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ABSTRACT
Objective  To character the molecular landscape of 
patients with type 1 and type 2 SLE by analysing gene 
expression profiles from peripheral blood.
Methods  Full transcriptomic RNA sequencing was carried 
out on whole blood samples from 18 subjects with SLE 
selected by the presence of manifestations typical of type 
1 and type 2 SLE. The top 5000 row variance genes were 
analysed by Multiscale Embedded Gene Co-expression 
Network Analysis to generate gene co-expression modules 
that were functionally annotated and correlated with 
various demographic traits, clinical features and laboratory 
measures.
Results  Expression of specific gene co-expression 
modules correlated with individual features of type 1 
and type 2 SLE and also effectively segregated samples 
from patients with type 1 SLE from those with type 2 
SLE. Unique type 1 SLE enrichment included interferon, 
monocytes, T cells, cell cycle and neurotransmitter 
pathways, whereas unique type 2 SLE enrichment included 
B cells and metabolic and neuromuscular pathways. 
Gene co-expression modules of patients with type 2 SLE 
were identified in subsets of previously reported patients 
with inactive SLE and idiopathic fibromyalgia (FM) and 
also identified subsets of patients with active SLE with a 
greater frequency of severe fatigue.
Conclusion  Gene co-expression analysis successfully 
identified unique transcriptional patterns that segregate 
type 1 SLE from type 2 SLE and further identified type 2 
molecular features in patients with inactive SLE or FM and 
with active SLE with severe fatigue.

INTRODUCTION
SLE is a prototypical autoimmune disease char-
acterised by diverse clinical manifestations 
that vary in severity and intensity over time.1 
Although deposition of immune complexes 
and the actions of type 1 interferon (IFN) 
can account for at least some manifestations 
of SLE, many of the symptoms that trouble 
patients the most, including fatigue and wide-
spread pain, have an uncertain relationship 
to inflammation and immunological distur-
bance. Despite their frequency and impact 
on patients with SLE, these symptoms are not 
included in criteria for disease classification 
and are not represented in most measures of 
disease activity.2

A new conceptual framework for assessing 
SLE, which includes pain and fatigue, 
has been proposed.3 In this model, type 
1 features, such as nephritis, arthritis and 
cutaneous SLE, are typically inflammatory 
in origin and can be associated with specific 
autoantibodies (eg, anti-DNA and nephritis). 
In contrast, type 2 manifestations include 
widespread pain, fatigue, depression, sleep 
disturbance and other neuropsychological 
findings such as ‘brain fog’. Because of the 
high frequency of these symptoms in SLE 
compared with the normal population,4 it 
has further been posited that type 2 features 
are intrinsic features of SLE and related to 
underlying pathogenesis, even if they might 
not track with inflammation. It is important 
to emphasise that signs and symptoms of SLE 
vary with time and treatment in individual 
patients, and those presenting with type 1 
SLE may evolve into type 2 and vice versa and 
those with type 2 may have persistent or inter-
mittent symptoms.3

Here, we have used a molecular approach 
to distinguish type 1 and type 2 SLE, testing 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Pain and fatigue are frequent symptoms of SLE, but 
their relationship to inflammation is unknown.

	⇒ A new construct has postulated that inflammatory 
manifestations on the one hand and pain and fatigue 
on the other are both manifestations of lupus and 
designated as type 1 and type 2 SLE.

WHAT THIS STUDY ADDS

	⇒ Using gene expression analysis, the molecular bases 
of type 1 and type 2 SLE have been delineated.

	⇒ Gene co-expression analysis not only separated type 
1 and type 2 SLE, but also identified gene modules 
whose expression correlated with specific clinical 
features of type 1 and type 2 SLE.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The molecular pathways unique to patients with type 
1 and type 2 SLE potentially could be used to confirm 
diagnosis and point to new treatment strategies.
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the hypothesis that the two phases of SLE might arise 
from distinct pathogenetic disturbances that can be 
revealed by analysis of gene expression profiles in periph-
eral blood cells. For this purpose, we used a ‘bookend’ 
approach and identified patients with isolated type 1 and 
type 2 SLE. The data indicate that patients with type 1 and 
type 2 SLE can be distinguished by analysis of peripheral 
blood cell gene expression, with the pathways identified 
providing insights into the mechanisms of these manifes-
tations and potentially pointing to new treatment targets.

MATERIALS AND METHODS
Patient population
All patients were enrolled in the Duke SLE Registry and 
were adults (≥18 years old) who met 1997 American 
College of Rheumatology or 2012 SLICC (Systemic Lupus 
International Collaborating Clinics) criteria for SLE 
(Systemic Lupus Erythematosus Disease).5 6 All patients 
signed informed consent to participate in the registry 
and for collection of the RNA samples. This was a cross-
sectional analysis on a selected subset of 18 patients using 
a ‘bookend’ approach that specifically identified patients 
who had predominant type 1 or type 2 disease at the 
time of analysis. To be included in the type 1 SLE group, 
patients had a clinical SLEDAI (Systemic Lupus Erythe-
matosus Disease Activity Index) ≥4, active nephritis, 
SLEDAI ≥6, or type 1 Physician Global Assessment (PGA) 
≥1 and inactive type 2 SLE (defined as a Polysymptomatic 
Distress Scale (PSD) ≤6 and type 2 PGA ≤0.25). Patients 
with type 2 SLE had active type 2 SLE symptoms (defined 
as PSD ≥11 and type 2 PGA ≥1) and inactive type 1 SLE 
(defined as SLEDAI=0 and type 1 PGA ≤0.5).

Data collection
At the time blood was obtained for gene expression anal-
ysis, patients completed the PSD, which includes two 
subscales: the Widespread Pain Index (WPI) and Symptom 
Severity Score.7–10 In addition to patient-reported meas-
ures, patients’ treating rheumatologists completed disease 
activity measures, including the SLEDAI, PGA for type 1 
activity and a PGA for type 2 activity2 11 12; rheumatologists 
scored the severity of type 1 and type 2 SLE activity sepa-
rately on scales from 0 (no activity) to 3 (severe activity) 
(online supplemental tables 1 and 2).

Gene expression data and gene filtering
Whole blood was collected in PAXgene Blood RNA 
tubes. After removal of ribosomal RNA and globin tran-
scripts with the Ribo-Zero Globin Removal kit (Illumina), 
stranded libraries were prepared with the TruSeq Library 
prep kit (Illumina) and hybridised to a flow cell for 
sequencing with the Illumina HiSeq platform. The top 
5000 row variance (top5k rowVar) genes determined 
using SD between samples were retained for further 
analysis. Data were analysed for differentially expressed 
genes (DEGs), for subset clustering by Principal Compo-
nent Analysis (PCA), and for co-expressed genes using 
Multiscale Embedded Gene Co-expression Network 

Analysis (MEGENA)13 as described in online supple-
mental methods. Gene expression data from patients 
with fibromyalgia (FM) were obtained from GSE6731114 
and analysed as described in the online supplemental 
methods. Gene expression data from patients with inac-
tive SLE (SLEDAI <6) were obtained from GSE4529115 
and GSE49454.16 Gene expression data from patients with 
active SLE were obtained from GSE88884 (Illuminate 2). 
Raw data files have been deposited in NCBI accession 
PRJNA858861.

RESULTS
Patients
Patients had been diagnosed with SLE for a mean of 15.8 
years (SD: 7.3) and 55% had a history of SLE nephritis. 
Seventeen patients were female and one was male; the 
mean patient age was 41 years (online supplemental 
figure 1A).

PCA groups patients with type 1 and type 2 SLE
Initially, we determined that differential gene expres-
sion analysis generated only one significant DEG, likely 
because of the high variance patterns within the two 
sample sets rather than between them. Therefore, addi-
tional analytical approaches were applied to the top5k 
rowVar genes encoding known proteins. PCA generally 
separated samples from type 1 and type 2 SLE, although 
three outliers were clearly noted (patient IDs Type1_275, 
Type2_008 and Type2_267 (red arrows, online supple-
mental figure 1B). To obtain a preliminary idea of the 
clinical features segregating with the samples in PCA 
space, the first four principal component (PC) vectors 
were correlated with the various recorded sample traits 
and the top 20 positive or negative correlations per PCA 
visualised (online supplemental figure 1C). Of note, 
PC1 highly correlated with anti-dsDNA, belimumab and 
mycophenolate mofetil usage, PC2 to non-steroidal anti-
inflammatory drug usage, African ancestry, anti-Smith 
and anti-RNP, PC3 to cyclophosphamide and amitripty-
line usage, and PC4 to PSD score and total areas of pain. 
These results suggest that type 1 and type 2 SLE are largely 
but not completely separable based on gene expression 
variance, and that specific clinical characteristics segre-
gate with gene expression variance patterns.

Gene co-expression analysis identifies distinct type 1 and 
type 2 gene modules
Gene co-expression analysis was next employed to delin-
eate transcriptomic differences between type 1 and type 2 
SLE in greater detail. MEGENA, an analytical technique 
not previously employed with samples from patients with 
SLE, was used to generate co-expression modules from 
the top5k rowVar genes of the SLE samples (online 
supplemental figure 2).

To determine the correlation of co-expression modules 
with clinical features, the module eigengene (ME) of 
each module was calculated and correlated with the 
various recorded clinical and demographic traits (online 
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supplemental table 3). Associations between MEs of 
specific co-expression modules and select clinical and 
demographic features are shown in figure  1A–I. The 
functional nature of co-expression modules was identi-
fied by examining genes in each module for overlap with 
gene modules identifying specific cells or functions in 
figure 1J–L.

The top 40 positive or negative ME correlations 
correlated with type 1/2 SLE cohort were identified 
and submitted to stable k-means clustering that revealed 
groupings of clinical traits and correlated molecular 

functions (figure 2). Most type 2 features, including PSD 
score, PGA type 2, wake unrefreshed, WPI score and tired 
among others were found in the first vertical patient 
column cluster 1, whereas type 1 features, including 
SLEDAI, anti-dsDNA, proteinuria and European Alliance 
of Associations for Rheumatology score among others 
were found in patient cluster 2. Patient cluster 1 showed 
strong positive correlations to the horizontal module 
clusters A, E and G, containing various metabolic pathway 
signatures and B cells. The type 1 patient cluster 2 showed 
strong positive correlations to horizontal module clusters 

Figure 1  Correlations of MEGENA module expression and various clinical and demographic features. The module eigengene 
(ME, equivalent to the first principal component) for each module was calculated and Pearson correlations to MEs calculated 
for multiple demographic and clinical features with correlations ranging from −1 to +1 (A–I). Functional identity of the modules 
was carried out by matching module genes with various cell type or biological pathway markers (J–L). Functional designation 
required a minimum overlap of ≥3 gene symbols with an associated Fisher’s exact test (p<0.2) to discard overlaps that occurred 
because of random chance. AA, African ancestry; EA, European ancestry; IFN, interferon; MEGENA, Multiscale Embedded 
Gene Co-expression Network Analysis; NK, natural killer; PGA, Physician Global Assessment; PSD, Polysymptomatic Distress 
Scale.
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B, C, D and F signatures including monocytes, IFN, T 
cells, neutrophils, cell cycle and other signatures. An 
alternative depiction of the top 40 intracorrelations is 
provided in online supplemental figure 3, and correla-
tion pairs of select patient clinical scores and molecular 
assays in online supplemental figure 4.

Because there was a numerical but not significant disparity 
in age between the groups (type 1, 36.9±10.8; type 2, 
46.0±8.7, p=0.07), we carried out two additional analyses to 
confirm that age was not contributing to the results. First, we 
eliminated the two youngest patients from the type 1 group 
and the two oldest from the type 2 group and repeated the 
analysis, resulting in a very similar separation of clinical 
features (online supplemental figure 5). Second, we used 
the entire group of patients and carried out the same anal-
ysis after covariant adjustment for age, again with similar 
results (online supplemental figure 6). These results are all 
consistent with the conclusion that expression of co-expres-
sion modules is uniquely correlated with specific features of 
type 1 and type 2 SLE independent of age.

Protein–protein interaction analysis identifies biological 
function of co-expression modules
To provide insight into the biological functions of genes 
within co-expression modules, we assessed genes within 
the top 40 MEGENA modules for protein–protein inter-
actions (PPIs) using the STRING database.17 We found 
that 34 of the top 40 co-expression modules contained 
genes that were intraconnected by known PPIs, with 25 

exhibiting 10%–50% and 5 having >50% PPI intracon-
nectedness (online supplemental table 4). This finding 
confirms that the co-expression modules have captured 
known molecular pathways in an unsupervised manner. 
Type 1 SLE PPI intraconnected modules included cell 
cycle, T cells, regulation of neuronal death, extracellular 
region/vesicles, IFN and monocytes. Type 2 SLE PPI intra-
connected modules included monocyte secretion, cation 
transport, axon extension, muscle structure development 
and the inflammatory response/voltage-gated calcium 
channel complexes. PPI connectedness is included as 
module row annotations in figures 3 and 4.

Gene co-expression modules distinguish type 1 and type 2 
SLE
Stable k-means clustering of co-expression module MEs 
was used to determine whether type 1 and type 2 SLE 
patient samples could be distinguished. Effective separa-
tion of patients with type 1 and type 2 SLE was achieved, 
with only two outliers (Type1_275 and Type2_267) noted 
(figure  3). Unique patterns of co-expression module 
MEs and type 1 and type 2 SLE, respectively, can clearly 
be seen. Moreover, unique and opposing co-expression 
module ME correlations with SLEDAI and PSD scores or 
PGA type 2 were found. Notably, MEs of co-expression 
modules identifying the IFN signature and monocytes 
were highly positively correlated with SLEDAI and nega-
tively correlated with PSD score. Conversely, the MEs of 
the axon extension, muscle structure development and B 

Figure 2  MEGENA module eigengene (ME) correlations to clinical and demographic features reveal specific gene modules 
associated with individual clinical characteristics of type 1 and type 2 SLE. Numerically encoded sample/patient traits were 
correlated with the first principal component (equivalent to the ME) of all gen2 through gen4 MEGENA modules followed 
by identification of the top 40 significant (p<0.05) correlations to cohort (type 1 SLE vs type 2 SLE). The top 40 sample trait 
correlations were identified by descending rank order of absolute values of the summed correlations per each module row 
and are shown in the main heatmap portion of the figure. In the right portion of the figure, row annotations are shown for 
sample traits that were not included in the top 40 correlations, but are of clinical interest. These include ME correlations to 
PGA for type 1 SLE, PGA for type 2 SLE (seen in the central heatmap of the figure but repeated on the right side for ease of 
visual comparison), autoantibodies anti-La/SSB, low C3 and usage of duloxetine. AA, African ancestry; EULAR, European 
Alliance of Associations for Rheumatology; HCQ, hydroxychloroquine; IFN, interferon; MEGENA, Multiscale Embedded Gene 
Co-expression Network Analysis; NSAIDs, non-steroidal anti-inflammatory drugs; PGA, Physician Global Assessment; PSD, 
Polysymptomatic Distress Scale; SSS, Symptom Severity Score; UPC, Urine Protein Creatinine Ratio; WPI, Widespread Pain 
Index.
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Figure 3  Clustering patient samples based on module eigengene (ME) separates type 1 SLE from type 2 SLE. The top 40 
significant (p<0.05) type 1/2 SLE gen2–4 cohort MEs were used to group patients using stable k-means clustering (k=2). Patient 
column annotations include patient type (type.1.SLE white, type.2.SLE red), areas of pain as measured by the Widespread Pain 
Index (WPI), Symptom Severity Score (SSS), PSD score, PGA for type 1 or type 2 SLE, SLEDAI score (with lab), ACR-EULAR 
score, autoantibodies (anti-dsDNA, anti-LA/SSB, anti-RNP/SSA, anti-Smith), low C3 (binary), ancestral background (AA and 
EA), prednisone dosage, and usage of MMF or duloxetine (binary). Columns of sample traits were clustered using stable k-
means clustering (k=2) with 1000 iterations. Module rows were clustered in a similar manner on k=7 and include correlations to 
patient traits (−1 blue to +1 red), percentage of a given module’s genes participation in predicted protein–protein interactions 
per STRING analysis and degree of module preservation in GSE67311 classic fibromyalgia. Patients type1 275 and type2 267 
(red arrows) correspond to the same outliers identified during PCA in online supplemental figure 1 (A). Data from (A) were plotted 
as a mean of the patients in each cluster (B). Column annotations are means of column annotations in (A) and row annotations 
are identical to row annotations in (A). AA, African ancestry; ACR, American College of Rheumatology; EA, European ancestry; 
EULAR, European Alliance of Associations for Rheumatology; IFN, interferon; MMF, mycophenolate mofetil; PCA, Principal 
Component Analysis; PGA, Physician Global Assessment; PSD, Polysymptomatic Distress Scale.

https://dx.doi.org/10.1136/lupus-2022-000861


Robl R, et al. Lupus Science & Medicine 2023;10:e000861. doi:10.1136/lupus-2022-0008616

Lupus Science & Medicine

Figure 4  GSVA using MEGENA modules as input gene sets effectively separates type 1 SLE from type 2 SLE. Heatmaps 
indicate GSVA enrichment scores per patient for each module. Patient column annotations include patient type (type.1.SLE 
white, type.2.SLE red), areas of pain as measured by the Widespread Pain Index (WPI), Symptom Severity Score (SSS), 
PSD score, PGA for type 1 or type 2 SLE, SLEDAI score (with lab), ACR-EULAR score, autoantibodies (anti-dsDNA, anti-LA/
SSB, anti-RNP/SSA, anti-Smith), low C3 (binary), ancestral background (AA and EA), prednisone dosage and usage of MMF 
or duloxetine (binary). Columns of sample traits were clustered using stable k-means clustering (k=2) with 1000 iterations. 
Module rows were clustered in a similar manner on k=7 and include correlations to patient traits (−1 blue to +1 red), percentage 
of a given module’s genes participation in predicted protein–protein interactions per STRING analysis and degree of module 
preservation in GSE67311 classic fibromyalgia. Patients type1 275 and type2 267 (red arrows) correspond to outliers identified 
during PCA analysis in online supplemental figure 1 (A). Data from A were plotted as a mean of the patients in each cluster (B). 
Column annotations are means of column annotations in (A) and row annotations are identical to row annotations in (A). AA, 
African ancestry; ACR, American College of Rheumatology; EA, European ancestry; EULAR, European Alliance of Associations 
for Rheumatology; GSVA, Gene Set Variation Analysis; IFN, interferon; MEGENA, Multiscale Embedded Gene Co-expression 
Network Analysis; MMF, mycophenolate mofetil; PCA, Principal Component Analysis; PGA, Physician Global Assessment; PSD, 
Polysymptomatic Distress Scale.
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cell modules were negatively correlated with SLEDAI and 
positively with PSD score. Finally, patient ancestry also was 
correlated with specific co-expression module MEs. The 
detailed correlations between the coefficients of specific 
gene module expression and clinical traits are shown in 
online supplemental figures 3 and 4 and confirm the 
largely mutually exclusive relationship between co-ex-
pression module expression and type 1 or type 2 features.

Gene co-expression modules distinguish type 1 and type 2 
SLE using Gene Set Variation Analysis
To confirm this finding in an orthogonal manner, we used 
Gene Set Variation Analysis (GSVA) using co-expression 
modules as input gene sets followed by stable k-means clus-
tering of GSVA scores. This approach also effectively distin-
guished patients with type 1 and type 2 SLE (figure 4).

DEG pairs distinguish type 1 and type 2 SLE samples
We employed Differential Gene Coexpression Analysis 
(DGCA)18 as a complementary method to distinguish 
patients with active type 1 or type 2 SLE symptoms in greater 
detail. Here, DGCA was used to detect intermodular pairs 
of genes as a way to delineate potential differences between 
the molecular communication inherent in type 1 and type 2 
SLE pathology. As seen in online supplemental figure 7 and 
online supplemental tables 5 and 6, top unique intermod-
ular connections distinguished patients with type 1 SLE from 
those with type 2 SLE. Patients with type 1 SLE were remark-
able for neutrophil involvement/cell activation immune 
response and monocytes and patients with type 2 SLE largely 
for B cell interactions.

Co-expression module preservation between type 1 and type 2 
SLE and FM samples
Next, we sought to determine the relationship between 
the co-expression modules used to distinguish type 1 and 
type 2 SLE and those generated from a dataset of classic 
FM (GSE67311). MEGENA was employed to generate 
co-expression modules from the 70 FM patient samples in 
this dataset, and the MEs of the top 40 modules correlating 
with the seven clinical traits (bipolar disorder, body mass 
index, chronic fatigue syndrome, Fibromyalgia Impact 
Questionnaire Score, irritable bowel syndrome, migraine, 
major depression) were visualised (online supplemental 
figure 8A). Module preservation was then carried out 
between the type 1 and type 2 SLE co-expression modules 
and those generated from GSE67311 FM samples. Using a 
composite z summary score (online supplemental figure 
8B), 40 of the 157 type 1 and type 2 SLE modules were 
preserved (z score >2), 29 were moderately preserved (z 
score >5) and 21 were well preserved (z score >10) among 
the FM co-expression modules. Functional annotations of 
top preserved modules showed immune/inflammatory 
cells, including monocytes, T cells, neutrophils, func-
tional activities, including interleukin (IL)-1, cytokines, 
MHC binding and IFN, and also glial cell migration 
and axon guidance (online supplemental table 7). The 

degree of module preservation in GSE67311 patients is 
included as module row annotations in figures 3 and 4.

GSVA further distinguishes patients with type 1 and type 2 
SLE and identifies a subset of FM
We next assessed in greater detail the relationship 
between SLE gene expression abnormalities and those in 
FM. For this purpose, we used stable k-means clustering 
of GSVA scores to generate five distinct FM patient clus-
ters (figure  5). Notably, a subset of patients with idio-
pathic FM (18 of 45, 40%) molecularly resembled type 
2 SLE patient signatures (patients within vertical clusters 
1 and 3), and ‘fatigue’ and ‘tired’ type 2 SLE modules 
were highly correlated with this patient subset. Co-expres-
sion modules included strong correlations in opposing 
directions with patients with type 1 SLE versus type 2 SLE 
symptoms. Patients with type 1-like FM were notably and 
positively correlated with the horizontal module clus-
ters A, C and D that included monocytes, IFN, T cells, 
cell cycle, neutrophils and neurotransmitter processes. 
Patients with type 2-like FM were notably and positively 
correlated with the horizontal module clusters E, G and 
H that included metabolic pathways, muscle structure 
development, B cells and L-type voltage-gated calcium 
channel complexes.

Type 1 and 2 SLE modules identify a subset of patients with 
inactive SLE
We next determined whether patients with the type 2 SLE 
signature could be found in other datasets of patients 
(GSE45291 and GSE49454) with inactive SLE (SLEDAI 
<6). Stable k-means clustering based on GSVA scores using 
the type 1 and type 2 SLE co-expression clusters formed 
four distinct groups within each study. In GSE45291, most 
patients with inactive SLE (151 of 244, 61.8%) were not 
identified by GSVA using type 1 and type 2 co-expres-
sion modules as gene sets. However, 49 of 244 (20.1%) 
patients with inactive SLE were identified by enrichment 
of the type 2 co-expression modules (figure 6). Notably, 
a similar number (44 of 244, 18%) were identified by 
enrichment of the type 1 gene signature. Similar results 
were seen in patients with inactive SLE in GSE49454 
(online supplemental figure 9). These results indicate 
that most patients with inactive SLE do not express either 
the type 1 or type 2 gene expression signature. However, 
small subsets express one or the other, suggesting that a 
small proportion of each may have the molecular profile 
of type 1 and type 2 SLE. A summary of the distribution 
of patients with inactive SLE and FM showing molec-
ular features of type 1 and type 2 SLE is shown in online 
supplemental figure 10. Unfortunately, clinical features 
of type 2 SLE are not available in these datasets.

SLE subsets identified by type 2 SLE gene modules have 
severe fatigue more frequently
Finally, we sought to determine whether subsets of patients 
with SLE identified by enrichment of type 2 SLE modules 
have a greater frequency of severe fatigue. We employed 
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GSE88884 (Illuminate 2) for this analysis even though this 
dataset was limited to patients with active disease (SLEDAI 

of 6 or more) because fatigue and pain were measured, 
although using different metrics (Brief Fatigue Inventory 

Figure 5  Type 1/2 SLE molecular signatures identify 18 of 45 (40%) subjects with fibromyalgia (FM) from GSE67311 exhibiting 
enrichment of type 2 gene modules. The top5k rowVar genes from GSE67311 were analysed by GSVA using the top 40 type 
1/2 SLE cohort gen2–4 modules as gene signatures. Column annotations include FIQR (Fibromyalgia Impact Questionnaire 
Score), BMI (body mass index), CFS (chronic fatigue syndrome), major depression (yes/no), migraine (yes/no), IBS (irritable 
bowel syndrome, yes/no), and mean cluster cosine similarity to bona fide type 1 and type 2 sample results. FM patient cluster 2 
(12 patients) is most similar (cosine sim >0.3) to type 1 SLE signatures, and FM patient clusters 1 (10 patients) and 3 (8 patients) 
are most similar to type 2 SLE signatures. Clusters 4 and 5 had only weak similarity to type 1 or type 2 SLE (sim <0.3). Row 
annotations indicate modules that were significantly correlated with type 1 SLE or type 2 SLE, fatigue and tired. Columns were 
stably clustered (1000 iterations) into k=5 patient clusters and rows optimally clustered into k=8 groups of modules (A). GSVA 
enrichment score row means and sample traits were calculated for the five GSVA patient clusters (B). GSVA, Gene Set Variation 
Analysis; IFN, interferon.
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and Brief Pain Inventory). As can be seen in figure 7, using 
k-means clustering based on enrichment of the 40 SLE type 
1 and type 2 co-expression modules and GSVA, GSE88884 
samples were separated into six subsets, two with similarity 
to type 2 SLE, one with similarity to type 1 SLE and three 

with mixed features. When these subsets were interrogated 
for the frequency of severe fatigue, the two type 2-like subsets 
were significantly enriched for patients with severe fatigue 
along with one of the mixed subsets. Further analysis of 
this mixed subset indicated minimal or no enrichment of 

Figure 6  Type 1/2 SLE molecular signatures identify a small subset of 49 of 244 (20.0%) subjects with inactive SLE (SLEDAI 
<6) from GSE45291 exhibiting enrichment of type 2 gene modules. The top5k rowVar genes from GSE45291 were analysed by 
GSVA using the top 40 type 1/2 SLE cohort gen2–4 modules as gene signatures. Column annotations include cohort (healthy 
or SLE), SLEDAI score and ancestral background (AA, AsA, EA and other), and mean cluster cosine similarity to bona fide type 
1 and type 2 sample results. Inactive SLE patient cluster 2 (44 patients) is most similar to type 1 SLE signatures and inactive 
SLE patient cluster 5 (49 patients) is most similar to type 2 SLE signatures. Clusters 1, 3 and 4 had only weak similarities to type 
1 or type 2 SLE (sim <0.3). Row annotations indicate modules that were significantly correlated with type 2 SLE, fatigue and 
tired. Columns were stably clustered (1000 iterations) into k=5 patient clusters and rows optimally clustered into k=7 groups of 
modules (A). Mean GSVA enrichment scores and sample traits were calculated for the five GSVA patient clusters (B). AA, African 
ancestry; AsA, Asian ancestry, EA, European ancestry; GSVA, Gene Set Variation Analysis; IFN, interferon.
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Figure 7  Analysis of patients with active SLE (GSE88884) identifies patient groups with severe fatigue. GSVA was carried out 
on GSE88884 (Illuminate 2) using the top 40 type 1/2 SLE cohort modules as signatures. Stable k–means clustering of GSVA 
enrichment scores formed six patient clusters and six module clusters. Column annotations include mild or severe fatigue (mild 
1–3, severe 8–10) using the Brief Fatigue Inventory, mild or severe pain scored using the Brief Pain Inventory (mild 1–4, severe 
7–10), anti-dsDNA, C3 and C4 at baseline (low −1, normal 0, high +1), and mean cluster cosine similarity to the type 1 SLE 
and type 2 SLE patient clusters. Illuminate 2 patient cluster 3 was most similar by cosine similarity to type 1 SLE signatures, 
and clusters 0 and 1 were most similar to type 2 SLE signatures. Clusters 2, 4 and 5 were mixed (type.2.SLE cosine similarities 
−0.34, +0.36 and −0.23, respectively). Row annotations indicate modules that were significantly correlated with type 1/2 SLE, 
fatigue and tired (A). Proportion test analysis significantly (p<0.05) identifies Illuminate 2 patient groups with fatigue by the Brief 
Fatigue Inventory (mild 1–3, severe 8–10) (B) and those with pain scored using the Brief Pain Inventory (mild 1–4, severe 7–10) 
(C). Patient clusters marked as (*) exhibit a significant difference between the frequency of severe and mild fatigue or pain, 
respectively. GSVA, Gene Set Variation Analysis; IFN, interferon.
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the horizontal module cluster G containing monocyte and 
IFN signatures. It is notable that all subsets contained signif-
icantly more patients with mild pain with no differences 
between the subsets.

DISCUSSION
In this pilot study using a bookend approach, we tested 
the hypothesis that patients with SLE with high levels of 
type 1 or type 2 symptomatology can be distinguished 
on the basis of transcriptomic analysis of peripheral 
blood cells. While the number of patients in this study 
was limited, the data nevertheless support five important 
conclusions concerning type 1 and type 2 SLE activity. 
First, co-expression gene modules derived from patients 
with type 1 and type 2 SLE highly correlate with specific 
features of type 1 and type 2 SLE. Second, patients with 
active type 1 or type 2 SLE have quite distinct gene expres-
sion profiles, with perturbations of specific molecular 
pathways. Third, the type 1 and type 2 SLE-related gene 
expression profiles can identify unique subsets of patients 
with FM. Fourth, the gene expression profiles of type 2 
SLE can be detected in unrelated datasets comprised of 
patients with inactive SLE. Finally, the type 2 SLE gene 
co-expression modules identify subsets of patients with 
active SLE with a greater frequency of severe fatigue.

Previous studies of peripheral blood cells have primarily 
addressed the relationship of changes in gene expression 
to inflammatory disease activity as measured by instru-
ments such as the SLEDAI.19 These studies have thus 
focused largely on type 1 disease. This raises the question 
of whether the differences in gene expression profiles 
merely are indicative of differences in disease activity. 
A number of studies have assessed gene expression 
changes related to changes in disease activity measured 
by SLEDAI. Although changes have been identified in 
different studies,20 no consensus pattern of gene expres-
sion d.21 Moreover, in this study, the type 2 gene expres-
sion profile was seen in only a small fraction of inactive 
patients in two datasets and also in a subset of patients with 
SLE with active disease. Therefore, it is unlikely that the 
type 2 gene expression profile merely reflects changes in 
SLEDAI score. In this regard, association of the IFN gene 
signature with type 1 SLE is notable. In general, the IFN 
signature is associated with the diagnosis of SLE, but may 
not change significantly over time in longitudinal studies 
of adult patients with disease activity in individual paedi-
atric patients.22–24 Of note, recent studies have revealed 
a significant association between the IFN signature and 
the presence of specific autoantibodies, especially those 
to RNA-binding nuclear proteins, including anti-RNP, 
anti-Sm and anti-SSA.25 Notably, administration of type 
1 IFN as a treatment can cause symptoms consistent with 
type 2 SLE activity, including fatigue and achiness.26 In 
the current study, an association was found between the 
IFN gene signature and type 1 but not type 2 SLE activity. 
These results clearly establish an association between the 
IFN signature and type 1 SLE, consistent with the role 

of both IFN and autoantibodies in the inflammatory 
features of SLE, similar to results reported here.27

Beyond the IFN gene signature, expression of other 
specific gene modules was shown to be useful in distin-
guishing type 1 and type 2 SLE activity. These findings 
were validated using a number of orthogonal analytical 
techniques, including ME correlations, GSVA enrich-
ment scores and analysis of DGCA intermodular pairings. 
Unique type 1 SLE gene module enrichment included 
monocytes, neutrophils, T cells, IFN, IL-1, tumour 
necrosis factor (TNF), cell cycle and Wnt signalling, all 
characteristic of the inflammatory nature of this form of 
SLE. DGCA more specifically implicated type 1 SLE inter-
actions between monocytes and neutrophils and a host of 
other neutrophil interactions, notably including IL-1 and 
IFN. DGCA also showed that cell cycle was paired with 
the generation of superoxide and hydrogen peroxide as 
part of the neutrophil innate immune response, steroid 
precursor generation for manufacture of many molecules 
including immune signals, and T cell and Fc receptor 
activity. These features are all typical of the inflammatory 
nature of type 1 SLE symptoms as previously reported for 
active SLE in general.1

In contrast to findings with type 1 SLE, expression of 
a number of other gene modules characterised active 
type 2 SLE symptoms. We found a number of neural 
features that distinguished type 1 and type 2 SLE activity. 
Unique type 1 SLE module enrichment included those 
annotated as cerebral cortex microglial cell migration 
and neurotransmitter metabolism. DGCA more specif-
ically suggested type 1 SLE intermodular connections 
between neutrophils and neurotransmitter metabolism, 
postsynaptic endosomes and nervous system develop-
ment. It was initially surprising in this study of peripheral 
blood that one module was annotated as microglia rather 
than monocytes/macrophages. Although these cell types 
share no common progenitor, they are both members of 
the mononuclear phagocyte system and share functional 
features which could lead to overlaps in cell type annota-
tions. Additional studies will be necessary to determine 
whether enrichment of this module reflects microglial 
or general monocyte/macrophage enrichment in type 
1 SLE, but this enrichment is consistent with previous 
studies on the contribution of mononuclear phagocyte 
activity to inflammatory features of SLE.28–30

It is also of interest that type 1 SLE activity was associ-
ated with a neutrophil signature. Previous studies have 
clearly delineated a role of neutrophil subpopulations 
in active SLE31 32 and, notably, in this study, this associ-
ation was only found in patients with active type 1 and 
not type 2 SLE. In addition, steroid usage was positively 
correlated with neutrophils, monocytes, IL-1 and the 
Fc receptor in type 1, but these features were all nega-
tively correlated with type 2 SLE. This finding implies 
that neutrophils may contribute to the features of type 1 
but not type 2 SLE, although steroid administration is a 
possible contributor.21 22 33
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Type 2 SLE was also notable for neuromuscular and 
metabolism enrichment, sufficiently distinct to be 
detected in peripheral blood. These findings include 
muscle structure development, oxidative phosphoryla-
tion, cation transport, the carnitine shuttle (concentrated 
in skeletal and cardiac muscle) and L-type voltage-gated 
calcium channel complexes (which are associated with 
skeletal, smooth and cardiac muscle). Mitochondrial 
dysfunction and homeostatic imbalance have been inves-
tigated in FM as potentially modulating neuropathic pain 
through links with energy metabolism34 including mito-
chondrial abnormalities in carnitine fatty acid metabo-
lism.35 It has been suggested that there is a connection 
between reactive oxygen species and neuropathic pain 
and that mitochondria could be a therapeutic target 
in FM and may also be involved in sensitivity to painful 
stimuli in type 2 SLE.36 37

Besides identifying gene expression modules that 
discriminate type 1 from type 2 SLE, we identified patient 
clusters derived from two studies of patients with inactive 
SLE who shared some transcriptional patterns with those 
we found with type 2 SLE. Only a small fraction of patients 
with inactive SLE were enriched for the type 2 gene signa-
ture (20.1%–34.6%). Because we did not have informa-
tion on type 2 symptoms in these patients, we went on 
to analyse patients from a clinical trial (GSE88884, Illu-
minate 2) because fatigue and pain were recorded, even 
though all of these patients manifested active disease 
(SLEDAI ≥6). It is notable that an increased frequency 
of severe fatigue was found in the subsets with type 2 
gene expression features and even in a subset with mixed 
molecular features but diminished type 1 monocyte and 
IFN gene expression. It was surprising that no difference 
in the frequency of severe pain was noted in the subsets, 
but this could relate to differences in the information 
collected by the WPI versus the Brief Pain Inventory.

Our study is the first attempt to assess differences in 
gene expression in patients who have been selected to 
have primarily type 1 SLE or type 2 SLE at the time of 
analysis, a so-called bookend approach. All patients with 
current type 2 SLE activity have had active type 1 SLE in 
the past, as type 1 activity is required to meet criteria for 
SLE.5 6 It is, therefore, interesting to speculate that type 
1 and type 2 symptoms may vary in individual patients 
with SLE and gene expression profiling may be useful 
to delineate or possibly even predict the transition. It is 
also possible that type 1 and type 2 symptoms may coexist 
in some patients as fatigue, for example, is present in 
as many as 90% of all patients with SLE, and that gene 
expression profiling might be useful in dissecting the 
molecular endotype of each set of manifestations. The 
preliminary analysis of patients with active SLE supports 
this conclusion.

Our study also indicates a relationship between tran-
scriptional patterns in type 2 SLE and a subset of patients 
with FM, including enrichment of B cells, plasma cells 
and IgG chains as identified using DGCA. Since many 
factors can lead to central sensitisation, a key postulated 

mechanism for FM, it is not surprising that there is 
heterogeneity in the transcriptional profiles. The obser-
vation of common features in a subset of FM is, therefore, 
notable and suggests that despite diversity of causative 
factors for central sensitisation, common transcriptional 
changes can occur whether FM occurs by itself or in the 
context of an inflammatory disease.

It is also of interest that a second subset of FM had a gene 
expression profile similar to that of type 1 SLE. Notably, 
this subset had additional gene expression features of 
inflammation, including enrichment of monocytes, 
inhibitory macrophages, neutrophils, as well as IFN, TNF 
and IL-1 pathways. Unfortunately, detailed clinical eval-
uations of these patients are not available to determine 
whether they did indeed have underlying inflammatory 
disease. Despite this uncertainty, the data suggest that 
gene expression profiling can distinguish subsets of FM, 
two of which are molecularly similar to type 2 SLE, and 
a second with more inflammatory features typical of type 
1 SLE.

As a pilot study, the current study has limitations. The 
number of patients is relatively small. Moreover, we did 
not have detailed clinical information about subjects with 
FM or inactive SLE. Finally, we did not have the oppor-
tunity to follow patients longitudinally to determine 
whether molecular features track with or even precede 
clinical features of type 1 and type 2 SLE. Despite this, 
the results are provocative and merit confirmation in 
larger datasets.

In summary, our study used a number of orthogonal 
bioinformatics approaches to distinguish type 1 from 
type 2 SLE based on unique transcriptional patterns. 
Additionally, we identified a subset of patients with type 
2-like SLE in datasets of FM and inactive SLE, suggesting 
molecular similarities of these entities. Moreover, we 
could identify a subset of patients with active SLE who 
expressed the type 2 gene expression profile and exhib-
ited an increased frequency of severe fatigue. Finally, we 
found that a subset of patients with FM showed molec-
ular features of type 1 SLE with upregulation of many 
inflammatory genes; these findings suggest the possibility 
of inflammatory components in some patients with idio-
pathic FM.
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