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Simple Summary: Epidemiological studies have identified associations between fine particulate
matter (with an aerodynamic diameter of less than 2.5 µm (PM2.5)) and ozone exposure with car-
diovascular disease; however, studies linking ambient air pollution and premature coronary artery
disease (pCAD) in Latin America are nonexistent. We leveraged data from the Genetics of Atheroscle-
rotic Disease (GEA) Mexican study to address the question of the extent to which long-term exposure
to ozone and PM2.5 exposure was associated with the risk of pCAD. We showed for the first time a
higher risk of pCAD associated with 1 ppb increase in ozone (1-year, 2-year, 3-year, and 5-year) and
5µg/m3 of PM2.5 (5-year) compared to controls. This study provides evidence that ozone and PM2.5

may be a modifiable risk factor for pCAD.

Abstract: (1) Background: Epidemiological studies have identified associations between fine particu-
late matter (PM2.5) and ozone exposure with cardiovascular disease; however, studies linking ambi-
ent air pollution and premature coronary artery disease (pCAD) in Latin America are non-existing.
(2) Methods: Our study was a case–control analysis nested in the Genetics of Atherosclerotic Disease
(GEA) Mexican study. We included 1615 participants (869 controls and 746 patients with pCAD),
recruited at the Instituto Nacional de Cardiología Ignacio Chávez from June 2008 to January 2013.
We defined pCAD as history of myocardial infarction, angioplasty, revascularization surgery or
coronary stenosis > 50% diagnosed before age 55 in men and age 65 in women. Controls were healthy
individuals without personal or family history of pCAD and with coronary artery calcification equal
to zero. Hourly measurements of ozone and PM2.5 from the Atmospheric Monitoring System in
Mexico City (SIMAT in Spanish; Sistema de Monitero Atmosférico de la Ciudad de México) were
used to calculate annual exposure to ozone and PM2.5 in the study participants. (3) Results: Each
ppb increase in ozone at 1-year, 2-year, 3-year and 5-year averages was significantly associated
with increased odds (OR = 1.10; 95% CI: 1.03–1.18; OR = 1.17; 95% CI: 1.05–1.30; OR = 1.18; 95%
CI: 1.05–1.33, and OR = 1.13; 95% CI: 1.04–1.23, respectively) of pCAD. We observed higher risk of
pCAD for each 5 µg/m3 increase only for the 5-year average of PM2.5 exposure (OR = 2.75; 95%
CI: 1.47–5.16), compared to controls. (4) Conclusions: Ozone exposure at different time points and
PM2.5 exposure at 5 years were associated with increased odds of pCAD. Our results highlight the
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importance of reducing long-term exposure to ambient air pollution levels to reduce the burden of
cardiovascular disease in Mexico City and other metropolitan areas.

Keywords: cardiovascular disease; premature coronary artery disease; PM2.5; ozone

1. Introduction

Cardiovascular disease (CVD) is the main cause of mortality globally, accounting for
18.6 million deaths in 2019. According to the Global Burden of Disease study, the CVD
burden has continued its decades-long rise in almost all countries, including those in Latin
America and the Caribbean (LAC), where prevalent CVD cases are likely to increase because
of population growth and aging, among other factors [1]. CAD and its complications are
the leading cause of death in men and second in Mexican women [2]. Unfortunately, this
deadly disease will remain a prevalent global health threat for the next decades [3–5]. Risk
factors for CAD include genetic and lifestyle factors and age [6,7]. Typically, CAD risk
increases with age because of the higher risk of plaque formation that might lead to CAD
clinical manifestations (including angina and myocardial infarction) due to blood flow
reduction to the myocardium [7].

CAD is considered premature (pCAD) when a cardiovascular event occurs before
55 years in males and 65 years in females [8,9]. To the best of our knowledge, no previous
studies have linked ambient air pollution with pCAD. Most of the studies have focused
on the association between air pollution and CAD or cardiovascular mortality [10–13].
For example, in a case–control study of U.S. residents of Worcester, Massachusetts, an
interquartile range (IQR) increase (0.59 µg/m3) in PM2.5 was associated with a 16% increase
in the odds of acute myocardial infarction (AMI) (95% CI: 1.06, 1.29) [14]. Data from the
nationwide Danish Nurse Cohort Study on 22,882 female nurses (>44 years), indicated
that an IQR increase in PM2.5 (3-year running mean) was associated with a higher risk of
incident fatal AMI (HR: 1.69; 95% CI: 1.33, 2.13) [15]. In a time-series study conducted in
Changzhou, China, PM2.5 was associated with an increase of 1.64% (95% CI: 0.54, 2.74%) in
the risk of AMI [16]. Overall, studies linking PM2.5 and clinical outcomes related to CAD
have been conducted mainly in Caucasian or Asian populations, where PM2.5 levels, com-
position and sources are different from those reported in Latin American populations with
different demographics and genetic backgrounds [17]. Additionally, the high prevalence
of other chronic diseases such as obesity and diabetes in Latin America might potentiate
cardiovascular events related to ambient air pollution [18,19].

Ozone is one of the most harmful air pollutants, a powerful oxidizing agent, cur-
rently part of air quality guidelines in the U.S., Europe, and Mexico [20]. Since ozone is
formed by complex chemical reactions triggered by heat and sunlight, ozone will remain
an environmental health concern because of the increases in temperature related to climate
change [20,21]. Importantly, the available literature, though sparse, does suggest associa-
tions of ozone exposure with cardiovascular outcomes. For example, ozone exposure was
associated with an increased rate of carotid wall thickness progression in young adults
from six U.S. city regions over almost a decade of follow-up [22]. In a panel study, ozone
was associated with alterations across several pathways related to cardiovascular disease
such as changes in interleukin-6, monocytes, and large-elasticity index, among others [23].

Mexico City is one of the main megacities in Latin America, and ambient air pollutants
such as ozone and PM2.5 concentrations exceed national and international guidelines [24–26].
However, no previous study has examined associations between ozone and PM2.5 with pCAD.
Therefore, we aimed to evaluate associations between long-term exposure to ozone and PM2.5
and pCAD outcomes in adults from the Genetics of Atherosclerotic Disease (GEA) cohort in
Mexico City.
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2. Materials and Methods
2.1. Study Population

We conducted a case–control study nested in the Genetics of Atherosclerotic Disease
(GEA) study. The GEA study is a prospective cohort that comprised adults with pCAD
and healthy controls without a personal or family history of pCAD [27]. The main goal of
this cohort was to elucidate the genetic factors associated with pCAD and other coronary
risk factors in the Mexican population. At baseline (2008–2013), subjects were recruited
from donors at the blood bank of the National Institute of Cardiology in Mexico City or by
advertisements in social service centers. The whole baseline GEA cohort included 2840 indi-
viduals, 1240 pCAD patients, and 1600 healthy controls aged from 30 to 75 years [28]. This
analysis included 746 patients with premature CAD and 869 controls with available infor-
mation on air pollution exposure (Figure 1). The study was approved by the institutional
review board of the Instituto Nacional de Cardiología Ignacio Chavez (INCICH) (Project
number 19-1104) and by the National Institute of Perinatology (project number 2020-1-41).
All subjects provided informed consent. We defined pCAD as a history of myocardial in-
farction, angioplasty, revascularization surgery, or coronary stenosis > 50% (determined by
angiography) diagnosed before age 55 in men and before age 65 in women [9]. Participants
without acute cardiovascular events in the three months before the study were included
and those with congestive heart failure, thyroid and liver disease, kidney cancer, or corti-
costeroid treatment were not included. Controls were healthy asymptomatic individuals
without a personal or family history of pCAD, recruited from the Institute’s blood bank
and by direct invitation. In both pCAD patients and controls, chest and abdomen com-
puted tomography was performed and interpreted by trained and experienced radiologists.
Scans were read to assess and quantify coronary artery calcification (CAC) score using
the Agatston method [29]. Exclusion criteria included renal, thyroid, liver, or oncological
disease and congestive heart failure.
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Figure 1. Flowchart for the study participants.

All GEA participants answered structured questionnaires that investigated informa-
tion regarding demographics, family history, medications, smoking, physical activity, and
alcohol intake. We measured height and weight to estimate body mass index (BMI). Over-
weight was defined as BMI ≥ 25 to 30 kg/m2, and obesity as BMI > 30 kg/m2. Systolic and
diastolic blood pressures were measured via a digital sphygmomanometer, Welch Allyn,
series 5200 (Skaneateles Falls, NY, USA.), three times after the patient was seated for at least
10 min. The average of the second and third measurements was used for the analysis. Type
2 diabetes mellitus was defined when fasting plasma glucose values were ≥126 mg/dL [30]
and was also considered when the patient reported current hypoglycemic drug use or a
medical history of type 2 diabetes mellitus.
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After at least 10 h of fasting, blood samples from the participants were collected at
enrollment time. The glucose, total cholesterol, and high-density lipoprotein cholesterol
(HDL-C) concentrations were evaluated in fresh samples, using standardized enzymatic
procedures in a Hitachi autoanalyzer 902 (Hitachi LTD, Tokyo, Japan). The accuracy and
precision of lipid measurements are constantly evaluated by the Center for Disease Control
and Prevention (Atlanta, GA, USA). LDL-C was calculated [31]. We defined smoking status
as follows: (a) current smoking when subjects self-reported smoking any tobacco in the
previous 12 months, (b) former smokers as those who had quit more than a year earlier. Total
physical activity was measured through a standardized and validated questionnaire [32].
We calculated an index of physical activity considering physical activity at work, sports
and leisure time as previously described by Beake et al., 1982 [33].

Ambient ozone and PM2.5 measures were estimated using the monitoring stations of
the National System of Air Quality in 1954 individuals from the entire cohort (1208 healthy
individuals and 746 patients with pCAD). CAC score was defined in the 1208 healthy indi-
viduals; of these, 869 individuals presented a CAC score equal to zero, and 339 individuals
presented a CAC score > zero and were, therefore, excluded as controls and considered as
individuals with subclinical atherosclerosis. In the present study, we included 1615 individ-
uals from Mexico City and the metropolitan area, 746 patients with pCAD, and 869 controls
with CAC equal to zero (Figure 1).

2.2. Air Pollution and Weather Data

Hourly measurements of ambient PM2.5 and ozone from 3 October 2003 to 16 De-
cember 2012 were obtained from automatic monitoring stations of the National System
of Air Quality Information (SINAICA, its acronym in Spanish). We calculated daily aver-
ages for PM2.5 and 8 h daily maximum concentrations for ozone. We included only daily
measurements that met a minimum of 75% completeness of hourly data (18 h by day).
We applied spatial analysis and interpolation processes to estimate participants’ exposure
using geographic information layers in shapefile format as previously described [34,35].
Residential annual exposure to air pollution (PM2.5 or ozone) was assigned to the home
address of each study participant following the next steps: (1) For each monitoring station,
we constructed 5 and 10 km circular buffers. Then, when houses were located within
an intersection of two or more 5 km circular buffers, their air pollution exposures were
estimated by squared IDW (inverse distance weighted) interpolation using PM2.5 or ozone
records from the monitoring stations involved in each intersection; (2) For households not
located in 5 km intersection areas, we employed intersection areas for 10 km buffers, and
the same method (squared IDW) was used to estimated air pollution exposure; (3) For those
households not located in any of the previous intersection areas (5 or 10 km), but within
10 km buffers, we directly assigned air pollution concentration recorded at the monitoring
station of such buffer; (4) For the remaining households outside any intersection area or
circle buffer; air pollution was estimated using IDW raised to the power value of 1, using
all available monitoring stations throughout the city. This four-step method was replicated
day by day, and from these results, we calculated annual moving averages.

We obtained hourly climatic data from the SIMAT (Sistema de Monitero Atmosférico
de la Ciudad de México) webpage. We calculated daily means of temperature, wind speed,
and relative humidity using IDW interpolation for each household location. Then, results
were aggregated to obtain annual means. All data processing was performed in R software
version 3.6 and RStudio version 0.98.

2.3. Statistical Methods

We summarized general characteristics of the study participants using frequencies
and percentages or mean and standard deviation. Ozone and PM2.5 concentrations were
expressed as median and total range. We compared participants’ characteristics for the
pCAD group and controls using Chi-Squared tests or Mann–Whitney U.
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We selected potential confounders a priori hypothesized to influence both air pollution
and pCAD. Namely, we adjusted analyses for outdoor temperature (continuous), relative
humidity (continuous), wind speed (continuous), sex (female/male), age (continuous), BMI
(continuous), education (≤elementary/junior high school/>senior high school), locality (cate-
gorical), smoking status(never/former/current), diabetes mellitus (yes/no), HDL-C (continu-
ous), LDL-C (continuous), systolic blood pressure (continuous), antihypertensive medication
(yes/no) and physical activity (metabolic equivalent of task-hours per week, continuous).

We fitted multiple logistic regression models to estimate associations between pCAD
and long-term exposure to ozone or PM2.5 levels across multiple time windows (moving
averages from 1 to 5 years). For all of the analyses, we used one ppb increase in ozone and
a 5 µg/m3 increase in PM2.5 levels. In sensitivity analysis, we adjusted for the ambient
PM2.5 or ozone levels in the matching time window to rule out the possibility that the
observed effect was in part attributable to confounding by ambient PM2.5 or ozone levels.
Additionally, we tested effect modification by BMI and diabetes mellitus; however, we did
not test effect modification by sex or age (considered the most influential factors in CAD
development) because pCAD definition overlaps with these two concepts [7–9].

All statistical analyses were performed using SAS Studio 3.6 (SAS Institute, Cary, NC,
USA) and R Study version 3.3.0 (The R Foundation for Statistical Computing, Platform,
Vienna, Austria).

3. Results
3.1. Characteristics of the Study Population

Table 1 shows the characteristics of the study participants (n = 1615). Among patients
with pCAD, most were male (80.8%), 45 years or older (88.2%), 83% were overweight or
obese, and 53.4% had an elementary school education. A total of 63.9% and 15% of the
pCAD participants were former and current smokers, respectively, and 35% had been
diagnosed with diabetes mellitus. Compared to controls, pCAD participants were slightly
older and less educated, with higher BMI and higher prevalence of diabetes mellitus. pCAD
participants were more likely to be former smokers and to use hypertensive medication.
Systolic and diastolic blood pressure were statistically significantly higher in pCAD patients
compared to controls. Both HDL-C and LDL-C were lower in the pCAD group. LDL-C
was lower in pCAD due to statin medication.

Table 1. Characteristics of pCAD patients and controls from the Genetics of Atherosclerotic Disease
(GEA) Mexican study.

Characteristics Control pCAD p-Value

Overall 869 (53.8%) 746 (46.2%)
Participant sex

Male 326 (37.5%) 603 (80.8%)
Female 543 (62.5%) 143 (19.2%) <0.0001 *

Age (years) 51.9 ± 9.0 53.9 ± 7.7 <0.0001 &

BMI (kg/m2) 28.5 ± 4.5 29.0 ± 4.5 0.005 &

BMI classification (kg/m2)
Normal (18.5–24.9) 193 (22.2%) 127 (17.0%)

Overweight (25–29.9) 398 (45.8%) 341 (45.7%)
Obesity (>30.0) 278 (32.0%) 278 (37.3%) 0.01 *

Education
<Elementary school 257 (29.6%) 398 (53.4%)
Junior high school 320 (36.8%) 186 (24.9%)

>Senior high school 292 (33.6%) 162 (21.7%) <0.0001 *
Cigarette Smoking

Never smoker 390 (44.9%) 157 (21.1%)
Former smoker 281 (32.3%) 477 (63.9%)
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Table 1. Cont.

Characteristics Control pCAD p-Value

Current smoker 198 (22.8%) 112 (15.0%) <0.0001 *
Diabetes Mellitus

No 775 (89.2%) 485 (65.0%)
Yes 94 (10.8%) 261 (35.0%) <0.0001 *

HDL-C (mg/dL) 46.8 ± 13.8 39.6 ± 10.9 <0.0001 &

LDL-C (mg/dL) 116.0 ± 31.5 98.3 ± 38.0 <0.0001 &

Systolic blood pressure (mmHg) 113.6 ± 15.9 118 ± 18.5 <0.0001 &

Diastolic blood pressure (mmHg) 70.2 ± 8.7 71.79 ± 9.9 0.007 &

Antihypertensive medication
No 710 (81.7) 247 (33.1)
Yes 159 (18.3) 499 (66.9) <0.0001 *

Physical activity 7.8 ± 1.2 7.6 ± 1.3 0.0004 &

Values represent N (%) or mean ± SD. p-Values were obtained from Chi-Square test * or Mann–Whitney U Test &.

3.2. Ambient Ozone and PM2.5 Levels

We estimated long-term exposure to ozone and PM2.5 using moving averages from
the first to fifth year before the day of the visit or baseline (Table 2). Median ozone
concentrations at 5 years were significantly higher in the pCAD group compared to controls.
PM2.5 levels were significantly higher in the pCAD group at 3, 4, and 5 years compared
to controls.

Table 2. Ambient ozone levels and PM2.5 concentrations of the study participants: pCAD or controls.

Total
(N = 1615)

Controls
(N = 869)

pCAD
(N = 746) p-Value

Ozone (ppb)
1-year 75.8 (68.5–81.2) 75.9 (68.7–81.2) 75.7 (68.5–80.8) 0.22
2-year 75.6 (71.4–82.6) 75.5 (71.4–82.6) 75.7 (71.5–81.8) 0.38
3-year 76.5 (71.8–83.1) 76.3 (71.8–83.1) 76.6 (71.8–81.9) 0.05
4-year 77.5 (73.1–84.9) 77.3 (73.1–84.9) 77.6 (73.2–83.6) 0.14
5-year 78.6 (73.7–84.9) 78.4 (73.7–84.9) 78.9 (73.7–84.7) 0.02

PM2.5 (µg/m3)
1-year 24.6 (17.7–31.7) 24.7 (17.8–29.9) 24.5 (17.7–31.7) 0.05
2-year 23.9 (20.8–29.6) 23.9 (21.1–29.6) 23.9 (20.8–29.2) 0.76
3-year 23.6 (21.5–29.5) 23.5 (21.6–29.3) 23.7 (21.5–29.5) <0.0001
4-year 24.2 (21.9–29.8) 24.0 (21.9–29.7) 24.3 (21.9–29.8) <0.0001
5-year 24.7 (22.3–29.7) 24.5 (22.3–29.7) 25.0 (22.3–29.7) <0.0001

Values represent median and total range (min-max). p-Values were obtained from Mann-Whitney U Test.

3.3. Association between Air Pollution Levels and pCAD

Compared to controls and after adjusting for potential confounders, ozone (1 ppb
increase) was significantly associated with higher odds of pCAD, at 1 year (OR = 1.10; 95%
CI: 1.03–1.18); 2 years (OR = 1.17; 95% CI: 1.05–1.30), 3 years (OR = 1.18; 95% CI: 1.05–1.33)
and 5 years (OR = 1.13; 95% CI: 1.04–1.23) (Figure 2A). Ozone exposure 4 years before
the baseline was also associated with higher odds of pCAD; however, it did not reach
statistical significance.

Multivariate analyses also showed a significant association between PM2.5 exposure
(5 µg/m3 increase) at 5 years and pCAD (OR = 2.75; 95% CI: 1.47–5.16) (Figure 2B). Although
PM2.5 exposures at years 2, 3, and 4 were non-significantly associated with pCAD, we observed
a trend moving towards increased odds of pCAD. Associations between ozone exposure
(1-year, 2-year, and 3-year) and pCAD remained statistically significant even after PM2.5
adjustment at their respective time-windows. However, PM2.5 at 5 years and pCAD risk
were not further significantly associated after ozone adjustment (Supplemental Table S1).
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Sensitivity analyses showed no effect modification by sex or BMI for pCAD and air pollution
associations (data not shown).
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Figure 2. Associations between ozone (A) or PM2.5 (B) levels and pCAD in participants from GEA
Study. All models were adjusted for BMI, age, sex, education, smoking status, diabetes mellitus, HDL-
cholesterol, LDL-cholesterol, systolic blood pressure, antihypertensive medication, total physical
activity, locality, relative humidity, temperature and wind velocity. Odds ratio represents the risk for
1 ppb increase in ozone or 5 µg/m3 increase in PM2.5.

All models were adjusted for BMI, age, sex, education, smoking status, diabetes
mellitus, HDL-cholesterol, LDL-cholesterol, systolic blood pressure, antihypertensive med-
ication, total physical activity, locality, relative humidity, temperature, and wind velocity.
The odds ratio represents the risk of an increase of 1 ppb in ozone or an increase of 5 µg/m3

in PM2.5. Models of ozone were adjusted for PM2.5 in the matching time window, and
models of PM2.5 were adjusted for ozone levels in the matching time window. Note: Since
we have 34 localities, we have shown only one OR per locality.
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4. Discussion

In this study, we assessed associations between long-term PM2.5 and ozone exposure
and pCAD in GEA participants, a cardiovascular cohort of Mexican individuals. We
observed associations between ozone exposure at 1, 2, 3 and 5 years before the baseline
and a higher risk of pCAD. These associations remained significant, except for the 5-year,
after adjusting for PM2.5. Additionally, we observed a higher risk of pCAD associated with
PM2.5 at 5 years. Overall, we observed no effect modification by diabetes mellitus or BMI
categories either for ozone or PM2.5.

Previous studies on ambient air pollution and cardiovascular risk have focused on
late clinical manifestations of CAD [14,15], but none have studied PM2.5 or ozone related to
pCAD. Moreover, population-based cohorts such as MESA [36], CATHGEN [37], ARIC [38],
WHI [39], and Nurses’ Health Study [40] linking air pollution and CAD have been con-
ducted in U.S. adults with no or few (8.1% and 22% of Hispanics in WHI and MESA Air,
respectively) Latinos. Thus, our results add to the existing literature evidence of pCAD risk
related to ambient air pollution in Mexican adults that might have distinct genetic, dietary
and environmental factors from those reported in previous studies.

The range of exposures in our study was extremely relevant to other settings. The
annual median PM2.5 concentration ranged between 21.3 and 27 µg/m3, which is at
least 4 times higher than the World Health Organization (WHO) annual PM2.5 limit of
5.0 µg/m3 [41]. Annual concentrations in our study population were higher than those
in studies looking at PM2.5 and CAD-related outcomes in other areas, such as the CATH-
GEN study in the U.S., where the majority had an annual PM2.5 level of 12.4 µg/m3 [37].
Similarly, PM2.5 exposure concentrations in our study were higher compared to those
reported for the Nurses’ Health Study (mean ± SD: 13.9 ± 2.4 µg/m3) [40]. Additionally,
the median annual PM2.5 concentration in our study was like those in communities classi-
fied as high and very high PM2.5 exposure in the MESA Study (20 µg/m3 and 24 µg/m3,
respectively) [36].

Studies in the Latin America region are scarce, and most of them focused on associ-
ations between PM2.5 exposure and cardiopulmonary mortality. For example, a study in
Lima, Peru conducted between 2010 to 2016 found positive associations between combined
circulatory and respiratory deaths and PM2.5 exposure—an increase of 1.8% per 10µg/m3

increase in PM2.5 concentration, driven largely by those over 65 years of age [42]. An
ecological time-series study conducted in Manaus, Brazil found no significant associations
between PM2.5 exposure and hospital admissions due to cardiovascular and respiratory dis-
eases in Brazilian children (under 5 years) and the elderly (>60 years) [43]. Finally, a spatial
analysis of PM2.5 concentrations in Bogotá, Colombia suggested an increase in cardiopul-
monary mortality associated with short-term and long-term PM2.5 exposure [44]. Overall,
previous studies in Latin America focused on cardiovascular disease and air pollution
exposure have several limitations: (1) do not consider the specific cause of cardiovascular
mortality or hospitalization; (2) ecological designs, and for one of them, the inability to
assign exposure estimates at a spatial resolution smaller than the district. All of these
limitations might explain discrepancies among the findings [42–44].

Our results showed a higher risk of pCAD after 5 years of PM2.5 exposure. Previous
studies demonstrated that cardiovascular outcomes related to PM2.5 largely depend on PM
composition [45]. The PM2.5 composition in Mexico City has been largely described. PM2.5
components include metals (lead, zinc, copper, chromium) [46,47]; polycyclic aromatic
hydrocarbons (PAHs) [48]; elemental carbon, organic carbon, and sulfate [49]. These
components of PM2.5 may contribute to pCAD progression through mechanisms that
involve endothelial function and calcium signaling [50,51], inflammation [46,48], and
oxidative stress [52,53].

Reactive oxygen species (ROS) production by PM2.5 [52] may target key processes of
atherosclerosis—the underlying pathophysiology of coronary artery disease (CAD) [54].
For instance, ROS can increase LDLox (pro-atherogenic lipid) formation and concentrations
of transcription factors such as TNFalpha and NF-kb. ROS can also decrease nitric oxide
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(NO, an anti-atherosclerotic molecule) and target mitochondrial calcium signaling, leading
to apoptosis—cell death is a component of the plaque necrotic core [51,55].

We found associations between ozone exposure and pCAD risk at different time points.
Annual ozone concentrations in our study setting (~80 ppb) were higher compared to those
in previous studies in the US, China, and Europe. For example, a study conducted in
the Kremnica Mountains in Slovakia during the period 2004–2013 reported maximum O3
concentrations of 44.0–50 ppb [56]. In the North China Plain, the COVID-19 lockdown in
January 2020 revealed a switch to fast ozone production with maximum daily 8 h ozone
concentrations of 60 to 70 ppb [57]. A study conducted in six cities in the eastern US
reported May–September annual average concentrations over a 3-year (2013–2015) period
in the range of 40–49 ppb [58]. Ozone pollution is another prominent air quality problem
in Mexico City [59].

Overall, the link between ozone exposure and CAD outcomes has been less studied
than PM2.5, and results are mixed [60–63]. Meta-analyses have shown that ambient ozone
exposure is associated with a higher risk of stroke [64], but not myocardial infarction
or heart failure [65,66]. In Latin America and the Caribbean region, the ESCALA study
(Estudio de Salud y Contaminación del Aire en Latinoamérica) observed that ozone was
significantly related to all-cause mortality in Mexico City, Monterrey, Sao Pablo and Rio de
Janeiro. However, no associations were observed between ozone and chronic obstructive
pulmonary disease and stroke in all ages and the age group ≥ 65 years [67]. Bravo et al.
(2016) found no association between increased ozone concentrations and cardiovascular
mortality in the population of Sao Paulo, Brazil [68]. Similarly, ozone was not associated
with hospital admissions due to diseases of the circulatory system in Santiago, Chile [69].

Our results consistently showed an increased risk of pCAD associated with ozone
exposure at 1, 2, 3 and 5 years. The mechanisms that can explain the association between
ozone and pCAD might include ROS production, platelet activation, arterial stiffness, blood
pressure increase, and changes in fibrinolysis biomarkers [70–72]. All of these changes provide
the biological plausibility to explain the link between ozone and cardiovascular disease.

Our study has several strengths and limitations; therefore, the results should be
interpreted based on those. The strengths of our study include the relatively large cohort
with detailed cardiovascular assessment at the individual level, rich covariate data, and
long-term ambient air pollution assessment in a highly exposed population. The limitations
of our study include the lack of information about air pollution exposure at the place
of work or during the commute that might influence personal exposure measures [73].
Additionally, we did not collect information on changes of address during the previous
5 years used to calculate ambient air pollution exposure that might possibly impact PM2.5
or ozone levels. We observed differences in key confounders for controls vs. pCAD cases.
Therefore, we cannot eliminate the possibility of selection bias. In case–control studies,
this selection bias superimposes over the confounding, and it can be controlled in the
analyses by the methods used to control for confounding [74]. We adjusted all of our
analyses for the key confounders such as sex, age, education, smoking status, diabetes
mellitus and physical activity to attenuate the impact of selection bias. Previous studies
have demonstrated that some genetic polymorphisms are associated with a higher risk
of pCAD in the Mexican-Mestizo population [28,75]. However, we did not evaluate the
interaction between genetic susceptibility and air pollution exposure on pCAD risk. The
major limitation of our study is its observational nature; therefore, residual or unmeasured
confounding cannot be completely ruled out [76]. Despite the limitations, ours is the first
study to assess cardiovascular risk in relation to pCAD in Mexican adults exposed to PM2.5
and ozone.
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5. Conclusions

Ambient ozone at different time points and PM2.5 exposure at 5 years were associated
with an increased risk of pCAD. Our results highlight the importance of reducing ambient
air pollution levels to reduce the burden of cardiovascular disease in Mexico City and other
large cities across Latin America.
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