors have led to notorious errors in the
field that have led to three retractions, based on the
errors we have described (Wood and Song, 2020). Criti-
cally, both of these studies that failed to find a pheno-
type with MqsR/MqsA used whole-population studies
and therefore probably missed MqsR toxin expression in
a subpopulation of cells. MqsR is very toxic; i.e., deletion
of the antitoxin gene is lethal (Baba et al., 2006), so it is
likely only a few molecules of this powerful RNase
enzyme are produced and are produced in a subpopula-
tion of cells (Bruggeman, 2021, unpublished data).
Similarly, breakthroughs in understanding how antibi-

otic resistance arises will likely be achieved by studying
single cells. Currently, it is clear antibiotic resistance
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arises from a series of mutations in non-dormant bacte-
ria that gradually change lag phase (Santi et al., 2021)
and metabolism (Lopatkin et al., 2021). However, so far,
these studies are limited to studying whole-cell popula-
tions rather than single cells. Just as whole-population
studies were unable to discern the mechanism of persis-
ter formation and resuscitation (e.g. by focussing on
growth lags of large populations of cells), single-cell
studies should enable the mechanism of antibiotic resis-
tance to be determined more robustly by following
changes in a single cell.
Therefore, one can be sanguine about the mecha-

nisms that single-cell studies will provide in the next
10 years. Compared to coarse microarray studies on
whole populations of cells, such as one for E. coli biofilm
cells developed on glass wool (Ren et al., 2004), which
led to the discovery of the TA systems Hha/TomB (Mari-
mon et al., 2016) and MqsR/MqsA (Brown et al., 2009;
Wang et al., 2011; Wang et al., 2013), single-cell
sequencing and other single-cell techniques (e.g. pro-
teomics, metabolomics, phenotype mapping, micro-
scopy) are expected to provide myriad insights into the
secret lives of single cells, including how biofilms form
and function, how persister cells arise in stressed clonal
populations, how TA systems impact cell physiology,
how antibiotic resistance occurs, and how various pro-
tection systems are invoked and interact for lytic and
temperate phages.
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