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Abstract: Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic
fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental
factors such as temperature. The aim of this study was to analyze the bacterial communities and
immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 ◦C
and 25 ◦C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq
16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes
(qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased
survival of larvae after C. militaris injection was observed at 25 ◦C, although more frequent episodes
of spontaneous bacteriosis were observed at this temperature compared to 15 ◦C. We revealed
an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph
in response to infection at 25 ◦C, which was not observed at 15 ◦C. Antifungal peptide genes showed
the highest expression at 25 ◦C, while antibacterial peptides and inhibitor of apoptosis genes were
strongly expressed at 15 ◦C. Cultivable bacteria significantly suppressed the growth of C. militaris.
We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host
bacterial associates.

Keywords: insects; mycoses; spontaneous bacterioses; fungal–bacteria interactions; Cordyceps militaris;
antimicrobial peptides

1. Introduction

The development of infectious diseases in animals is often accompanied by the proliferation
of complex concomitant microorganisms in addition to the development of the main pathogen.
In particular, mycoses of insects may develop as mixed infections when opportunistic bacteria are
actively involved in the pathogenesis. This occurs due to tissue damage [1] and deregulation of host
immune reactions in response to the pathogenic fungi [2,3]. Direct and indirect interactions between
fungi and bacteria may lead to both antagonistic and synergistic effects on survival [2,4–6]. In addition,
interrelations between fungi and bacteria in insect hosts may be mediated by complex environmental
factors, such as temperature, chemicals, or parasitoids, that have an influence on the outcome of the
disease [7,8]. However, these immune-ecological studies are just beginning to develop.

J. Fungi 2020, 6, 0170; doi:10.3390/jof6030170 www.mdpi.com/journal/jof

http://www.mdpi.com/journal/jof
http://www.mdpi.com
https://orcid.org/0000-0003-3438-3217
https://orcid.org/0000-0003-2777-0833
http://www.mdpi.com/2309-608X/6/3/0170?type=check_update&version=1
http://dx.doi.org/10.3390/jof6030170
http://www.mdpi.com/journal/jof


J. Fungi 2020, 6, 0170 2 of 20

Temperature is one of the crucial factors that influences the development of mycoses and
bacterioses in insects. Temperature acts on both microorganism growth and on insect immune and
behavioral reactions [9–14]. Entomopathogenic ascomycetes usually have optimal growth between
20–30 ◦C [15]. In contrast, many bacteria that are associated with terrestrial insects exhibit more active
growth between 28–37 ◦C [16,17]. In many cases, host cellular and humoral antifungal reactions
and resistance to fungi are increased with a short or prolonged elevation of temperature [18–24];
however, cold stresses may also activate antifungal systems [18]. Insect antibacterial responses are also
dependent on environmental temperatures [25–27] and elevated temperature often promotes bacterial
infection [16,17]. There are examples of increased antibacterial responses in insects under short-term
or prolonged exposure to low temperatures [16,26,28,29]. Importantly, in a state of cold diapause,
cellular immunity continues to work [30] and changes in microbiome composition, immune response
and susceptibility to fungal and bacterial infections may also occur [27,31]. It is likely that the outcome
of complex infections may be shifted toward mycoses under low temperatures and toward bacterioses
under high temperatures. However, the changes in immune response and microbiota composition
during complex infections under different temperature conditions are insufficiently understood.

Various antimicrobial peptides (AMPs) of insects have key roles in both antibacterial and antifungal
responses [32]. Some AMPs, such as gallerimycin and galiomycin, which are regulated by the Toll
immune signaling pathway, exhibit activities against filamentous fungi, but not against bacteria [33,34].
Many AMPs (e.g., cecropins, gloverins, lysozymes) synthesized via the IMD and Toll pathways have
a broad spectrum of activities predominantly against gram-positive and gram-negative bacteria as
well as against fungi [35,36]. It is likely that AMPs control the proliferation of bacteria during the
development of mycoses. In fact, the level of AMP gene expression clearly responds to changes in the
microbial community during fungal infections [3]. Moreover, AMP gene expression is dependent on
temperature [23,29].

The expression of apoptosis, reactive oxygen species (ROS) and stress-related genes may be
crucial in the development of infections caused by entomopathogenic fungi and concomitant bacteria.
In particular, a key regulator of programmed cell death, inhibitor of apoptosis (IAP), has paramount
physiological importance, including in the antifungal response as was recently shown by Zhang and
coworkers [37]. RNAi-mediated knockdown of the IAP homologue in locusts led to a decrease in the
total hemocyte count, a degeneration of the gut, a shift in the microbiota, and increased susceptibility
to fungal infection. In addition, IAP is involved in immunity to bacterial infections, as shown for
Drosophila [38]. The generation of ROS has a large impact in reactions against different pathogens [39],
as well as in maintaining microbial homeostasis, especially in the insect gut [40–42]. The main
source of ROS in insect hemolymph is the prophenoloxidase cascade. As a result of its activation,
ROS (primarily semi-quinone radicals and H2O2) are formed [43–45]. In the gut, fat body and in
other tissues, the formation of ROS occurs with the participation of members of the NADPH oxidase
(NOX) family, such as dual oxidases (DUOX). The enzyme generates superoxide and H2O2, which are
powerful oxidants that exhibit microbicidal activity [40]. Both fungal and bacterial infections led to
changes in DUOX activity in the gut and hemocoel tissues [2,3,42]. RNAi knockdown of the DUOX
system caused a decrease in ROS and uncontrolled proliferation of bacteria [42]. Heat shock proteins
(HSPs) have functions in protein folding and unfolding, and participate in immune signaling pathways
and other processes [46]. HSPs are important stress markers, which sense different thermal actions,
diapause formation [47] and infections [12].

It is important to note that entomopathogenic fungi produce various secondary metabolites
and enzymes (oosporeins, destruxins, different proteinases, AMPs) for inhibiting both host immune
responses and competitive microorganisms [36,48,49]. The set of enzymes and secondary metabolites
present is significantly different between fungal species and depends on host and habitat specificity.
As a rule, generalist species have a broader spectrum of metabolites compared to species with restricted
host ranges [50–52].
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The ascomycete Cordyceps militaris is characterized by a restricted host and habitat range and has
a highly reduced number of genes involved in secondary metabolism and the synthesis of proteases
compared to generalists such as Metarhizium robertsii and Beauveria bassiana [50,53]. This fungus mainly
infects forest lepidopterans (Lepidoptera, Macroheterocera) in the larval and pupal stages which
are located in the soil, forest flour and fallen wood [54–56]. Previously, natural infections of insects
with C. militaris were studied insufficiently. It is known that larvae and pupae could be infected
by topical application with ascospores or conidia in a laboratory [22,57]. However this method is
difficult to reproduce, and the outcomes strongly depend on the physiological state of the host [22].
In contrast, injection of lepidopteran larvae and pupae with blastospores or conidia has led to more
stable development of the mycosis [55,58,59]. Importantly, spontaneous bacterial infections have been
constantly documented after infection of C. militaris with insects in laboratory conditions [22,58,59].
Therefore, C. militaris is a convenient model to study fungal–bacteria interactions in insects. The optimal
temperature for mycelial growth of C. militaris palearctic isolates is approximately 20 ◦C [22,60]. In a
previous study [22], we showed in a model insect, the wax moth Galleria mellonella, that larvae in a state of
facultative diapause induced by a low temperature (15 ◦C) are most susceptible to the fungus. Mycosis
successfully developed after injection with C. militaris blastospores at 15 ◦C. By contrast, at 25 ◦C
(active state), larvae were able to overcome the infection and complete metamorphosis, although,
the infection may persist in pupae and adults and could still be activated by a low temperature.
Activation of the antifungal response (encapsulation and phenoloxidase activity) in response to
C. militaris infection was observed in wax moth larvae at 25 ◦C, while inhibition of these parameters
occurred at 15 ◦C. We suggested that C. militaris uses fewer universal tools for evasion and inhibition of
host immunity compared to generalists fungi, such as Metarhizium and Beauveria, that induce prolonged
mycosis development, persist in hosts and have a specialization in killing dormant insects with reduced
immune activity [22,59]. Moreover, because we registered spontaneous bacterioses in the wax moths
post injection of C. militaris blastospores and conidia, we hypothesized that C. militaris has poorly
developed mechanisms for manipulating the host microbiota and requires a low temperature for its
normal development.

In the present study we investigated the microbial communities of the wax moth larvae hemolymph
and midgut, as well as the expression of AMP, apoptosis, ROS and stress-related genes in the wax moth
midgut and fat body after injection with C. militaris and incubation under two temperatures, 15 ◦C
(state of facultative diapause) and 25 ◦C (active state). We found significant changes in these parameters
in response to infection at different temperatures, which support the hypothesis mentioned above.

2. Material and Methods

2.1. Fungi and Insects

C. militaris isolate CNAp (GenBank No MF073255.1), from the microorganism collection of the
Institute of Systematics and Ecology of Animals SB RAS, was used in this work. Conidia had been
stored at −80 ◦C since 2015. For infections, conidia were cultivated on Sabouraud dextrose agar with
yeast extract (2.5 g/L) (SDAY) for 22 days at 23 ◦C and a photoperiod of 8:16 (light:dark). Conidia were
suspended in saline (0.9% NaCl) without any detergents and filtered through a sterile cloth to remove
mycelial clumps. Concentrations of conidia were determined using a Neubauer hemocytometer.
A Siberian line of wax moth larvae was maintained on artificial media as described previously [61].
Larvae of the sixth instar were used in experiments.

2.2. Procedures for Infection and Bioassays

Larvae were injected with 4µL of a suspension containing 1250, 2500 or 5000 conidia. Control larvae
were injected with saline. Punctures were made between the sixth and seventh abdominal segments
using a microinjector with an insulin syringe. The needle was sterilized with 96% ethanol before each
injection. Infected and control larvae were placed at two constant temperatures (25 ◦C and 15 ◦C)
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immediately after injection. Larvae were maintained in 90 mm glass Petri dishes (12 larvae per dish)
with artificial media (3 g per one Petri dish) in the dark. Temperature in the Petri dishes at such an
insect density corresponded with environmental temperatures. Ventilation of the Petri dishes and
registration of mortality was conducted every day over 10 days. To determine the causes of death,
cadavers were placed on moist filter paper in the Petri dishes and maintained at the temperatures
indicated above. Three replicates (one replicate = 12 larvae) were used to assay mortality after injection
with each dose, and the whole experiment was repeated twice.

For detection of hyphal bodies and bacteria in the hemolymph of infected larvae, we used gradient
centrifugation of the hemolymph in Percol followed by electron transmission microscopy as described
previously [59]. To determine the yield of conidia on the larvae, the cadavers were incubated for
30 days in moist chambers at 25 ◦C and 15 ◦C. Then, each cadaver was placed in a tube with 20 mL of a
0.1% water-Tween 20 solution and vortexed for 3 min until the mycelia and conidia were completely
washed off. Conidia were counted using a hemocytometer and the concentrations were calculated for
each cadaver.

2.3. Bacterial Colony Forming Unit (CFU) Counts

At 96 h after injection with a dose of 2500 conidia per larvae, control and infected insects were
surface sterilized by 3% H2O2 and 70% ethanol. Forty five µL of hemolymph from three larvae were
placed in 100 µL of 150 mM cool NaCl and immediately homogenized using an ultrasonic homogenizer
(Sonopuls, Bandelin electronic GmbH & Co. KG, Berlin, Germany). Midguts were pooled in the same
NaCl (one sample = three larvae) and homogenized by the same technique. Samples were diluted
with the same NaCl by 10, 100, and 1000-fold and a 100 µL aliquot was plated on media (Bile esculin
azide agar for enterococci and Endo agar for enterobacteria) in 90 mm Petri dishes. The cultures were
incubated for 2 days at 35 ◦C and then CFUs were counted. CFU counts were calculated for each
midgut or 10 µL of hemolymph. A total of 5–6 samples from each treatment were used for analysis.

2.4. Analysis of Bacterial Communities

At 96 h post-treatment, infected (2500 conidia) and control larvae were surface-sterilized by 3%
H2O2 and 70% ethanol and dissected. Midguts with content were isolated and frozen in liquid nitrogen
(one sample = 5 midguts). In addition, decomposed cadavers (6–7 d post infection) were analyzed.
Whole cadavers were frozen in liquid nitrogen (one sample = 3 whole bodies). Three biological
replicates from each treatment were used.

DNA was isolated using a DNeasy PowerSoil DNA Isolation Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The 16S rRNA region was amplified with the primer pair
V3–V4 combined with Illumina adapter sequences [62]. PCR amplification was performed as described
previously [63]. A total of 200 ng of PCR product from each sample was pooled together and purified
using a MinElute Gel Extraction Kit (Qiagen, Hilden, Germany). The obtained libraries were sequenced
with 2 × 300 bp paired-end reagents on a MiSeq (Illumina Inc., San-Diego, California, USA) in the SB
RAS Genomics Core Facility (ICBFM SB RAS, Novosibirsk, Russia). The sequencing data reported in
this study were submitted to GenBank under the study accession PRJNA650299.

Raw sequences were analyzed with the UPARSE pipeline [64] using Usearch v11.0. The UPARSE
pipeline included a merging of paired reads, read quality filtering, length trimming, merging of identical
reads (dereplication), discarding singleton reads, removing chimeras, and operational taxonomic unit
(OTU) clustering using the UPARSE-OTU algorithm. The OTU sequences were assigned a taxonomy
using the SINTAX [65] and 16S RDP training set v.16 [66]. The final dataset included 384,875 reads
(mean ± SE = 20,532 ± 630 per midgut sample and 46,162 ± 1453 per cadaver sample, see Dataset).
All rarefaction curves showed a trend of approaching the saturation plateau (Figure S1), which indicated
a reasonable volume of the sequenced reads.
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2.5. Gene Expression

Wax moth larvae at 96 h after injection (2500 conidia) were dissected on ice cold PBS and midguts
without contents and fat bodies were collected. Midguts content were removed by eye forceps.
Midguts from ten larvae or fat bodies from five larvae were pooled in each sample. A total of 5–6 samples
(biological replicates) from each treatment were used for analysis. The tissues were frozen in liquid
nitrogen and stored at −80 ◦C. Samples were lyophilized at −65 ◦C, 400 mtorr for 15 h and disrupted in
liquid nitrogen using micropestles just before RNA isolation. The tissues were homogenized in QIAzol
Lysis Reagent (Qiagen, Hilden, Germany) and RNA was isolated according to the manufacturer’s
instructions. Quantity and quality of the total DNA were estimated by NanoDrop NanoVue Plus
(GE Healthcare, Chicago, Illinois, USA). Each sample was normalized to a concentration of 1.5 µg/µL
and treated by RQ1 RNase-free DNase (Promega, Madison, WI, USA). RNA was converted to cDNA
using 6 µg DNA-free RNA, 3 µL 100 nM random nanomers and 4 µL RevertedAidTM M-MuLV Reverse
Transcriptase (Fermentas, Vilnius, Lithuania).

qPCR was carried out using HS-qPCR SYBR Blue (2×) mix (BioLabMix, Novosibirsk, Russia) with
a CFX96 Touch (Bio-Rad Laboratories, Inc., Hercules, CA, USA). qPCR was performed in triplicate
under the following conditions: 95 ◦C for 3 min, and 40 cycles of 15 s at 94 ◦C and 30 s at 60/62/64 ◦C
(depending on the primer Tm), followed by melt curves (70–90 ◦C). Gene expression was estimated
by the ∆∆Cq protocol with Bio-Rad CFX Manager (Bio-Rad, Laboratories, Inc., Hercules, CA, USA).
The following G. mellonella genes were used as references: translation elongation factor 1-alpha 1
(eEF1α1) and the subunit of DNA-directed RNA polymerase II. The expression dynamics of the
following ten genes of interest were studied: antimicrobial peptides gallerimycin, galiomycin, gloverin,
cecropin-like and lysozyme-like, apoptosis-related IAP, the ROS-related NOX-DUOX domain and heat
shock proteins Hsp70 and Hsp90. These genes and primer sequences were from the work of Lange
and coauthors [67] and Melo and coauthors [68] or designed by us (Table S1). Primer properties were
estimated by IDT OligoAnalyser 3.1 (http://eu.idtdna.com/calc/analyzer). Primers were synthesized by
Biosintez, Koltsovo, Russia.

2.6. In Vitro Interaction between Fungi and Bacteria

For the interaction studies, we used the predominant cultivable bacteria previously isolated from
G. mellonella midgut, Enterococcus faecalis and Enterobacter sp. [7] In addition to C. militaris, the fungi
M. robertsii (strain MB-1) and B. bassiana (strain Sar-31) from the microorganism collection of the
Institute of Systematics and Ecology of Animals SB RAS were used as positive controls. Bacteria were
cultivated on nutrient agar (Himedia, Mumbai, India) and fungi were cultivated on SDAY media.
One-day-old plugs of bacteria (8 mm) or plugs of nutrient agar (control) were placed on freshly plated
cultures of fungi in 90 mm Petri dishes. Zones of mycelial growth inhibition were measured at 4 days
of incubation at 25 ◦C. Similarly, four-day-old plugs of fungi were placed on freshly plated bacterial
cultures. Zones of growth inhibition were estimated on the first and second day of incubation at 25 ◦C.
Radial mycelial growth on cultures of bacteria was recorded over 24 days. As a control, measurements
of mycelial growth on bacteria-free nutrient agar were conducted. Three replicates were used in
each treatment.

2.7. Statistics

Differences in mortality dynamics were analyzed by a log rank test followed by Holm–Sidak
adjustment. Theχ2 criterion was applied in estimating the portion of sporulated and decomposed larvae.
Other data were checked for normality of distribution using the Shapiro–Wilk W test. Conidia yields
from cadavers had a normal distribution and were analyzed by a Student t-test. Data from CFU
counts, OTU abundances, diversity indexes and gene expression had abnormal distributions and
were analyzed by a nonparametric analogue of the two-way ANOVA, namely, the Scheirer–Ray–Hare

http://eu.idtdna.com/calc/analyzer
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test [69], followed by Dunn’s post hoc test. Data from the antagonistic interactions between fungi and
bacteria in vitro were analyzed by the Kruskal–Wallis test with Dunn’s post hoc test.

3. Results

3.1. Bioassays

Mortality of larvae injected with C. militaris conidia began at 5–7 days post injection and reached
80–100% after 7–10 days, depending on the dose and temperature (Figure 1A–C). More rapid mortality
of larvae at 15 ◦C compared to 25 ◦C was observed following injection of all doses (log rank test,
χ2 > 9.6, df = 1, p < 0.002). No mortality was registered for larvae injected with saline. Notably, 9–20%
of insects infected with low and intermediate doses and maintained at 25 ◦C were able to survive and
complete metamorphosis.
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Figure 1. Mortality dynamics and outcome of infection in wax moth larvae after injection with
C. militaris conidia and subsequent incubation at 15 ◦C and 25 ◦C. (A–C)—mortality dynamics after
injection of larvae with 1250, 2500 and 5000 conidia per larva (c/L). Different letters indicate significant
differences determined by log rank test (χ2 > 9.6, df = 1, p < 0.002). (D)—C. militaris hyphal bodies
(Hb) and cocci (C) in wax moth hemolymph at 5 days after injection with the fungus. Scale bar,
1 µm. (E)—portion of mummified and decomposed larvae during the development of mycoses at
different temperatures. Different letters indicate significant differences (χ2 > 8.7, df = 1, p < 0.003).
(F)—C. militaris conidial yield on mummified cadavers at 15 ◦C and 25 ◦C. Different letters indicate
significant differences determined by t-tests (t = 6.1, df = 8, p < 0.001).

Microscopy observations showed the simultaneous presence of hyphal bodies and cocci in the
hemolymph of infected insects maintained at 25 ◦C (Figure 1D), however, these cocci were not observed
in the hemolymph at 15 ◦C. At 15 ◦C, mycosis led to the formation of mummified cadavers (94–100%)
after all treatment doses (Figures 1E and 2A). However, at 25 ◦C, we documented a large number
of bacterially decomposed insects (χ2 > 8.7, df = 1, p < 0.003 compared to 15 ◦C). The bacterioses
were identified by symptoms of darkening and liquefaction of the larvae for several hours after death
(Figure 2C). The increase in frequency of bacterioses at 25 ◦C was dose-dependent and increased from
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36% after injection with the lowest dose and to 83% after injection with the highest dose (Figure 1E).
Notably, we registered the formation of abnormally dark mummies in these experiments (Figure 2B).
The percent of abnormal mummies was 52% at 25 ◦C and only 12% at 15 ◦C (χ2 = 8.3, df = 1, p = 0.004).
Moreover, the production of conidia on mummified cadavers at 25 ◦C decreased 2.5-fold compared to
15 ◦C (t = 6.1, df = 8, p < 0.001, Figures 1F and 2D,E). Thus, insects were less susceptible to C. militaris
infection at 25 ◦C, but they were more predisposed to spontaneous bacterial infections compared to
those incubated at 15 ◦C.
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Figure 2. Phenotypes of larvae that died after injection with C. militaris conidia. (A)—mummification,
(B)—defective mummies, (C)—bacterial decomposition, (D)—conidiation at 15 ◦C, (E)—conidiation at
25 ◦C.

3.2. CFU Counts in the Hemolymph and Midgut

In the hemolymph of control larvae, we registered single colonies of enterococci and enterobacteria
at both temperatures (Figure 3A). At 15 ◦C, fungal infection did not lead to significant changes
in the CFU count (Dunn’s test, p > 0.17 compared to controls). In contrast, CFU counts of both
enterobacteria and enterococci increased in the hemolymph by 39,000–54,000-fold at 25 ◦C in response
to C. militaris infection (p < 0.002 compared to controls). A significant interaction between factors
(mycosis × temperature) was found for enterobacteria (H1,19 = 9.4, p = 0.002). However, this interaction
was not found for enterococci (H1,19 = 1.5, p = 0.23) because there was still a slight increase in these
bacteria at 15 ◦C in response to C. militaris infection.
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Figure 3. CFU counts in the hemolymph (A) and midgut (B) of wax moth larvae at 96 h post injection
of C. militaris (2500 conidia per larva) with subsequent incubation at 15 ◦C and 25 ◦C. Selective media
for enterobacteria (Endo agar) and enterococci (Bile esculin agar) was used. Different letters show
significant differences within the specified media and tissue (Dunn’s test, p < 0.05).
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In the midgut, we observed an elevation in the enterobacteria and enterococci CFU counts in
response to fungal infection at both temperatures (enterobacteria, H1,19 = 4.2, p = 0.04; enterococci,
H1,19 = 8.5, p = 0.004). However, the post hoc tests showed significant elevation only at 25 ◦C (4–7-fold
relative to controls, Dunn’s test, p < 0.04, Figure 3B). Effects of temperature on CFU counts were not
significant, however, a trend toward increased enterococci was observed at 15 ◦C compared to 25 ◦C
(H1,23 = 2.7, p = 0.09). Notably, uninfected larvae maintained at 15 ◦C were characterized by the highest
enterococci CFU counts compared to larvae maintained at 25 ◦C (p = 0.03).

3.3. Bacterial Communities in Midguts and Cadavers

In the midgut, we registered 168 OTUs (37 ± 5.2 OTUs per sample) with a predominance of
two Enterococcus OTUs (Figure 4). A BLAST search against sequences in GenBank showed strong
similarity with Enterococcus faecalis (OTU 1, 100% similarity) and E. lemanii (OTU 100, 99.53% similarity).
Temperature did not have a significant impact on the relative abundance of different groups and
diversity indexes (H1,11 < 0.4, p > 0.52, Figure S2). However, trends toward increased diversity
indexes in warm conditions were observed for uninfected larvae (Dunn’s test, p > 0.08, Figure S2).
Fungal infection led to a significant decrease in OTU counts and the Chao1 index (H1,11 > 4.7, p < 0.03),
as well as to shifts in community structure. Under both temperatures, C. militaris infection caused a
partial displacement of E. faecalis by E. lemanii (effect of the infection: H1,11 = 8.3, p = 0.004). In addition,
a decrease in the abundance of the subdominant bacteria Acinetobacter, Melaminivora, Comamonas,
and Diaphorobacter was revealed under the influence of the fungal infection (H1,11 > 5.0, p < 0.024).
These effects were more evident at 25 ◦C (Dunn’s test, p < 0.013) compared to 15 ◦C (Dunn’s test,
p > 0.17).

In bacterially decomposed cadavers, we registered the lowest bacterial diversity (OTU count,
10 ± 1.9; Chao1, 13 ± 2.6; Shannon, 0.47 ± 0.14). In the cadavers, either the enterococci E. faecalis or
Enterobacter sp. prevailed (Figure 4). Enterobacteriaceae were represented by two predominant OTUs
that were also detected in the midgut. One of them, OTU 2, was close in identity to Enterobacter sp.
(99.53% similarity) which was previously isolated from the midgut of same line of G. mellonella [7].
The other, OTU 144, was close to Cronobacter sakazakii (99.77% similarity).

3.4. AMP Gene Expression

We observed a significant upregulation in the expression of the studied AMP genes (except
for cecropin) in both the fat body and the midgut under the influence of fungal infection (Figure 5,
Table 1). Temperature had a significant impact on the expression of cecropin and lysozyme only.
Overall, we observed a stronger expression of antifungal peptide genes in response to infection at
25 ◦C compared to 15 ◦C. In contrast, antibacterial peptide genes trended toward higher expression
at 15 ◦C compared to 25 ◦C. For example, expression of the antifungal peptide gene gallerimycin in
the fat body was increased by 77-fold at 25 ◦C, but only by 12-fold at 15 ◦C compared to uninfected
insects (Dunn’s test, p < 0.0005 and p = 0.10, respectively). The galiomycin gene in the fat body was
upregulated by 18-fold at 25 ◦C but only 8-fold at 15 ◦C (p = 0.001 and p = 0.04 compared to controls,
respectively). Gallerimycin and galiomycin gene expression followed the same pattern in the midgut
(Figure 5, Table 1).

Unlike the antifungal peptides, expression of the antibacterial peptide gloverin in the fat body
in response to fungal infection increased by 55-fold at 15 ◦C (p = 0.005 compared to control) and
17-fold at 25 ◦C (p = 0.01 compared to control). For the cecropin and lysozyme genes, we observed
increased expression in the fat body at 15 ◦C compared to 25 ◦C (effect of temperature, H1,19 = 3.9,
p = 0.05 and H1,23 = 3.2, p = 0.07, respectively), and more active expression in response to fungal
infection was also observed at low temperature (Figure 5). Changes in the expression of the gloverin,
cecropin and lysozyme peptide genes in the midgut were less than in the fat body. The gloverin gene
was upregulated by 2.8-3-fold in the midgut in response to fungal infection (H1.19 = 6.2, p = 0.01),
independent of temperature. Expression of cecropin in the midgut was not significantly changed in
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response temperature or fungal infection. Expression of the lysozyme gene in the midgut was decreased
at 15 ◦C compared to 25 ◦C (H1,23 = 4.6, p = 0.03); however, there was a significant upregulation in
response to C. militaris infection, which occurred only at 15 ◦C (6-fold, p = 0.004 compared to control)
and not at 25 ◦C (2-fold, p = 0.15 compared to control).J. Fungi 2020, 6, x FOR PEER REVIEW 9 of 21 
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Figure 4. Bacterial communities (16S rRNA) in the midguts of wax moth larvae during the development
of C. militaris infection at different temperatures and the communities in the cadavers that decomposed
after the infection. Midgut communities were analyzed at 96 h after injection with a dose of 2500 conidia
per larva. Decomposed cadavers were analyzed at 6–7 days post injection. Each treatment represents
3 replicates.
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 Effects 
 Infection Temperature Infection × Temperature 

Fat body    
Galiomycin ↑H1,19 = 14.3 p < 0.001 H1,19 = 0.0 p = 1.00 H1,19 = 0.7 p = 0.40 

Gallerimycin ↑H1,19 = 14.3 p < 0.001 H1,19 = 0.0 p = 0.88 H1,19 = 2.1 p = 0.15 
Gloverin ↑H1,19 = 14.3 p < 0.001 H1,19 = 1.5 p = 0.23 H1,19 = 0.1 p = 0.82 
Cecropin ↑H1,19 = 3.3 p = 0.08 ↑H1,19 = 3.9 p = 0.05 H1,19 = 0.1 p = 0.76 

Figure 5. Relative expression of AMP genes in the fat body and midgut of wax moth larvae at 96 h after
injection with C. militaris (2500 conidia per larva) and subsequent incubation at 15 ◦C and 25 ◦C.
Data were normalized to the expression of two reference genes, eEF1a and RBP11. The Y-axis shows the
fold change relative to uninfected larvae maintained at 25 ◦C. Gal—galiomycin, Glm—gallerimycin,
Glo—gloverin, Cec—cecropin-like, Lys—lysozyme-like. Different letters indicate significant differences
between treatments (Dunn’s test, p < 0.05).

Table 1. Two-way effects of C. militaris infection and temperature on the expression of AMP genes.
Significant effects are highlighted in bold. Arrows show up- or downregulation of genes in response to
infection and in response to cooling to 15 degrees. Arrows are shown only for significant (p < 0.05) and
marginal (p = 0.05–0.10) effects.

Effects

Infection Temperature Infection × Temperature

Fat body
Galiomycin ↑H1,19 = 14.3 p < 0.001 H1,19 = 0.0 p = 1.00 H1,19 = 0.7 p = 0.40

Gallerimycin ↑H1,19 = 14.3 p < 0.001 H1,19 = 0.0 p = 0.88 H1,19 = 2.1 p = 0.15
Gloverin ↑H1,19 = 14.3 p < 0.001 H1,19 = 1.5 p = 0.23 H1,19 = 0.1 p = 0.82
Cecropin ↑H1,19 = 3.3 p = 0.08 ↑H1,19 = 3.9 p = 0.05 H1,19 = 0.1 p = 0.76
Lysozyme ↑H1,23 = 12.8 p < 0.001 ↑H1,23 = 3.2 p = 0.07 H1,23 = 0.1 p = 0.77

Midgut
Galiomycin ↑H1,19 = 10.1 p = 0.002 H1,19 = 1.2 p = 0.29 H1,19 = 1.3 p = 0.27

Gallerimycin ↑H1,19 = 14.3 p < 0.001 H1,19 = 0.1 p = 0.76 H1,19 = 2.5 p = 0.11
Gloverin ↑H1,19 = 6.2 p = 0.01 H1,19 = 0.2 p = 0.65 H1,19 = 0.0 p = 0.88
Cecropin H1,23 = 1.2 p = 0.27 H1,23 = 1.0 p = 0.33 H1,23 = 0.5 p = 0.49
Lysozyme ↑H1,23 = 9.4 p = 0.002 ↓H1,23 = 4.6 p = 0.03 H1,23 = 1.1 p = 0.30

3.5. Apoptosis, ROS and Stress-Related Gene Expression

Expression of the IAP gene in the fat body was temperature dependent (Figure 6, Table 2). The gene
was upregulated in the fat body in response to fungal infection only at low temperature (Dunn’s test,
p = 0.07 compared to control at 15 ◦C and p < 0.01 compared to other treatments). At 25 ◦C, expression
of this gene in response to infection was not changed compared to the control (p = 0.50). In the midgut,
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regulation of the IAP gene was not caused by temperature (Table 2), but only by the infection (effect of
fungus: H1,23 = 7.7, p = 0.006). Significant upregulation in response to C. militaris was also registered
only at 15 ◦C (p = 0.04 compared to control).J. Fungi 2020, 6, x FOR PEER REVIEW 12 of 21 
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Figure 6. Relative expression of apoptosis, ROS and stress-related genes in the fat body and midgut
of wax moth larvae at 96 h after injection with C. militaris (2500 conidia per larva) and subsequent
incubation at 15 ◦C and 25 ◦C. Data were normalized to the expression of two reference genes, eEF1a and
RBP11. The Y-axis shows the fold change relative to uninfected larvae maintained at 25 ◦C. Different
letters indicate significant differences between treatments (Dunn’s test, p < 0.05).

NOX-DUOX domain gene expression was slightly (1.6-fold) upregulated in the fat body in
response to fungal infection at both temperatures (effect of infection: H1,23 = 4.2, p = 0.04), but the effect
of temperature was not significant (Table 2). Scheirer–Ray–Hare test showed a downregulation
of this gene in the midgut under the influence of a low temperature (H1,23 = 6.16, p = 0.01),
however strong downregulation (>2.4-fold) was observed during mycosis development at 15 ◦C only
(p = 0.08 compared to control at 15 ◦C and p < 0.01 compared to other treatments).

HSP70 gene expression in the fat body was increased at a low temperature (Figure 6, Table 2)
and fungal infection downregulated its expression at both temperatures (effect of fungus: H1,23 = 4.6,
p = 0.03). In the midgut, upregulation of HSP70 was also observed at 15 ◦C (H1,23 = 13.7, p < 0.001) but
fungal infection had no significant effect. The HSP90 gene was slightly and insignificantly upregulated
in the fat body in response to infection and independent of temperature. Its expression in the midgut
was increased under the influence of low temperature (H1,23 = 8.7, p = 0.003) but fungal infection had
no significant effect.
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Table 2. Two-way effects of C. militaris infection and temperature on the expression of apoptosis, ROS and
stress-related genes. Significant effects highlighted in bold. Arrows show up- or downregulation of
genes in response to infection and in response to cooling to 15 degrees. Arrows are shown only for
significant (p < 0.05) and marginal (p = 0.05–0.10) effects.

Effects

Infection Temperature Infection × Temperature

Fat body
IAP H1,23 = 0.8 p = 0.39 ↑H1,23 = 7.4 p = 0.007 H1,23 = 3.0 p = 0.08

NOX-DUOX ↑H1,23 = 4.3 p = 0.04 H1,23 = 0.6 p = 0.45 H1,23 = 0.0 p = 0.86
Hsp70 ↓H1,23 = 4.6 p = 0.03 ↑H1,23 = 14.5 p < 0.001 H1,23 = 0.0 p = 0.95
Hsp90 ↑H1,23 = 2.8 p = 0.09 H1,23 = 0.3 p = 0.56 H1,23 = 0.1 p = 0.77

Midgut
IAP ↑H1,23 = 7.7 p = 0.006 H1,23 = 0.0 p = 0.91 H1,23 = 0.0 p = 0.91

NOX-DUOX H1,23 = 1.8 p = 0.18 ↓H1,23 = 6.2 p = 0.01 H1,23 = 1.3 p = 0.25
Hsp70 H1,23 = 0.0 p = 0.93 ↑H1,23 = 13.7 p < 0.001 H1,23 = 0.1 p = 0.71
Hsp90 H1,23 = 0.2 p = 0.64 ↑H1,23 = 8.7 p = 0.003 H1,23 = 0.8 p = 0.39

3.6. Interaction between Fungi and Bacteria In Vitro

We showed that E. faecalis and Enterobacter inhibited C. militaris more strongly than M. robertsii
and B. bassiana. In particular, E. faecalis inhibited C. militaris mycelial growth on SDAY medium by
2–2.2-fold more than M. robertsii or B. bassiana growth (Dunn’s test, p < 0.012, Figure 7). Enterobacter sp.
also inhibited C. militaris growth more strongly than M. robertsii and B. bassiana, but the differences
were only marginally significant (p = 0.06–0.10). None of these fungi inhibited bacterial growth on
nutrient agar. However, M. robertsii and B. bassiana were able to grow on cultures of both bacteria
(Figure 7). In contrast, C. militaris was not able to grow on cultures of E. faecalis or Enterobacter sp.
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Figure 7. Inhibition of fungi by Enterococcus faecalis and Enterobacter sp. in vitro. (A)—zone of mycelial
growth inhibition by bacteria on SDAY medium. (B)—radial growth of fungi on nutrient agar and this
medium with lawns of the bacteria. Different letters indicate significant differences between treatments
(Dunn’s test, p < 0.05).

4. Discussion

The development of mycoses in insects is not restricted to fungal monoinfections, and bacterial
commensals and pathogens are also involved in this process [1,2,5]. We show that bacterial involvement
in fungal pathogenesis and its outcome is dependent on environmental conditions, particularly
temperature (Figure 8). The development of C. militaris in wax moth larvae was faster and more
successful at 15 ◦C compared to 25 ◦C. At 25 ◦C, fungal virulence was decreased however a high
frequency of spontaneous bacteriosis was observed, which was caused by the proliferation of enterococci
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and enterobacteria in the hemolymph. We also showed that C. militaris is a weak competitor of bacteria
compared to generalist fungi such as M. robertsii and B. bassiana. This is consistent with the more specific
conditions for cultivation required by C. militaris in vivo or in vitro [70]. Occurrence of bacterioses after
topical infection or injection of C. militaris in insects has been documented previously [22,55,58,71].
We suggest that C. militaris has a limited ability to suppress host commensal bacteria, as the fungus
is associated with narrow environmental requirements, including a specific temperature range [22].
Low temperatures (~15 ◦C) limit the active influence of bacteria on fungal pathogenesis. This may
be explained by the fact that low temperatures are suboptimal for the proliferation of many bacteria.
In addition, we showed a stronger antibacterial response in the host during C. militaris development
under low temperature conditions.J. Fungi 2020, 6, x FOR PEER REVIEW 16 of 21 
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Consistent with our study of the midgut microbiome, the predominant bacteria in the gut of
healthy wax moths are Enterococcus species [72,73]. In different pathological states (e.g., toxicosis
caused by Bacillus thuringiensis or envenomation with parasitoids), a shift in the microbiome structure
toward Enterobacteriaceae prevalence occurred in the wax moth gut [7,74]. However, we observed
another effect in the present study, the replacement of one Enterococcus species with another under
the influence of a fungal infection. Change in the dominance between different Enterococcus species
was also documented previously after injection of wax moth larvae with C. militaris blastospores
(unpublished [75]). The mechanism of this restructuring is not clear and is likely associated with the
selective action of fungal metabolites on different species of enterococci. For example, significant
changes in the mouse gut microbiome were observed after feeding mice a major metabolite of C. militaris
cordycepin [76]. Gamage and coworkers [77] showed that C. militaris water extracts exhibited different
levels of inhibition of various gram-positive and gram-negative bacteria.

We observed an increase in bacterial CFU counts in the midgut during the development of
C. militaris infection. This confirmed previous work performed on adult mosquitos following topical
infection with Beauveria and Isaria species [2,3], as well as work on Colorado potato beetle larvae after
topical treatment with Metarhiziun robertsii [78]. These enhancements may be caused by a disturbance
in feeding, gut peristalsis or by a deregulation in immune reactions during mycosis development.
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It should be noted that significant elevations in enterococci and enterobacteria loads in response to
C. militaris infection were observed only in warm (25 ◦C) conditions and not in cold (15 ◦C) conditions.

In the hemolymph of uninfected larvae, we observed single colonies of enterococci and
enterobacteria. Dramatic (39–54-thousand-fold) elevations in the CFU counts of these bacteria
in the hemolymph during fungal infection were observed only in warm conditions (25 ◦C). It should be
noted that the enterococci are a prevalent group of bacteria in wax moth integuments and enterobacteria
are also present in these tissues [73,79]. However, it is hardly possible that the observed septicemia
was the result of an influx through a cuticle puncture since bacterial-induced death began at five
days post injection and occurred simultaneously with death due to mycosis. Moreover, the frequency
of spontaneous bacterioses at 25 ◦C was positively correlated with the dose of C. militaris conidia.
The source of bacterial penetration into the hemolymph could be the gut or other organs such as the
trachea or excretory organs, the biome of which has not been studied in the wax moth. It is interesting
to note that the occurrence of septicemia was less common after injection of wax moth larvae with
conidia of the generalist fungi Metarhizium or Beauveria. For example, injection of the larvae with
B. bassiana and M. robertsii at doses of 2500 conidia per larvae and subsequent incubation at 25 ◦C
did not lead to bacterial decomposition and all cadavers were mummified and overgrown with these
fungi (Figure S3). Fan and coauthors [48] showed that at the final stages of mycoses, B. bassiana
suppresses the proliferation of bacteria in the host through the production of secondary metabolites
such as oosporeins. However, compared to Beauveria and Metarhizium species, C. militaris has fewer
genes involved in secondary metabolism [50,53]. It is likely that the combination of less developed
mechanisms for the suppression of bacteria and harsher tools for host tissue destruction caused the
septicemia during C. militaris infection. In particular, we recently showed that C. militaris infection
led to necrotic death of hemocytes and a strong elevation in dopamine and ROS in wax moth larvae,
which were not observed after M. robertsii infection [59].

The development and outcome of the fungal infections can also be mediated by differences in
host immune responses at 15 ◦C and 25 ◦C. Antifungal peptides (gallerimycin and galiomycin) more
actively responded to C. militaris infection at a higher temperature. This is consistent with previous
investigations in which we showed a stronger elevation in phenoloxidase and encapsulation levels in
wax moths in response to C. militaris infection at 25 ◦C compared to 15 ◦C [22], and this correlated with
a greater survival of the infected insects at 25 ◦C. It is interesting that the antifungal peptide genes were
actively expressed at 25 ◦C, not only in the fat body but also in the midgut. This may be due to a systemic
immune response or an attack of lateral midgut tissues by the fungus. Unlike the antifungal response,
the expression of antibacterial peptide genes (gloverin, cecropin, lysozyme) was more active in the fat
body at 15 ◦C, which correlated with the absence of elevated CFUs and bacterial decomposition at this
temperature. It was previously shown that a short exposure of G. mellonella to low temperatures led to
an increase in AMP expression in response to B. thuringiensis infection [28]. Similar exposure led to
enhanced AMP expression in Ostrinia furnacalis in the absence of infection [29]. Elevated antibacterial
responses were also observed under prolonged cooling. For example, Ferguson and Sinclair [27]
showed that overwintering Eurosta solidagnis larvae were characterized by an increased clearance
of the gram-positive bacteria Bacillus subtilis in the hemolymph compared to autumn and spring
larvae. According the present study, under cold conditions, insects may exhibit increased antibacterial
responses during fungal infections.

We observed an increase in the expression of the gloverin and lysozyme genes in the midgut
in response to fungal infection. This elevation was obviously caused by changes in the microbiota
structure and the elevation in the bacterial load in the midgut during the development of mycosis.
Similar changes were observed by Ramirez and coworkers [3] in the midgut of adult Aedes aegypti
mosquitos in the acute stages of mycoses caused by Beauveria and Isaria species. However, we did not
observe general temperature-dependent trends in the expression of antibacterial genes in the midgut.

The IAP gene was upregulated in the fat body at a low temperature and its upregulation in response
to the infection was also observed only at a low temperature. Previous studies showed that IAP is
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linked to the IMD immune signaling pathway in insects [38]. In particular, knockdown of this gene in
D. melanogaster led to confined expression of AMPs in response to bacterial infections and increased
susceptibility to gram-negative bacteria [38]. In locusts, IAP knockdown led to blocked defensin
expression, which was induced by Metarhizium acridum infection [37]. In our experiments, a lack of IAP
expression at 25 ◦C was associated with a lower upregulation of antibacterial peptides and an active
proliferation of bacteria in the hemolymph, which is consistent with the abovementioned studies.

The NOX-DUOX domain gene displayed an interesting pattern of expression. This system
functions in the regulation of bacterial homeostasis, as has been shown in Drosophila and
mosquitoes [40,42,80]. In our study, the gene was upregulated slightly in the fat body in response to
fungal infection at both temperatures. In the midgut, we observed a significant downregulation of this
gene at 15 ◦C (Table 2). This was correlated with a trend toward increased enterococci CFU counts
in the midgut at 15 ◦C compared to 25 ◦C (Figure 3). This gene was downregulated in response to
C. militaris infection only at 15 ◦C. This may be caused by the high acuity of mycosis at this temperature
and it may be a consequence of the prioritization in immune reactions between the hemocoel and
gut, as was suggested by Wei and coworkers [2]. However, this decrease in gene expression and
the elevation in the enterococci load at 15 ◦C did not lead to the colonization of the hemocoel by
bacteria, i.e., the proliferation of bacteria occurred only in the gut lumen under this temperature.
Further immunological and histopathological studies are needed to establish the mechanisms of
septicemia development during fungal infections.

We observed an upregulation of HSP70 in both tissues and an upregulation of HSP90 in the midgut
at a low temperature. This result was expected because an increase in the expression of these genes
during cold diapause has been observed in various insect taxa [46]. We also observed a downregulation
in HSP70 expression in the fat body in response to C. militaris infection. Previous studies reported
either an increase in HSP expression in different tissues of G. mellonella after infection with B. bassiana
and Conidiobolus coronatus, or no change compared to uninfected insects [7,61,81]. These inconstancies
may be caused by differences in pathogenesis that occur after infection with different fungal species
and strains. Regarding the antibacterial response, it was shown that HSP70 transcripts were highly
induced in arthropods (Penaeus monodon) after injection with bacteria Vibrio [82]. In wax moths,
an increase in HSP90 expression was observed in response to Bacillus thuringiensis infection [83] and
mixed (bacteria and yeast) infections [84]. Linder and coworkers [16] suggest that HSPs may improve
immune functions against bacterioses at cool temperatures in Drosophila melanogaster. The authors
have shown elevated expression of HSP83, PGRP-LS and AMPs, and increased resistance to bacteria
(Pseudomonas aeruginosa and Lactococcus lactis) in cold conditions (17 ◦C) compared to warm conditions
(29 ◦C). Similarly, in our work, septicemia was observed most often with the lowest levels of HSP
expression (fungal infection at 25 ◦C), although we did not observe any correlations between HSP
and AMP expression. It is possible that increased expression of HSPs at low temperature may help
maintain tissue integrity in gut and other organs and prevent penetration of bacteria into hemolymph.

5. Conclusions

Bacterial associates of insects may influence the development and outcome of fungal infections.
Using a model system of C. militaris and G. mellonella, in the present study we found that these
interactions are significantly dependent on temperature. At high temperatures, these relationships
develop in favor of spontaneous bacterioses, while under low temperatures they develop in favor of
mycoses. The explanation for these outcomes may lie in the properties of the fungus, as well as in the
immune reactions of the host during mycosis development. C. militaris is a weak competitor of bacteria
and therefore it requires low temperatures to avoid antagonism with bacterial associates of the host
to complete its development successfully. In addition, we observed weakened antifungal responses
along with increased antibacterial responses in wax moths at a low temperature, which should be
beneficial for the development of the fungus. We confirmed the previous works that have shown that
AMP expression in G. mellonella is temperature-dependent [18,23,28]. However, a comparison of AMP
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expression in response to fungal infection at constant low (15 ◦C) and moderate (25 ◦C) temperatures
was performed for the first time. Our results are consistent with previous studies in which short
cooling of G. mellonella [28] and prolonged cooling of other lepidopterans [27] have led to an increase in
antibacterial response. Moreover, we found increased expression of stress-related genes in the midgut
under the constant low temperature, which may prevent the disruption of gut tissues and penetration
of bacteria from the gut into the hemocoel. Further studies should focus on the interaction between
bacterial growth and fungal infections using histopathological and histomolecular approaches, as well
as on development of C. militaris in natural hosts using natural methods of infection. Our research
may promote physiological and ecological studies into the interactions between pathogenic fungi,
insect hosts and bacterial associates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/6/3/0170/s1,
Figure S1. Rarefaction curves of the OTU numbers for each sample. Table S1. List and description of genes and
primer sequences used in qPCR. Figure S2. Diversity indexes of bacterial communities in the midgut of wax moth
larvae at 96 h post injection of C. militaris (2500 conidia per larva) with incubation at 15 ◦C and 25 ◦C. Indexes
were calculated for OTU levels. Different letters indicate significant differences between treatments (Dunn’s test,
p < 0.05). Figure S3. Wax moth larvae overgrown with B. bassiana (A) and M. robertsii (B) at four days after injection
with 2500 conidia per larva and incubation at 25 ◦C.
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