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Abstract: Steel strip acts as a fundamental material for the steel industry. Surface defects threaten the
steel quality and cause substantial economic and reputation losses. Roll marks, always occurring
periodically in a large area, are put on the top of the list of the most serious defects by steel mills.
Essentially, the online roll mark detection is a tiny target inspection task in high-resolution images
captured under harsh environment. In this paper, a novel method—namely, Smoothing Complete
Feature Pyramid Networks (SCFPN)—is proposed for the above focused task. In particular, the
concept of complete intersection over union (CIoU) is applied in feature pyramid networks to obtain
faster fitting speed and higher prediction accuracy by suppressing the vanishing gradient in training
process. Furthermore, label smoothing is employed to promote the generalization ability of model.
In view of lack of public surface image database of steel strips, a raw defect database of hot-rolled
steel strip surface, CSU_STEEL, is opened for the first time. Experiments on two public databases
(DeepPCB and NEU) and one fresh texture database (CSU_STEEL) indicate that our SCFPN yields
more competitive results than several prestigious networks—including Faster R-CNN, SSD, YOLOv3,
YOLOv4, FPN, DIN, DDN, and CFPN.

Keywords: surface defect detection; roll marks; hot-rolled steel; feature pyramid networks (FPN)

1. Introduction

As one of the most important fundamental materials in steel and iron industry, steel
strips are extensively used in automobile manufacturing, locomotives, aerospace, precision
instrumentation, etc. For thin and wide flat steel, surface defects are the greatest threat to
the product quality. Even for occasional internal defects, morphological changes will arise
on the surface with a large probability. Any quality problems suffering on steel surface
would give rise to irretrievable economic and reputation losses to both the steel company
and end use customer. To cope with the above issue, automated visual inspection (AVI)
instrument targeting on surface quality emerges as a standard configuration for flat steel
mills [1].

Among the numerous categories of surface defects of hot-rolled steel strips, the roll
mark is put on the top list of the most serious defects by steel mills. As a typical representa-
tive of roll marks, the roller cracking defect makes the surface extremely uneven. After the
downstream continuous rolling process, these defects would transform into bumps or even
holes. What is worse, such defects often occur to periodical and continuous distribution.
To sum up, roll mark is one of the most harmful defects threatening steel surface quantity.
Consequently, how to rapidly and accurately detect roll marks is significant for the surface
defect AVI instrument.

To be specific, roll marks have two characteristics as shown below: (1) Low contrast:
Roll marks manifest with concave and convex manner, however, their deformation is
very shallow. Thus, as shown in Figure 1a, roll marks usually show very low contrast
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with the background. (2) Large intra-class distance: The appearances of roll marks are
diverse, irregular, and multiscale. Figure 1b shows three patches of roll marks with
completely distinct appearances. Besides, massive pseudo defects, random noises, and
aperiodic vibration degrade surface image quality of steel strips under the harsh industrial
environment of hot-rolling line. In other side, the fine resolution requirement of defects
and high rolling speed enforce the camera device to constantly generate massive image
data. To sum up, the online roll mark detection in this paper is essentially a tiny target
inspection task in high-resolution images captured under harsh environment.
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Figure 1. Characteristics of roll marks. (a) Two samples of roll marks, red rectangles mark the roll
marks which has low contrast with the background and we make the roll marks explicit; and (b)
three roll marks with completely distinct appearances.

The conventional steel surface defect detection method based on computer vision
usually be spilt into three classes: conventional statistical, spectral and model-based.
Neogi et al. [2] proposed a global adaptive percentile thresholding scheme based on gradi-
ent images to separate defect selectively. It can precisely retain the defect edges regardless
of the scales of defects. As a classical operator, local binary pattern (LBP) is extensively used
to characterize local texture features of images, which benefit from its rotation invariance
and gray invariance [3]. Song et al. [4] designed an AECLBP that regarded the surrounding
gray values as its central gray value. AECLBP had achieved 98.93% accuracy on NEU
datasets and great robustness to noise. Luo et al. [5] proposed a GCLBP by first exploit-
ing the non-uniform patterns information to enrich the descriptive information, GCLBP
achieved 99.11% accuracy on NEU datasets. However, the conventional statistical methods
have the following weaknesses: large computation requirement, unsatisfactory real-time
performance, scale sensitivity, and noise sensitivity [6]. Song et al. [7] adopted wavelet
transform to construct a scattering convolution network (SCN) which can enhance the
tolerance ability of local and linearized deformations, and SCN obtained accuracy of 97.22%
on hot-rolled steel strip defect detection application. Nonetheless, the spectral methods
have the following weaknesses: they are easily affected by feature correlations between
the scales, and high computation and memory requirements [8]. Xu et al. [9] designed a
hidden Markov tree model called CAHMT based on an assertion that the correlation of
wavelet coefficients of flat steel surface images at different scales satisfies Markov property.
CAHMT’s detection false rate is as low as 3.7%. Fofi et al. [10] designed a non-parametric
texture defect detection method by using Weibull features. It performs well on DAGM
database. However, it is hard for Weibull distribution to handle defects with gradual
intensity or with low contrast. Hence, Liu et al. [11] proposed a Haar–Weibull-variance
(HWV) model by using Haar features from local patches. This method achieved accuracy
of 96.2% on a hot-rolled steel surface defect dataset. Nonetheless, the above model-based
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methods have the following disadvantages: spatial limitations and failure to detect tiny
defects among global images. In conclusion, traditional computer vision methods had
achieved ideal results in the steel surface defect detection application. However, the afore-
mentioned traditional methods only take low-level features into account, which could not
fully characterize the image features and semantic details. It is also noteworthy that there
are also nearly no specific roll mark detection methods and datasets.

For the past few years, hardware computing devices boosting and the continuous ex-
pansion of public datasets have facilitated the development of neural networks [12]. Object
detection networks based on neural networks are theoretically divided into two branches,
namely one-stage detection and two-stage detection. One-stage detection networks operate
feature extraction and prediction regression in an integral network orderly. Li et al. [13]
made the YOLO all convolutional to detect flat steel surface defects and reached accuracy
of 99% with 83 FPS. Liu et al. [14] improved SSD network and put forward RAF-SSD, which
obtained 75.1% mAP in NEU database. However, the above methods failed to cope with
the multiscale defects and tiny defects. Two-stage detection networks firstly propose a
certain amount of proposal boxes, then classify them through another convolutional neural
network. Dong et al. [15] proposed a pyramid feature fusion and global context attention
network for pixel-wise detection of surface defect, called PGA-Net, which achieved 82.15%
mean pixel accuracy in NEU-Seg. Cha et al. [16] designed a structural visual inspection
method to decrease the processing time of Faster R-CNN which be capable of detect multi-
ple classes defects. The ointment is that the real-time performance of Faster R-CNN is not
satisfactory. He et al. [17] proposed a multi-scale feature fusion network (MFN), which ob-
tained 82.3% mAP in NEU-Det. Song et al. [18] proposed a novel encoder–decoder residual
network (EDRNet), which can accurately segment the whole defect instances with clear-cut
boundary and effectively filter out irrelevant background noise. Nonetheless, the excellent
performance of aforementioned deep learning methods was processed in image patches,
such as NEU-Det (1200 samples with the resolution of 200 × 200), which is widely used
among peers. These samples were beforehand processed by aforehand detection, selection
and segmentation based on prior knowledge, which are rather easier to handle than our
target (detect tiny defects in high resolution images). On the realistic industrial production
line; however, the images acquired by the steel defect detection system were wide and
high-resolution [19]. For example, the image resolution of the surface defect detection
system developed by our research team in the early stage is 1024 × 4096. In consideration
of the lack of public databases for steel strip surface defect inspection field, we open a
raw defect database of hot-rolled steel strip surface CSU_STEEL for the first time, which
contains six kinds of defects including roll mark, elastic deformation, wave, inclusions,
oxide scale, and scratches with 1024 × 4096 resolution. As far as we know, this dataset is
the first wide-format high-resolution hot-rolled steel strip surface original image dataset. Faced
with the challenge of tiny target detection in high resolution image capture under harsh
environments, a novel method—namely, smoothing complete feature pyramid networks
(SCFPN)—is proposed for the above focused task. The concept of complete intersection
over union (CIoU) is applied in feature pyramid networks to obtain faster regression speed
and higher prediction accuracy by suppressing vanishing gradient in training process. In
addition, label smoothing is employed to improve the generalization ability of model.

The rest of this paper is organized as follows. Section 2 elaborates the proposed SCFPN
in detail. Section 3 will introduce our experiments setting. Afterwards, our experiments are
evaluated quantitatively and qualitatively, and the experimental results on defect detection
will be analyzed in Section 4. Section 5 will discuss the results. Finally, Section 6 will
conclude this paper and discuss the future work.2. Materials and Methods

This paper concentrates on the steel strip surface roll mark detection problem, A
targeted two-stage object detection method—namely, smoothing complete feature pyramid
networks (SCFPN)—is designed, and the structure of SCFPN is shown in Figure 2. Primar-
ily, the backbone extracts feature of multi-levels from input images. ResNets increase layers
of networks without causing degradation problem. The deeper networks can extract more
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abstract feature with robust semantic information. Feature maps range from bottom (fine
resolution) to top (coarse resolution) in the pyramid hierarchy are utilized to construct fea-
ture pyramid (Neck) by aggregations between fusion of multi-scale features. SCFPN only
acquires a single-scale image of an arbitrary size, and builds feature pyramid at multiple
scales by convolution. Afterwards, Faster R-CNN (Head) is applied to execute bounding
boxes regression and classification tasks. Concretely, loss function of bounding boxes
regression uses complete intersection over union (CIoU) loss which provides faster fitting
speed and higher prediction accuracy. Loss function of classification is the Cross-entropy
loss with label smoothing which is employed to enhance the generalization ability of the
model. After the above steps, the networks export output images with predicted boxes and
labels [20].
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2. Materials and Methods
2.1. Feature Pyramid Networks

Feature pyramid networks (FPN) adopt pyramid hierarchy to collect feature infor-
mation from low-level to high-level. In detail, a pair of multi-scale feature pyramids are
identically constructed by upsampling and downsampling, so as to fuse features with
low resolution, abundant semantic information and features with fine resolution, inferior
semantic information through top-down pathway and lateral connections.

2.1.1. Bottom-Up Pathway

The bottom-up pathway is constructed by the feedforward computation of the back-
bone ResNets, which generated multiscale feature maps with proportion of 2. We call those
layers which possess feature maps of same size as different stage respectively. The final
layer of each stage has the most abundant features, so we select the final layer of each stage
as feature maps to construct feature pyramid. Concretely, for ResNets101, we named the
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output of last residual blocks as {C2, C3, C4, C5}, and which have receptive field of {4 × 4,
8 × 8, 16 × 6, 32 × 32} pixels severally [21].

2.1.2. Top-Down Pathway and Lateral Connections

The top-down pathway upsamples (2 × upsampling) feature maps which are robust
in semantic information, but with lower resolution to produce finer resolution features.
In order to acquire features with robustness, lateral aggregations are used to fuse feature
levels of the same size spatially from the bottom-up pathway pyramid and top-down
pathway pyramid. The features in the bottom-up pathway are poor in semantic information
expression, but their information of location is more accurate because they were produced
by input images originally. Figure 3 shows the structure of feature pyramid. The way
of lateral aggregations is a pixel-level addition. A new feature pyramid is set up after
repeating the above operation, which has same structure of the previous pyramid but is
robust semantically. As shown in Figure 2, the convolutional level C6 is construct by simply
1 × 1 conv from C5, which has the stronger sematic information and minimum resolution.
Then, the final feature maps are generated by 3 × 3 convolution on each merged map. we
name these merged feature maps as {P2, P3, P4, P5, P6}} which possess same resolution as
{C2, C3, C4, C5, C6} severally.
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computation of the backbone (the bottom-up pathway), blue feature pyramid is merged by top-down
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We apply shared classifiers/regressors among all levels of the feature pyramid, and
each level has d dimension (we set d as 256) similarly. Thus, all extra convolutional layers
have 256-channel outputs. Even more, these extra layers do not possess non-linearities.

2.1.3. Feature Pyramid Networks for RPN

RPN (Region Proposal Network) is a sliding-window class-agnostic object detec-
tor [22]. So as to employ RPN in FPN, the below modification should be adapted. In FPN,
RPN are adapted to each level on feature pyramid and attach a head (3 × 3 conv and
two sibling 1 × 1 conv) respectively, operating object/non-object binary classification and
bounding box regression. Different level will equip relevant anchors with different scales.
The feature level {P2, P3, P4, P5, P6} have anchors of {322, 642, 1282, 2562, 5122} pixels
r severally. Anchors from each level has three aspect ratios of {1:2, 1:1, 2:1} respectively.
In accordance with the classification rules, if a proposal box has the largest IoU with the
ground-truth box or has IoU greater than threshold value (say, 0.69), it will be regarded
as a positive label. While proposal boxes have IoU with any ground-truth boxes which
below threshold value (say, 0.32) will be regarded as negative label. We also share the
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params of the heads among arbitrarily feature pyramid levels in order to maintain the good
performance of sharing parameters (levels share similar semantic levels).

2.1.4. Feature Pyramid Networks for Faster R-CNN

Faster R-CNN is usually applied as detection head which uses Region-of-Interest (RoI)
pooling to extract features. In order to use Faster R-CNN in FPN, similarly, we need to
assign RoIs of different scales to each level of feature pyramid. We imitate the allocation
method strategy of RoI proposal in image pyramids. Theoretically, the equation to assign a
RoI to the level Pk of feature pyramid can be expressed as

k = [k0 + log2

(√
wh/224

)
] (1)

where w indicates the width of an RoI, h indicates the height of an RoI, 224 is the ImageNet
pre-training size, and k0 refers to the initial level which an RoI with w × h = 2242 should
be assigned. We set k0 to 4 as an initial state, that means we use C4 as the original feature
map. Intuitively, Equation (1) indicates that if the RoI’s scale becomes larger (say, 448), it
will be assigned into a higher level (say, k = 5). Each pyramid level has respective head
to process RoI further. Faster R-CNN still share parameters among all levels. In order to
build a light-weight and speedy head. Before the final classification and bounding box
regression layers, we employ RoI pooling to output 7 × 7 features, and add two hidden
1024 dimensions fully-connected (fc) layers. On account of ResNets not having such fc
layers, these layers will be initialized randomly and then trained.

2.2. Complete Intersection over Union

For anchor-based method, CIoU is a metric to evaluate the correlation between pre-
dicted boxes and ground-truth boxes. IoU is defined as

IoU =
|A ∩ B|
|A ∪ B| (2)

where A and B represent two boxes that are calculated, respectively. In the anchor-based
method, except for distinguishing positive samples and negative samples, IoU chiefly
serves as a loss function for bounding boxes regression because of its scale invariance. In
addition to this, IoU is also applied to select predicted boxes in Non-Maximum Suppression.
However, in the case of no intersection between predicted boxes and ground-truth boxes,
the IoU value is 0. That means IoU could not reflect the real distance between predicted
boxes and ground-truth boxes which can offers gradient for bounding boxes regression.
Although different predicted boxes have the same IoU loss value, their contact radio with
ground-truth boxes may differ [23].

To address the above problems, CIoU, additionally takes the overlapping area, the
distance between center points, and the aspect ratio of boxes into consideration, as shown
in Figure 4 and CIoU’s calculation formula can be expressed as

CIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (3)

where b refers to the center of the predicted box, bgt refers to the center of the ground-truth
box, ρ2 represents the Euclidean distance, c indicates the minimum bounding rectangle
diagonal length of predicted boxes and ground-truth boxes, α is a weighting function and
can be denoted as

α =
v

(1− IoU) + v
(4)
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where v is a metric to measure the aspect ratio consistency of predicted boxes and ground-
truth boxes, calculation formula of penalty term v can be expressed as

v =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

(5)

where h and w refer to predicted box’s height and width, severally. hgt and wgt refer to
ground-truth box’s height and width, severally.
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Figure 4. Figure of complete IoU. Red: ground-truth box, Blue: predicted box, d: the Euclidean
distance, c: the minimum bounding rectangle diagonal length of predicted boxes and ground-
truth boxes.

CIoU loss includes overlapping area and the distance between center points in addition
to the coverage predicted boxes. These penalty term will trigger predicted boxes to get
closer with the ground-truth boxes quickly. Even in the situation that predicted boxes
and ground-truth boxes have no overlap area, CIoU loss can still provide gradients for
bounding boxes regression. The α weight function adds the aspect ratio penalty term to
provide shape regression gradients for predicted boxes, prompting the predicted boxes
to fit the size of ground-truth boxes in shape promptly. For the above reasons, CIoU can
achieve better convergence speed and accuracy on the box regression problem.

2.3. Label Smoothing

Among multi-label classifications tasks, the softmax function is often used as the
activation function of the last predicted layer to normalize the export of the network to a
probability distribution over predicted classes, which can be expressed as

pi =
ezi

∑j ezj
(6)

where zi indicates output of the last linear layer which denotes class prediction probability.
Cross-entropy loss is frequently applied to evaluate the ability of a multiclassification
network whose output is a probability value range from 0 to 1. Cross-entropy loss grows
as the output predicted distribution p deviates from ground-truth label distribution q. The
Cross-entropy loss function can be expressed as

L = −∑i qi log pi (7)

where q is a one-hot vector that only has a sole value (1) and rest are value (0). Value
(1) refers to a positive sample while value (0) refers to a negative sample. During the
training process, training model get the optimal prediction probability distribution through
decreasing the Cross-entropy loss between the prediction probability and ground-truth
label probability. Then triggering the prediction distribution to get closer to the positive
labels and away from the negative labels. Whereas, one-hot vector increases the inter-class
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distance between different classes and make the models become over-confident about their
predictions. When training samples are so small that existing features are not enough
to represent all samples’ characteristics distribution, which will drastically impair the
generalization of the model and result in overfitting.

Label smoothing is a regularization method, which can be constructed for change
hard label into soft label to yield robust model during training. Label smoothing can be
expressed as

qi =

{
1− ε if i = y,

ε
(K−1) otherwise, (8)

where K represents the class numbers, ε is a constant. Label smoothing adds biases for
the labels. Specifically, label smoothing regularizes a model which uses softmax with k
classes output values by replacing the hard 0 and 1 classification targets with targets of

ε
k−1 and 1− ε respectively. In other words, label smoothing decreases the class weight of
ground-truth label to reduce the distance between positive samples and negative samples
slightly. In this way, soft labels prevent the training models from becoming over-fitting and
improves generalization of the network [24].

3. Experiments

The model is implemented by TensorFlow framework (version 1.4.1). TensorFlow
provides libraries for building deep learning model architectures. The evaluative datasets
included DeepPCB, NEU datasets, and CSU_STEEL. The FPN series networks (FPN, CFPN,
and SCFPN) employ ResNet101 which pre-trained on ImageNet as backbones. During the
training process, the basic learning rate is set to 0.001, and the warm-up learning rate and
step learning are adopted to stabilize the initial training process. The Cross-entropy loss
is introduced to measure the deviation between the predicted class and the ground-truth
class. Stochastic gradient descent (SGD) minimizes the deviation and obtains the optimum
weight matrix during the back propagation process. Meanwhile, the momentum algorithm
is adopted to accelerate the training. Table 1 lists some hyper-parameters used in FPN
series networks. All the experiments are performed on a server (12 GB NVidia Titan Xp
GPU, 2.2GHz Intel Xeon E5–2630 CPU, 64GB RAM, Dell, Beijing, China).

Table 1. Hyper-parameters of FPN series networks.

Hyper-
Parameters

Learning
Rate

Max
Iteration Momentum Lr Decay Batch

Size
Weight
Decay

Value 0.001 150,000 0.9 60,000, 120,000 4 0.0001

3.1. Hot-Rolled Steel Strip Surface Dataset

In the field of steel defect detection, nearly all the public datasets were processed by
aforehand detection, selection, and segmentation based on prior knowledge. The samples
of these datasets could not reflect the most real situation in the actual industrial production
line, which has a certain impact on the performance stability of the algorithm after being
transplanted to the production line. Faced with the above bottlenecks, we collected and
produced a hot-rolled steel strip surface defect database called CSU_STEEL to imitate the
industrial production line situation perfectly for the first time. CSU_STEEL contained
968 original images of hot-rolled steel strip surface on the industrial production line, with
a size of 1024 × 4096 pixels. Figure 5 shows samples of CSU_STEEL.
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CSU_STEEL has six classes of defects including roll mark, elastic deformation, wave,
inclusions, oxide scale, and scratches. Different from sliced samples, each image from
CSU_STEEL contains one or several classes of defects, which can be applied for both
classification and detection. To our knowledge, this database is the first wide-format and
high-resolution hot-rolled steel strip surface raw image dataset among peers. It provides
a public dataset to verify the algorithm performance for researchers in the field of defect
detection, which has contributed to the development and applications of surface defect
detection field.

3.2. Evaluation Metrics

In our experiments, precision, recall, average precision (AP), mean average preci-
sion (mAP), and processing time are employed as evaluation metrics to investigate the
performance of each network.

Precision is adapted to evaluate the percentage of correctly classified defects, and is
calculated by

precision =
TP

TP + FP
(9)

where True Positive (TP) indicates the numbers that model correctly predicts the positive
class, and False Positive (FP) indicates the numbers that model incorrectly predicts the
positive class.

Recall evaluates the percentage of actual positives was identified correctly, and its
calculation formula can be expressed as

recall =
TP

TP + FN
(10)

where FN (False Negative) refers to the numbers that model incorrectly predicts the
negative class.

AP is an overall measure metric of recall and precision which is the mean of the
precision after each related sample is calculated. For the sake of comprehensiveness and
simplicity, AP is applied to evaluate the detection performance of a model for a certain
class comprehensively.

MAP, is the average AP of each class, is adapted to evaluate the comprehensive
detection performance of a model for all classes [25].
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Processing time, namely the time requirement for network to process a single image,
is adapted to evaluate the real-time performance of defect detection of the model.

3.3. Evaluation Experiments

In this paper, in order to demonstrate the performance improvement of the proposed
methods, we firstly implement evaluation experiments on a widely used database, Deep-
PCB, which contains 1500 image pairs with annotations including positions of six common
types of PCB defects [26]. With the same purpose, so as to validate the effectiveness and
efficiency of the proposed methods in steel surface defect detection, especially roll mark
detection. We conducted evaluation experiments on NEU and CSU_STEEL further. Each
database is divided into a training set and test set by hand-out method. The methods
proposed in this paper are compared with the state-of-art surface defect detection meth-
ods, including Faster R-CNN, SSD, YOLOv3, and YOLOv4. The hyper-parameters of
each model are adjusted and optimized simultaneously to obtain peak performance on
each dataset.

The evaluation experiments contain three parts. Primarily, in order to verify the
influence of CIoU on the bounding boxes regression, the loss value comparison experiment
compares the loss curves of FPN (equipped with IoU loss), CFPN (equipped with CIoU
loss), and SCFPN (equipped with CIoU loss) during the training. Afterwards, the quantita-
tive evaluation between SCFPN and other methods are executed to prove the prominent
performance of proposed SCFPN. The last part is qualitative evaluation between SCFPN
and other methods and the qualitative assessment will verify the validity and generaliza-
tion ability of the SCFPN on hot-rolled steel strip surface roll mark detection application.

4. Results
4.1. Loss Comparision Experiment

Figure 6 shows the curves of the Faster R-CNN total loss values of each model during
the training. In comparison with FPN, CFPN, and SCFPN have showed greater regression
gradients in the early stage of training, and Faster R-CNN total loss of CFPN and SCFPN
stabilize at 0.65 around 100,000 steps. In contrast, the Faster R-CNN total loss value of
FPN still fluctuate around 0.7 after 150,000 steps. The curves of total RPN loss value of
each model during the training are displayed in Figure 7. Similarly, the models of CFPN
and SCFPN have greater regression gradients than FPN in the early stage of training, and
smaller RPN total loss values also occur. The RPN total loss values of the three models all
become stable around 0.05 at about 87,000 steps.
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Figure 7. Total loss of RPN. Red: FPN; blue: CFPN; green: SCFPN.

4.2. Quantitative Evaluation

AP reflects the detection performance of a model for a certain class comprehensively,
and mAP is adapted to evaluate the comprehensive detection performance of a model for
all classes. For the sake of a straightforward presentation, the following two experiments
are only presented and analyzed by processing time, AP and mAP. Experimental evaluation
results based on DeepPCB and NEU datasets are shown in Tables 2 and 3, respectively.
According to Table 2, it can be clearly known that the proposed SCFPN obtained the
highest mAP, reaching 99.2%, and reached the best AP among even five types of defects.
For making a fair comparison, in Table 3, we selected four more methods which have been
verified on the NEU database, RAF-SSD [14], SCN [27], DIN [28], and DDN [17]. Although
our SCFPN won only twice on the AP for the six distinct defect categories, it obtained the
highest mAP of 82.8%.

Table 2. Experimental evaluation metrics of different detection networks on DeepPCB. The bolded
values are the best results in their respective columns.

Method
Processing

Time/s mAP/%
AP/%

Open Short Mousebite Spur Pin_Hole Copper

Faster
R-CNN 0.252 97.5 96.8 95.4 97.8 98.7 98.9 97.4

SSD 0.021 95.9 93.1 94.5 95.7 96.7 98.7 96.9
YOLOv3 0.016 90.9 90.9 90.8 90.9 90.7 90.9 90.9
YOLOv4 0.018 97.7 99.1 96.7 96.7 96.6 98.2 98.7

FPN 0.095 97.1 98.3 94.5 96.3 96.1 98.6 98.5
CFPN 0.094 98.9 99.2 98.8 99.1 98.6 99.0 98.6

SCFPN 0.091 99.2 99.5 98.9 98.9 98.9 99.5 99.5
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Table 3. Experimental evaluation metrics of different detection networks on NEU datasets. Exper-
imental results from methods without “*” are rerun by ourselves, and experimental results from
methods with “*” are cited from published papers. The bolded values are the best results in their
respective columns.

Method Processing
Time/s mAP/%

AP/%

Cr In RS PS Pa Sc

SSD 0.021 66.4 48.2 72.4 68.1 68.4 73.7 67.8
Faster

R-CNN 0.122 70.4 46.2 69.7 65.4 75.2 84.6 81.5

YOLOv3 0.017 73.6 46.9 76.6 68.4 71.0 89.4 89.4
RAF-SSD * 0.019 75.1 71.7 75.5 75.3 72.6 80.1 75.4

SCN * 0.037 79.9 59.4 83.4 68.0 82.5 91.1 95.0
YOLOv4 0.015 80.4 64.2 81.8 67.8 84.6 93.0 90.9

DIN * 0.025 80.6 61.5 85.9 64.8 90.3 92.9 88.1
DDN * 0.050 82.3 62.4 84.7 76.3 89.7 90.7 90.1

FPN 0.089 77.3 57.3 79.5 64.8 75.9 91.6 94.8
CFPN 0.086 79.9 65.5 80.7 69.4 77.6 90.7 95.3

SCFPN 0.087 82.8 69.1 83.1 74.9 80.4 93.1 96.4

Table 4 exhibits the roll mark detection results of each detection network on CSU_STEEL.
It should be noted that Faster R-CNN and SSD are not competent to cope with the roll mark
detection task of CSU_STEEL and lose detection ability. By contrast, SCFPN achieves the
highest recall, accuracy and AP of 90.1%, 77.6%, and 75.9%, respectively. What is needed to
demonstrate that AP of CFPN increases by 3.3% when compared with FPN, nevertheless,
compared with CFPN, AP of our SCFPN further increases by 4.8%.

Table 4. Roll mark detection experiment evaluation metrics of different detection networks on
CSU_STEEL. The bolded values are the best results in their respective columns.

Method Recall/% Precision/% AP/% Processing Time/s

Faster R-CNN - - - 0.832
SSD - - - 0.056

YOLOv3 22.3 63.8 18.5 0.045
YOLOv4 85.4 65.6 75.6 0.047

FPN 87.1 69.8 67.8 0.092
CFPN 89.4 72.7 71.1 0.091

SCFPN 90.1 77.6 75.9 0.091

4.3. Qualitative Evaluation

Low contrast and large intra-class distance of roll mark under inhomogeneous imaging
environment bring different degrees of interference to the roll mark detection on strip
steel surface. In order to verify the effectiveness of SCFPN in roll mark detection and
the generalization ability confronted with multiple roll mark detection tasks, based on
CSU_STEEL dataset, we select conventional and feature pyramid-based methods to conduct
qualitative evaluation experiments on roll mark detection, which is shown in Figure 8. In
all of our experiments based on CSU_STEEL, the original image of the hot-rolled steel strip
surface is directly used for roll mark defect detection without cutting. In Figure 8, the top
is the original image, and (a), (b), (c), (d), and (e) are the five kinds of high-frequency roll
marks that existed in the original image, severally, and the image details are shown in the
square slices below.
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As can be seen from Figure 8, the roll marks can appear on any local location of
the steel surface, with irregular appearance and large-scale variation, and low contrast
compared to the background. For the quality control of steel strip industry, roll mark has the
first alarm level, which brings great challenges to the industrial online inspection. Figure 8
shows the defect slices of the original image and the detection results of YOLOv3, YOLOv4,
FPN, CFPN, and SCFPN from left to right, respectively. For type (a) roll marks, they occupy
a very small area relative to the whole steel strip image and manifest in the shape of tiny
round beads which are difficult to distinguish by the naked eyes in the industrial site, and
usually easily submerged by tiny raindrops and rain lines in the background. Because
of these characteristics, both YOLOv3 and CFPN lose their perception of such defects,
FPN only detects part of these defects, our SCFPN and YOLOv4 still completely detect
them. Type (b) roll marks are typical and common roll marks in the form of long and
narrow trail. YOLOv3 is not sensitive to such defects, by contrast, the three methods of
YOLOv4, FPN, CFPN, and SCFPN have robust cognitive ability to such defects. Type (c)



Sensors 2021, 21, 7264 14 of 17

roll marks are irregular roll marks with discontinuous shape, which can be detected by all
other methods except YOLOv3, but FPN and YOLOv4 identifies it as two roll marks. It can
also be seen from the figure that SCFPN is more accurate in identifying the location of type
(c) defects. Another common roll marks are type (d) defects, which are characterized by
small area proportion, tiny line shape, which are easy to be buried in noise. Only SCFPN
shows excellent identification performance. Type (e) roll marks are also a common roll
mark, which occupy a relatively larger area than other defects. Besides, the texture of type
(e) manifests blurry, and the orientation usually inclined downward. According to the
detection results, only YOLOv4, CFPN, and SCFPN can detect it.

For the comparison of detection results of rare roll marks with special morphology, as
shown in Figure 9, from left to right are the original image, as well as the detection results
of YOLOv3, YOLOv4, FPN, CFPN, and SCFPN. The two mentioned roll marks exhibited in
the original image are rare roll marks that appear less frequently in the training dataset. For
the first type of roll marks, it presents elliptic convex shape, we can observe that YOLOv3
and YOLOv4 have lost its perception ability, FPN only detects typical roll marks that occur
frequently, and only part of them are detected by CFPN. In contrast, our SCFPN not only
detects part of common roll marks, but also has the ability to identify rare defect forms.
The second kind of roll marks are in the form of bending a broken thin line, only SCFPN
and YOLOv4 can detect it with high confidence, while the other methods only detect the
common roll marks and lose the identification of such defects.
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5. Discussion

Based on the analysis of Figures 6 and 7, we can draw a conclusion that CIoU endows
network higher convergence speed and accuracy. In theory, the introduction of overlapping
area and center distance penalty term provide the gradients about the exact direction of
ground-truth boxes for the predicted boxes, even if they do not intersect. The α weighting
function that is involved in CIoU loss function provides the gradients about shape for the
predicted boxes, prompting the predicted boxes to fit the size of the ground-truth boxes
in shape more quickly. Based on the above adjustments, therefore, the vanishing gradient
problem resulting from IoU loss function is effectively solved. What is more, CIoU also
offers better convergence speed and accuracy for bounding boxes regression.

The comparisons of experimental results of Tables 2 and 3 indicate that CIoU loss func-
tion promotes the network in accuracy. Theoretically, α weight function in CIoU prompts
the predicted boxes to fit with ground-truth boxes accurately and quickly. Label smoothing
contributes to higher detection accuracy of the network ulteriorly. The intrinsic reason is
that label smoothing restrains the overfitting of model and promotes the generalization
ability effectively. It is worth mentioning that experimental settings and computing devices
of the methods being cited are different. Therefore, the purpose of quoting them is for
presentation more than comparison.
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In Table 4, the proposed method achieves higher AP. However, the other methods’ per-
formance is not very satisfactory. We can conclude that the proposed method is equipped
handle a tiny target inspection task in high-resolution images captured under harsh en-
vironment. The intrinsic reason is that feature pyramid fuses multi-levels feature maps,
and spreads semantic information from high layers to low layers to enrich fusing feature
maps by downsampling and lateral connections. Therefore, the roll marks with large scale
variation and most tiny targets can be detected stably. Contrary to methods based on multi-
level feature pyramid, the networks of other methods are lack of modules which take full
advantage of features, and the extracted features of these networks only contain informa-
tion of respective scale which do not employ them in combination. It should be noted that
YOLOv3 has feature pyramid modules, but the finest fusing feature’s resolution is 52 × 52.
This results in that YOLOv3 performs poorly in tiny defect detection. In addition, the
image resolution of DeepPCB and NEU datasets are 640 × 640 and 200 × 200, respectively.
The scale variance between defects and the whole image is relatively small, moreover,
the intra-class distance of defects is relatively small. Therefore, even methods without
feature aggregation modules are competent for such detection tasks with satisfactory scores.
Nonetheless, the resolution of CSU_STEEL dataset is 1024 × 4096, corresponding to the
scale variance between defects and images is larger. Besides, roll marks got characteristics
with low contrast and large intra-class distance, which brings about enormous difficulty
for conventional object detection methods. What calls for special attention is that SCFPN is
a two-stage network which implements feature extraction and regions classification and
regression in two networks. YOLOv4 is a one-stage network which integrates feature ex-
traction and object classification and regression in a single network. Nonetheless, YOLOv4
generates massive anchors result in imbalance between positive samples and negative
samples. As a result, compared with our SCFPN, YOLOv4 consumes less processing time
at the expense of detection accuracy. However, both methods satisfy the requirements of
real-time detection of roll marks in actual steel industrial field.

By comprehensively comparing these methods in Figures 8 and 9, we notice that
SCFPN shows excellent recognition ability for different roll marks. Especially, for the low
contrast and tiny roll marks submerged by noise, SCFPN behaves more robust. More
significantly, our SCFPN is more refined for the location of defects. The comparative
experiment further verifies that our proposed SCFPN has more robust feature extraction
and generalization ability, which strongly adapt to the industrial application of roll mark
detection in steel mills.

6. Conclusions

Aiming at the large intra-class distance and low contrast of roll marks of steel strips,
this paper proposes a SCFPN to achieve accurate roll mark detection with high resolution
image under extremely harsh industrial environments. The pyramid structure of the
network possesses prominent defect feature description ability. Besides, we introduce
CIoU loss function to suppress vanishing gradient during training, label smoothing is also
adopted to prevent the training model become overconfident, which eases the overfitting
problem. Furthermore, in view of lack of public database, we open a raw defect database
of hot-rolled steel strip surface CSU_STEEL for the first time. Our method shows more
robust feature extraction and fine target localization ability, performing multi-scale and
fine-grained characterization to roll marks with 75.9% AP. Additionally, the SCPFN yields
competitive results, with 99.2% and 82.8% mAP on DeepPCB and NEU, respectively. In
addition, higher detection accuracy, stability, and generalization ability are also configured.
Moreover, the proposed SCFPN belongs to end-to-end training model and is easy to
implement transferring and embedding, which can provide reference for other neural
networks. However, the processing time optimization and structure optimization are still
in our further research.



Sensors 2021, 21, 7264 16 of 17

Author Contributions: Conceptualization, Q.L. and W.J.; Methodology, Q.L. and W.J.; Software,
W.J.; Validation, W.J.; Formal analysis, Q.L. and W.J.; Investigation, Q.L. and W.J.; Resources, Q.L.;
Data curation, Q.L. and W.J.; Writing—original draft preparation, W.J. and J.S.; Writing—review and
editing, Q.L., W.J. and J.S.; Visualization, W.J.; Supervision, C.Y.; Project administration, Q.L. and
C.Y.; Funding acquisition, Q.L. and J.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant no.
61973323. This research was funded by National Natural Science Foundation of China, grant no.
6201101509. This research was funded by National Natural Science Foundation of China, grant
no. 62071164. This research was funded by the Natural Science Foundation of Hunan, grant no.
2020JJ4747. This research was funded by the Natural Science Foundation of Hunan, grant no.
2021JJ20078. This research was funded by the Innovation and Development Project of Ministry of
Industry and Information Technology of the China, grant no. TC19084DY.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the support of our research team, the
Natural Science Foundation of China, and the Natural Science Foundation of Hunan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, Q.; Fang, X.; Liu, L.; Yang, C.; Sun, Y. Automated Visual Defect Detection for Flat Steel Surface: A Survey. IEEE Trans.

Instrum. Meas. 2020, 69, 626–644. [CrossRef]
2. Neogi, N.; Mohanta, D.K.; Dutta, P.K. Defect detection of steel surfaces with global adaptive percentile thresholding of gradient

image. J. Inst. Eng. 2017, 98, 557–565. [CrossRef]
3. Song, K.; Yan, Y.; Chen, W.; Zhang, X. Research and perspective on local binary pattern. Acta Autom. Sin. 2013, 39, 730–744.

[CrossRef]
4. Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl.

Surf. Sci. 2013, 285, 858–864. [CrossRef]
5. Luo, Q.; Sun, Y.; Li, P.; Simpson, O.; Tian, L.; He, Y. Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface

Defect Classification. IEEE Trans. Instrum. Meas. 2019, 68, 667–679. [CrossRef]
6. Yin, H.; Chen, B.; Chai, Y.; Liu, Z. Vision-based object detection and tracking: A review. Acta Autom. Sin. 2016, 42, 1466–1489.
7. Song, K.; Hu, S.; Yan, Y. Automatic recognition of surface defects on hot-rolled steel strip using scattering convolution network. J.

Comput. Inf. Syst. 2014, 10, 3049–3055.
8. Sharifzadeh, M.; Amirfattahi, R.; Sadri, S.; Alirezaee, S.; Ahmadi, M. Detection of steel defect using the image processing

algorithms. In Proceedings of the IEEE International Multitopic Conference, Karachi, Pakistan, 23–24 December 2008; pp. 125–127.
9. Xu, K.; Song, M.; Yang, Z.; Zhou, P. Application of hidden Markov tree model to on-line detection of surface defects for steel

strips. J. Mech. Eng. 2013, 49, 34–40. [CrossRef]
10. Timm, F.; Barth, E. Non-parametric texture defect detection using Weibull features. In Proceedings of the SPIE Conference on

Image Processing: Machine Vision Applications IV, San Francisco, CA, USA, 10 February 2011.
11. Liu, K.; Wang, H.; Chen, H.; Qu, E.; Tian, Y.; Sun, H. Steel Surface Defect Detection Using a New Haar-Weibull-Variance Model in

Unsupervised Manner. IEEE Trans. Instrum. Meas. 2017, 66, 2585–2596. [CrossRef]
12. Li, S.; Yang, J.; Wang, Z.; Zhu, S.; Yang, G. Review of development and application of defect detection technology. Acta Autom.

Sin. 2020, 46, 2319–2336.
13. Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network.

IFAC-PapersOnLine 2018, 51, 76–81. [CrossRef]
14. Liu, X.; Gao, J. Surface Defect Detection Method of Hot-Rolled Steel Strip Based on Improved SSD Model. EasyChair 2020, 4681,

1–11.
15. Dong, H.; Song, K.; He, Y.; Xu, J.; Yan, Y.; Meng, Q. PGA-Net: Pyramid feature fusion and global context attention network for

automated surface defect detection. IEEE Trans. Ind. Inf. 2019, 16, 7448–7458. [CrossRef]
16. Cha, Y.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based

Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]
17. He, Y.; Song, K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical

Features. IEEE Trans. Instrum. Meas. 2020, 69, 1493–1504. [CrossRef]
18. Song, G.; Song, K.; Yan, Y. EDRNet: Encoder-Decoder Residual Network for Salient Object Detection of Strip Steel Surface Defects.

IEEE Trans. Instrum. Meas. 2020, 69, 9709–9719. [CrossRef]

http://doi.org/10.1109/TIM.2019.2963555
http://doi.org/10.1007/s40031-017-0296-2
http://doi.org/10.3724/SP.J.1004.2013.00730
http://doi.org/10.1016/j.apsusc.2013.09.002
http://doi.org/10.1109/TIM.2018.2852918
http://doi.org/10.3901/JME.2013.22.034
http://doi.org/10.1109/TIM.2017.2712838
http://doi.org/10.1016/j.ifacol.2018.09.412
http://doi.org/10.1109/TII.2019.2958826
http://doi.org/10.1111/mice.12334
http://doi.org/10.1109/TIM.2019.2915404
http://doi.org/10.1109/TIM.2020.3002277


Sensors 2021, 21, 7264 17 of 17

19. Luo, Q.; He, Y. A cost-effective and automatic surface defect inspection system for hot-rolled flat steel. Robot. Comput. Integr.
Manuf. 2016, 38, 16–30. [CrossRef]

20. Bochkovskiy, A.; Wang, C.; Liao, H. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
21. Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
22. Song, D.; Yu, Q.; Corbetta, A. Depth driven people counting using deep region proposal network. In Proceedings of the IEEE

International Conference on Information and Automation (ICIA), Macao, China, 18–20 July 2017; pp. 416–421.
23. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression.

In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp.
12993–13000.

24. Müller, R.; Kornblith, S.; Hinton, G. When Does Label Smoothing Help. arXiv 2019, arXiv:1906.02629.
25. Konstantinos, P.; Maria, B.; Chainti, A.; Konstantinos, K. Artificial Intelligence techniques in Asthma: A systematic review and

critical appraisal of the existing literature. Eur. Respir. J. 2020, 56, 2000521.
26. Tang, S.; He, F.; Huang, X.; Yang, J. Online PCB defect detector on a new PCB defect dataset. arXiv 2019, arXiv:1902.06197.
27. Xing, J.; Jia, M. A convolutional neural network-based method for workpiece surface defect detection. Measurement 2021,

176, 109185.
28. Hao, R.; Lu, B.; Cheng, Y.; Huang, B. A steel surface defect inspection approach towards smart industrial monitoring. J. Intell.

Manuf. 2021, 32, 1833–1843. [CrossRef]

http://doi.org/10.1016/j.rcim.2015.09.008
http://doi.org/10.1007/s10845-020-01670-2

	Introduction 
	Materials and Methods 
	Feature Pyramid Networks 
	Bottom-Up Pathway 
	Top-Down Pathway and Lateral Connections 
	Feature Pyramid Networks for RPN 
	Feature Pyramid Networks for Faster R-CNN 

	Complete Intersection over Union 
	Label Smoothing 

	Experiments 
	Hot-Rolled Steel Strip Surface Dataset 
	Evaluation Metrics 
	Evaluation Experiments 

	Results 
	Loss Comparision Experiment 
	Quantitative Evaluation 
	Qualitative Evaluation 

	Discussion 
	Conclusions 
	References

