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Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both
the oncogenic mutations and challenging microenvironment. To satisfy the demands of
energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor
cells undergoes important changes, among which the aberrant lipid metabolism has
gained increasing attention in facilitating tumor development and metastasis in the past
few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for
tumor therapy, due to lacking of comprehensive understanding on its regulating
mechanism. Tumor cells closely interact with stromal niche, which highly contributes to
metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of
microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant
evidence has shown that many factors existing in the tumor microenvironment can rewire
multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer
cells. Hence in this review, we summarized the recent progress on the understanding of
microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of
modulating lipid metabolism as an anticancer approach.

Keywords: tumor micoenvironment, metabolic reprogramming, microenvironment factor, cancer therapy,
lipid metabolism
1 INTRODUCTION

The increased metabolic needs of tumor cells in a setting of hypoxia, acidosis and nutrient deprivation,
highlight the importance of metabolic reprogramming to support rapid proliferation, continued growth,
invasion, metastasis and resistance to therapeutic interventions (1). The metabolism of critical nutrients
like glucose and glutamine undergoes crucial remodeling in tumors, which thousands of studies have
shed light on. Altered lipid metabolism is another remarkable feature of tumor metabolism and has
received renewed interest recently guiding response and resistance to antitumoral therapies (2). Lipids
encompass a diverse group of hydrophobic biomolecules including phospholipids, triacylglycerols, and
sterols, mostly composed of common building blocks like fatty acids (FAs) and cholesterol. They actively
participate in a variety of biological processes (2). Aside from being essential structural components of
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membranes, lipids also function as energy sources and metabolic
substrates, thereby highly needed by tumor cells to facilitate rapid
proliferation (2). Particularly, lipids appear to be more important in
non-glycolytic tumors such as prostate cancer that mainly rely on
fatty acid oxidation (FAO) rather than glycolysis for ATP
production (3–5). The role of lipids in the synthesis of pro-
tumorigenic signaling molecules is also worth to be addressed.
Signaling lipids, such as phosphatidylinositol and lysophosphatidic
acid (LPA), exert oncogenic effects by activating signaling pathways
driving proliferation and migration (6, 7).

Invasion and metastasis are the deadliest aspects of tumor,
while lipid metabolism also has an established role in fueling
these processes. For instance, cholesterol is the critical
component of lipid rafts, which are small lipid domains within
the cell membrane and mediate signal transduction and plasma
membrane protein sorting. Lowering cholesterol level disrupts
lipid rafts and then inhibit cell migration by inducing CD44
shedding, which is the principal cell adhesion receptor expressed
in tumor cells (8). EGFR signaling, the vital signaling pathway in
tumor migration, is also disturbed when destroying the structure
of lipid rafts (9). Besides, various dysregulated enzymes in lipid
synthesis and catalysis are well-elucidated to promote metastasis
of tumor cells (10). Also, CD36-mediated lipid metabolism is
found to be a significant feature in metastasis-initiating cells in
oral squamous cell carcinoma (11). Therefore, lipid metabolism
is increasingly recognized as a critical culprit in the pathogenesis
of malignancies, and its regulation represents a fertile field of
research. To target this metabolism in tumor cells specifically, it
is important to identify regulators and relevant mechanism
governing lipid metabolic reprogramming in malignant cells.

While oncogenic mutations have displayed pleiotropic effects
in rewiring lipid metabolism to promote carcinogenesis, little is
known about the contribution of tumor microenvironment
(TME) in this process (12, 13). Solid tumor cells are surrounded
by the neighboring cellular (e.g., stromal cells and infiltrated
immune cells) and molecular components (e.g., cytokines,
metabolites, exosomes and extracellular matrix), which are
described as TME. Tumor cells closely interact with adjacent
niche and take advantage of it, thereby sustain escaping
strategies to thrive in the challenging environment (14).
Similarly, TME in turn highly contributes to metabolic rewiring
of critical substrates in cancer cells and its impact on lipid
metabolism has become a topic of renewed interest (15). As the
lipid metabolism of cancer cells has been extensively studied and
well-documented (2), in the following sections, we will mainly
focus on the recent revealed interaction of TME factors on the
lipid metabolism of cancer cells while first briefly revisit the
alteration of tumoral lipid metabolism for a better understanding.
2 ALTERATIONS OF LIPID METABOLISM
IN TUMOR CELLS

Increased scavenging for extracellular lipids and de novo
synthesis are important routes for tumors to acquire lipids.
Cell surface receptors and transporters for lipids are thereby
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upregulated in various tumors, such as CD36 and low-density
lipoprotein receptor (LDLr), as well as FA binding protein
(FABP) and FA transport protein (FATP) (16–18). For
instance, CD36 is significantly upregulated in malignant
epidermal tumor cells such as ovarian cancer (19) and gastric
cancer (20), and is correlated with metastasis and poor prognosis
for patients. Higher LDLr expression has been reported in
pancreatic adenocarcinoma (PDAC), glioblastoma, triple
negative and HER2 overexpressing breast cancers for higher
uptake of cholesterol (21–23). But it’s downregulated in
hepatocellular carcinoma while de novo cholesterol
biosynthesis is elevated (24).

Various tumors exhibit a phenotype of exacerbated de novo
lipogenesis, irrespective of the levels of extracellular lipids (25).
Acetyl-CoA is the main substrate for lipid synthesis and
enhanced glucose and glutamine metabolism could contribute
to this metabolic pathway by providing lipogenesis precursors
like citrate through tricarboxylic acid cycle (TCA) (25).
Moreover, various enzymes involved in de novo lipogenesis
pathway are significantly up-regulated in cancers, such as
acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN)
in FA synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGCR) in cholesterol synthesis (26). These key enzymes
represent appealing therapeutic targets for blocking lipid
metabolism and has been extensively investigated for cancer
therapy (26, 27).

The primary products of de novo FA synthesis are saturated
FA (SFA), which could be desaturated to monounsaturated FA
(MUFA) by stearoyl-CoA desaturase (SCD). MUFA is the key
substrates in the formation of phospholipids, cholesteryl esters
and triglycerides in cell membranes including the endoplasmic
reticulum (ER) membrane, thus the imbalance of SFA/MUFA or
accumulation of SFA will lead to can reduce membrane fluidity
and dynamics, causing disrupted signaling and impaired ER
homeostasis (28, 29). SCD1 is found to be overexpressed in many
types of cancers, such as breast, ovarian, lung, gastric, colon
cancers, hepatocellular carcinoma (HCC) and clear-cell renal cell
carcinoma (ccRCC) (30–36), and endows cancers with
progressive, invasive and migratory properties, which makes
SCD1 a promising anti-cancer target. Being responsible for the
biosynthesis of the phosphatidylcholine (the major phospholipid
in cell membranes), the Kennedy pathway also shows great
significance in tumors and provides appealing molecular
targets for anti-cancer therapies, particularly the choline kinase
(Chk), the initial enzyme in the Kennedy pathway (37).
Overexpression of Chk is observed in human breast, ovarian,
colorectal, lung, prostate and liver cancers (38–41). High levels of
choline phospholipid metabolites and Chk are found to play a
crucial role in tumorigenesis, progression and therapy resistance
(37–39, 42).

Excessive lipids are then usually stored in lipid droplets (LDs)
as neutral lipids (mainly triglycerides (TGs) and cholesterol
esters (CEs)). Indeed, LD accumulation is widely observed in
many human malignancies such as prostate cancer (43),
glioblastoma (44) and ovarian cancer (45). It’s increasingly
considered as an emerging hallmark of cancer aggressiveness,
especially in tumor cells exposed to nutrient deprivation and
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hypoxia (46, 47). Notably, cancers are reported to employ LDs as
means to promote cancer cell growth and proliferation such as
central anti-lipotoxic organelle, regulation of FA trafficking and
distribution, maintenance of ER and regulation of autophagy
(46). Based on the evidence that LD accumulation causes
chemotherapy resistance via inhibiting drug-induced apoptosis
(48), spectroscopy imaging tools such as fourier transform
infrared spectroscopy and Raman spectroscopy have promising
roles in predicting therapy outcome in patients (48–50).

Interestingly, though FA oxidation and FA synthesis (FAS)
are used to be considered incompatible on account of the
suppressive effect of malonyl-CoA (a fatty acid synthesis
intermediate) on FAO, there have been studies countering this
argument in leukemia and breast cancers (51, 52) and findings in
acidic-adapted cancer cells proved that the concomitance of FAO
and FAS were allowed by histone deacetylation-mediated acetyl-
CoA carboxylase 2 (ACC2) inhibition (51–53). Lipid degradation
not only provides metabolic fuels for cancer cells through
mitochondrial fatty acid b-oxidation (FAO), but also generates
acetyl-CoA for lipogenesis and provides the critical reductive
force NADPH. Yet FAO rewiring and its role in tumor have only
recently been heeded. Acute myeloid leukemia, glioma, triple-
negative breast cancer, K-Ras mutant lung cancer, and hepatitis
B-induced HCC exhibit high rates of FAO (54–58) while some
non-glycolytic cancers such as prostate tumor and diffuse large
B-cell lymphoma, preferentially use FAO as the dominant
bioenergetic pathway for survival (3, 59). Overexpressed FAO
enzymes are also found in cancer cells show high activity of FAO,
such as rate-limiting enzyme carnitinepalmitoyl transferase 1
(CPT1) (60–62).

The regulation of lipid metabolism involves a complex
transduction signaling pathways. Generally, the enhanced
lipogenesis in many cancer cells (such as glioblastoma, breast
and ovarian cancer) are likely consequences of increased
expression of the pivotal transcription factors, sterol regulatory-
element binding proteins (SREBPs) (63). It’s well established that
SREBPs play distinctive roles in modulating the genes involved in
the uptake and synthesis of fatty acid and cholesterol while
inhibiting SREBPs is detrimental to cancer cell (64–66). As
important nodes of convergence and divergence within
biological signaling networks, SREBPs respond to the upstream
signaling [i.e., PI3K/AKT/mTOR, AMPK pathway (67, 68)] and to
changing nutritional status in the TME. Other pathways like
peroxisome proliferator-activated receptors (PPARs) and liver X
receptors (LXRs) signal transduction pathway also play an active
part in modulating lipid reprogramming, which are both ligand-
activated nuclear transcription factors. Investigation of their roles
in carcinogenesis has gained momentum (69). PPARa and
PPARb/d induce lipid oxidation, while PPARg activates lipid
storage and adipogenesis. LXR pathway is critical in maintaining
cholesterol homeostasis and is usually impaired in cancer with
elevated cholesterol level, suggesting an antitumor effect exerted by
LXR activation (70). These pathways form a fine regulatory
network and tangle with each other, emphasizing the necessity
of carefully consideration in targeting at upstream or
downstream genes.
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Given the metabolic alterations made in lipids being a pivotal
element defining tumor cell fate (Figure 1), understanding how
it is remodeled and verifying regulating factors might provide us
a tantalizing therapeutic target.
3 MICROENVIRONMENTAL FACTORS

With the focus interest of anti-tumor therapy shifted from a
tumor cell-centered viewpoint to the concept of a complex tumor
ecosystem, the involvement of TME in the tumor progression
has received significant attention (71). As introduced earlier,
components in TME are actively engaged in modulating tumor
progression, and contribute to shaping of cancer metabolism
landscape. In addition to intrinsic oncogenic factors, extrinsic
regulation by TME factors is also important in reprogramming
of lipid metabolism. Here, with a special focus on lipid metabolic
pathways, we review the interaction of tumor cell and important
factors of TME, including stress factors (hypoxia and acidosis),
cellular (stromal cells) and molecular components (cytokines,
metabolites) (Table 1).

3.1 Hypoxia
The imbalance between the inadequate oxygen supply caused by
abnormal vascularization and necessary oxygen consumption of
tumor cells gives birth to the formation of a hypoxic
environment, which is a common feature of solid tumors
(141). Responses to hypoxia comprise a series of adaptive
changes that are mainly regulated at the transcriptional level
by the family of hypoxia-inducible factors (HIFs), which activate
target genes involved in angiogenesis, metabolic reprogramming
and other biological mechanisms (142). Despite the HIF-
dependent regulation of carbohydrate metabolism is well
established (143), the impacts of HIF on lipid metabolism have
only recently been revealed: HIF can induce a lipogenic cancer
cell phenotype via enhancing lipid uptake, synthesis and storage
while cutting down utilization (144) (Figure 2).

FABPs (FABP3, FABP4 and FABP7) are upregulated in a
HIF-1-dependent way to promote extracellular FA uptake and
LD accumulation in various cancers (72, 73). Increased
endocytosis of lipoproteins through upregulating the
expression of LDLr and very low-density lipoprotein receptor
(VLDLr) is another mechanism mediated by HIF-1 to promote
lipid uptake in hepatoma, breast and cervix cancer cells (75).

Under hypoxic stress , HIF-1a- induced pyruvate
dehydrogenase kinase isozyme 1 (PDK1) expression blocks the
conversion of glucose-derived pyruvate to acetyl-CoA (145). To
compensate, cancer cells adopt different metabolic mechanisms,
such as HIF-dependent stimulation of reductive glutamine
metabolism, or acyl-CoA synthetase short-chain family
member 2 (ACSS2)-mediated acetate metabolism for
alternative sources of FA precursors (76). In breast cancer,
activation of HIFs upregulates the expression of glutamine
transporters to enhance the uptake of glutamine and induces
the gene that encoding the E3 ubiquitin-protein ligase SIAH2 to
promote reductive carboxylation of glutamine-derived a-
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ketoglutarate to citrate for lipid synthesis (76, 77). Enhanced
glutamine metabolism by HIF was also found in PDAC, RCC
and lung cancer (146–148). Fatty acid biosynthesis is also favored
by HIF-1 through modulating AKT/mTOR/SREBP-1 signaling
in breast cancer, which upregulate the expression of lipogenic
enzymes such as FASN (78). In HepG2 cells, HIF-1 was also
found to increase the level and activity of HMG-CoA reductase
(HMGCR) in the cholesterol synthesis pathway as well while the
specific mechanism needs more elucidation (79). On the
contrary, FAO is impaired due to HIF-1- and HIF-2-
dependent downregulation of b-oxidation enzyme proliferator-
activated receptor-g coactivator-1a (PGC-1a) and CPT1A in
hepatoma and ccRCC cells (80, 81). It is reported that in
hepatoma cells HIF-1a could suppress FAO by repressing the
expression of acyl-CoA dehydrogenases (ACAD) (82).

Hypoxia has also been shown to regulate the expression of
Chk and the levels of total choline-containing compound (tCho)
and phosphocholine (PC), which is attributed to the
transcriptional control by HIF-1a through the binding of HIF-
1a to hypoxia response element (HRE) sites in the regulatory
promotor region of its target gene (83). In PC-3 prostate cancer
cells, choline phosphorylation and the activity as well as
expression level of Chk are decreased by hypoxia. This
phenomenon was confirmed to be caused by activation of
HRE7 within the Chka promotor region by HIF-1a. HRE7
mutation could eradicate this effect (83). Yet another study in
a human prostate cancer xenograft model reported contradictory
results, represented by increased Chka expression and elevated
PC and tCho concentrations within hypoxic regions mediated by
HIF-1a (149). Later it was shown that this Chk promotor-
mediated upregulation takes place only when a highly
repressive region, which contains the HRE7 site, is removed
from the promotor (83).
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The activity of SCD is constrained under hypoxic conditions
since it is an oxygen-consuming enzyme and build-up of
saturated FAs from enhanced lipogenesis could be toxic (150).
However, HIF-2a can elevate the expression of SCD1 and induce
the uptake of MUFAs to counteract this negative effect (84, 85).
Increased LDs accumulation and restricted lipolysis are other
strategies employed by hypoxic cancers to avoid lipotoxicity (47).
HIF-1 directly upregulates the expression of enzymes involved in
TG biosynthesis pathway and LD coat protein perilipin 2
(PLIN2) to favor LDs formation in cancers upon oxygen
deprivation (86, 87). As both a LD protein and a direct target
of HIF-1, hypoxia-inducible protein 2 (HIG2, also known as
hypoxia inducible lipid droplet associated, HILPDA) functions
in formation of LDs (88). Moreover, lipid accumulation is
further supported by repressing intracellular lipolysis, which is
mediated through HIF-1-mediated inhibition of adipose
triglyceride lipase (ATGL) via HIG2 (89).

Many studies have shown that genetically or pharmalogically
inhibiting HIF can revert the effects of lipid accumulation in
various mouse models (151). HIF inhibitors are currently being
tested, along with conventional therapies, for the treatment of
different types of cancer (152). However, as the repertoire of
direct HIF targets regulating of lipid metabolism involves
complicated cascades, further studies are needed to unravel the
exact steps controlled by HIFs to develop more precise
anticancer treatments.

3.2 Acidosis
Acidosis, another hallmark of the TME, is the consequence of
exacerbated glycolytic metabolism and CO2 hydration with a
reduced removal of acidic waste products like lactate (153). It in
turn impacts (independently from hypoxia) the metabolic
preferences of cancer cells and contributes to the increased
FIGURE 1 | A brief representation of altered lipid metabolism in cancer cells. Lipids are metabolized in cancer cells involving molecular process of uptake, de novo
synthesis, degradation, storage and lipolysis. Aside from being structural components of membrane, lipids also function as energy sources and signaling factors
coordinating various biological processes. Acetyl-CoA is the main substrate for lipid synthesis while the altered metabolism of glucose, glutamine and acetate could
contribute to this metabolic pathway by providing precursors. FAs are then either break down through mitochondrial b-oxidation to produce energy, or utilized in
membrane synthesis together with cholesterol. Excessive lipids are then usually stored in LDs as TG and CE, and could be mobilized for another source of lipids. LD
is recognized as important cellular organelle in regulating autophagy and anti-lipotoxicity. SREBPs are pivotal transcription factors that respectively modulates the
genes involved in the uptake and synthesis of fatty acid and cholesterol, and responds to the upstream signaling (i.e., PI3K/AKT/mTOR, AMPK pathway). Other
pathway like PPAR and LXR signaling also play an active role in modulating lipid reprogramming.
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TABLE 1 | Non-exhausted list of microenvironmental factors regulating tumor lipid metabolism.

Factors Cancer Phenotype Target Reference

Hypoxia
HIF-1 Ovarian cancer, hepatoma,

glioblastoma, breast cancer
FA uptake ↑, LD accumulation ↑ FABP3/4/7 ↑ (72–74)

HIF-1 Breast cancer, hepatoma,
cervix cancer

Endocytosis of lipoproteins ↑ LDLr ↑/VLDLr↑ (75)

HIF-1 Breast cancer Reductive glutamine metabolism ↑!
lipogenesis↑

SNAT2 ↑, SIAH2 targeted ubiquitination and proteolysis of OGDH2↑ (76, 77)

HIF-1 Breast cancer FAS ↑ AKT/mTOR/SREBP-1 ↑ (78)
HIF-1 Hepatoma Cholesterol synthesis ↑ HMGCR ↑ (79)
HIF-1,2 Hepatoma, ccRCC FAO ↓ Lipid accumulation ↑ b-oxidation enzyme: PGC-1a ↓ CPT1A ↓ (80, 81)
HIF-1 Clear cell renal cell carcinoma FAO ↓ ACAD ↓ (82)
HIF-1a Prostate cancer Choline metabolism ↓ HIF-1-activated HRE7 within the promoter region of Chk! Chk↓!

tCho ↓ PC ↓
(83)

HIF-2a Clear cell renal cell
carcinoma, hepatoma

FA desaturation ↑ SCD1 ↑ (84, 85)

HIF-1 Hepatoma, cervix cancer,
renal carcinoma

LD formation ↑ TG biosynthesis enzyme ↑ AGPAT2 ↑ PLIN2 ↑ HIG2 ↑ (86–88)

HIF-1 Hepatoma, cervix cancer Intracellular lipolysis ↓ HIG2 ↑ATGL ↓ (89)
Hypoxia Breast cancer, prostate

cancer
Acetate metabolism ↑ ACSS2 ↑ (90)

Acidosis

Cervix cancer FAO ↑ FAS ↑ Mitochondrial complex I activity ↓ histone deacetylation of ACC2
Histone deacetylation-mediated ACC2 repression

(53)

Pancreatic cancer, cervix
cancer, colon cancer

Acetate metabolism ↑ Cholesterol
biosynthesis ↑

SREBP-2 ↑! ACSS2 ↑ cholesterol biosynthesis enzyme ↑ (91)

Cervix cancer, colon cancer LD formation ↑ TGF-b2 signaling ↑! CD36 ↑, DGAT1 ↑ (92)
Glioblastoma LD formation ↑ HSPG! MAPK pathway! lipoprotein uptake↑ (93)
Prostate cancer LD trafficking ↑ V-ATPase, PEDF (94)
Melanoma Membrane remodeling Unknown (95)
Mouse mammary carcinoma Choline metabolism remodeling Putative: glycerophosphocholine-diesterase enzyme ↓

phosphatidylcholine catabolism ↑!glycerophosphocholine ↑ PC ↓
(96)

Nutrient deprivation
Glioblastoma multiforme Lipogenesis ↑ Lipid depletion ! SREBP ↑! maintain the expression of lipid

biosynthesis genes ! lipid biosynthesis ! survival
(97)

Breast cancer, prostate
cancer

FA desaturation ↑ SCD1 ↑ (98)

Breast cancer, prostate
cancer,

Acetate metabolism ↑ lipogenesis ↑ Hypoxia and lipid deletion ! ACSS2 ↑! acetate uptake ↑ acetate
contribution to lipogenesis ↑

(90)

Leukemia, colon cancer, lung
cancer

Profound alterations in classes of TG
and CE

unknown (99)

Autophagy Solid tumors Lipolysis and lipophagy of LD↑ mTORC1 (100, 101)
Cervix cancer, hepatoma,
osteosarcoma, colon cancer

LD formation↑! protective lipid
buffering system

DGAT1 ↑! selectively channel autophagy-liberated FAs into new
LDs, HIG2 ↑! TG lipolysis ↓

(102, 103)

LKB1-deficient KRAS-driven
lung cancer

Maintain FAs level and prevent
excessive FAO to survive energy
crisis

Recycle intermediates to compensate for LKB1 loss (104)

Stromal cells
CAA Ovarian cancer, breast

cancer
lipid-dependent energy generation Lipids derived from lipolysis in CAA,

PPARg! CD36 ↑, FABP4 ↑ (OV)/FABP5 ↑ (BC)
(19, 105,
106)

Breast cancer Lipolysis ↑ ATGL ↑ (4)
Leptin Breast cancer, colon cancer FAO ↑ AMPK/PPARa pathway ↑ c-Myc/PGC-1 pathway ↑ JAK/STAT3

pathway ↑! CPT1 ↑
c-Myc/PGC-1 pathway ↑
JAK/STAT3 pathway ↑ ! CPT1B↑

(107–109)

Breast cancer Concomitant increase in FAO and
FAS

Autophagy! provide FAs for FAO, autophagy! AKT signaling !
SREBP-1/FASN ↑! FAS ↑

(110)

Breast cancer Invasion ↑ PI3K/Akt/mTOR/SREBP2 ↑! ACAT2 ↑ (111)
Adiponectin Breast cancer Lipid uptake ↓ CD36 ↓ LDLr ↓ (112)
Visfatin/
Resistin

Hepatoma Lipogenesis ↑ FASN ↑ (113)

CAF Pancreatic cancer, colon
cancer, breast cancer

Lipogenesis ↑ Lipids/Alanine/LPC derived from CAF
CD36 ↑ FATP1 ↑

(114–116)

CDE Prostate cancer Lipogenesis ↑ Glycolysis- and glutamine-dependent reductive carboxylation ↑ (117)

(Continued)
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cancer aggressiveness (153). Evidence has shown that acidosis
could induce metabolic rewiring far from restricted to inhibitory
effect on glycolysis (154) (Figure 3).

While glucose-derived acetyl-CoA is reduced, FA metabolism
is profoundly altered in response to ambient acidosis with a
Frontiers in Oncology | www.frontiersin.org 6
common shift toward FAO as a main source of acetyl-CoA to
support TCA cycle and downstream lipid synthesis pathways (53).
Increased bioactive acetyl-CoA from the stimulated oxidative flux
has been suggested to restrain the electron transport chain
complex I activity by non-enzymatic acetylation, preventing the
TABLE 1 | Continued

Factors Cancer Phenotype Target Reference

CDE Gastric cancer Lipid peroxidation ↓ miR-522! arachidonate lipoxygenase 15 ↓! lipid peroxidation ↓!
ferroptosis ↓

(118)

CD8+ T cell Ovarian cancer treated with
PD-L1 blockade

Lipid peroxidation ↑ Activated CD8+ T cell! IFNg! SLC3A2 and SLC7A11 ↓!
glutathione peroxidase 4 ↓!lipid peroxidation ↑! ferroptosis ↑

(119)

TAM Ovarian cancer Cholesterol uptake ↑ Membrane-cholesterol efflux ↑ (120)
EC Colon cancer, Ovarian

cancer
Cell membrane remodel Glycerophospholipid ↑ PUFA ↑ (121)

Cytokines
TNF-a Hepatoma Lipid accumulation ↑ AMPK pathway ↓ mTOR/SREBP-1 ↑, PPAR/ABCA1 ↑ (122)

Cancer cachexia Lipogenesis ↓ PPARg pathway ↓ (123)
IL-17A Ovarian cancer FA uptake ↑ STAT3 signaling ! FABP4 ↑ (124)
IL-15 Prostate cancer FA uptake ↑ FABP1/4 ↑ (125)
IL-6 Colon adenocarcinoma Fat loss in cancer cachexia WAT lipolysis and browning ↑ (126)
TGF-b Breast cancer EMT! lipogenesis ↓ FAO↑ SREBPs/ChREBP/FASN/ACC↓, AMPK ↑ (127, 128)

Acidosis-adapted cancer
cells

LD formation↑ Unknown (92)

Metabolites
Acetate Breast cancer, Prostate

cancer
Lipogenesis ↑ ACSS2 ↑! acetyl-CoA pool, Epigenetic regulation of lipogenic

genes (FASN)
(90, 129–
131)

Butyrate Colon cancer Aerobic glycolysis ↓ glutamine
metabolism ↑ lipogenesis ↑

AKT signaling! GLUT 1 ↓ G6PD ↓, PKM2 ↑, PDK ↑ ! glycolytic
intermediates into TCA↓ glutamine metabolism ↑! lipogenesis

(132–134)

LPA Ovarian cancer Lipogenesis ↑ HIF-1a ↑ AMPK ↓ SREBP ↑ (135, 136)
Hepatoma Lipid accumulation ↑ SCD ↑ TG synthesis and accumulation ↑ (137)

BCAA Pancreatic cancer Lipogenesis ↑ BCAA uptake ↑ ! mTOR signaling↑! SREBP↑, BCAT ↑ !
mitochondrial biogenesis! carbon source

(138–140)
November 2021 | Volume 11 | Art
FIGURE 2 | Lipid metabolism reprogramming of cancer cells under hypoxia. Response to hypoxia comprises a series of adaptive changes that are mainly regulated
at the transcriptional level by the family of hypoxia-inducible factors (HIFs). HIF can induce a lipogenic cancer cell phenotype via enhancing lipid uptake, synthesis and
storage while cutting down utilization. Uptake of exogenous lipids are promoted by enhanced expression of FABPs and LDLr/VLDLr. The conversion of glycolysis-
derived pyruvate to acetyl-CoA is impaired due to the overexpressed PDK1 while ACSS2-mediated acetate metabolism and HIF-dependent stimulation of reductive
glutamine metabolism function as important source of lipid precursors. De novo FA synthesis is favored by HIF-1 through upregulated SREBP-1, which enhance the
expression of lipogenic enzymes. Cholesterol cynthesis is also enhanced with increased acitivity of HMGCR. Though the activity of SCD1 is restrained under hypoxia,
HIF can elevate its expression to counteract this effect. Increased LDs accumulation and restricted lipolysis are other strategies employed by hypoxic cancers to
avoid lipotoxicity. However, FA oxidation is inhibited by HIF through downregulating related enzymes.
icle 777273
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overproduction of reactive oxygen species. Acidosis can also
stimulate sirtuin-mediated nuclear histone deacetylation, thus
repressing the ACC2 in the FAS pathway, whose product
inhibits mitochondrial FAO (53). In parallel, FAS is supported
by the reductive metabolism of glutamine under acidic pH (53,
155). Hence, FAO and FAS could paradoxically co-exist in
acidosis-adapted cancer cells. Distinctive transcriptional
regulation is also revealed in acidic extracellular pH (pHe)
treated cancer cells from those of hypoxia and nutrient
deprivation. SREBP2 is activated in various cancer cells lines by
acidic pHe through enhancing its translocation and promotor
binding to its targets, together with intracellular acidification (91).
Cholesterol biosynthesis is therefore enhanced by pH-induced
SREBP2 and cellular cholesterol level is sustained under low pH,
while ACSS2-mediated acetate metabolism is also enhanced to
provide growth advantage (91). It’s also interesting to note that
cancer cells tend to exhibit a lipid-storing phenotype upon
microenvironmental acidosis stimulation. Acidic pH promotes
autocrine transforming growth factor-b2 (TGF-b2) signaling,
which in turn favors the formation of LDs (92). Expressions of
both CD36 and the final actor of FA accumulation as neutral
lipids, diacylglycerol acyltransferase (DGAT1), respectively, are
regulated by TGF-b2 produced by acidosis-adapted cancer cells
(92). This LD-rich phenotype was also found in glioblastoma
under hypoxic and acidic stress, where heparan sulfate
proteoglycans (HSPG) could trigger the ERK/MAPK pathway
and play an important role in hypoxia and acidosis-induced
internalization of lipoproteins (93). LD trafficking in cancer cells
can be also modulated by acid pHe. Upon lowering pH, maximum
LD velocity and LD peripheral clustering was promoted in a
V-ATPase- and lipolysis regulator pigment epithelium-derived
factor (PEDF)-dependent manner (94). Except the influences
Frontiers in Oncology | www.frontiersin.org 7
on lipid amount, microenvironmental acidosis also changes
the lipid composition such as structural changes of
membrane phospholipids (95). Significantly increased
glycerophosphocholine correlated with decreased PC was found
in perfused mammalian tumor cells, which might attribute to the
inhibition effects of acidic pH on glycerophosphocholine-
diesterase enzyme, together with concomitantly activation of
phosphatidylcholine catabolism (96).

Approaches for targeting acidosis have been raised such as
neutralization buffers, acid-activatable agents, proton pump
inhibitors and acidogenic metabolism inhibitors (156).
Preclinical and some clinical studies have shown that targeting
tumor acidity can improve anti-cancer therapy responses (156).
Given the adaptions in lipid metabolism made by cancer cells
under acidic environment, interfering with these metabolic
vulnerabilities simultaneously with acidic pHe offers new
perspectives for lipid-targeting therapy. For instance, to
develop genetically or pharmacologically inhibit histone
deacetylation of ACC2 to suppress FAO in acidosis-adapted
cancer cells, or to identify enzymes in TGF-b2-induced LD
formation whose activity is crucial at acidic pH.

3.3 Nutrient Deprivation
The poor blood perfusion also leads to limited availability of
nutrients in TME, which allows alternative metabolic pathways
other than glucose and glutamine metabolism to be mobilized.
Under low serum condition, tumor cells are more reliant on de
novo lipogenesis than the exogenous uptake for FA acquisition
(90) (Figure 4). Transcriptional activity of SREBP is found to be
induced by serum lipid depletion regardless of the oxygen status
in glioblastoma multiforme, thus supporting cell survival (97).
ACCSS2-mediated acetate metabolism, regulated by SREBP2,
FIGURE 3 | Lipid metabolism reprogramming of cancer cells under acidosis. While glucose-derived acetyl-CoA is dramatically reduced, FA metabolism is profoundly
altered in response to ambient acidosis with a shift toward FAO as a main source of acetyl-CoA to support TCA cycle and downstream lipid synthesis pathways and
exogenous uptake of lipids is also enhanced. Different with the hypoxia condition, FAO and FAS could co-exist in acidosis-adapted cancer cells, which is
orchestrated by restraining the ETC complex I activity and repressing histone deacetylation-mediated ACC2. Cholesterol biosynthesis is also enhanced by pH-
induced SREBP2 to maintain cellular cholesterol level under low pH. Meanwhile, acetate and glutamine act as critical substrates in acidic milieu. LD formation is
favored in acidic pH via TGF-b2 mediated overexpression of DGAT1. “+” in circle means positive effects and “-” in circle stands for inhibition.
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also contributes to cancer cell growth when exposed to oxygen
and lipid withdrawal (90). Endogenous FA desaturation is
increased in breast and prostate cancers by elevated expression
level of SCD1 in low-serum conditions, where MUFAs supply is
restricted (98). Moreover, nutrient deprivation can induce
autophagy in cells, which is a catabolic process acutely
sensitive to nutrient availability and recycles cellular
constituents to generate primary substrates for energy
production and survival (104). Though autophagy is important
for most normal tissues, tumor cells exhibit particularly
dependence on it for survival under stress, especially in RAS-
driven tumors (100). Study revealed that autophagy
compensated for tumor suppressor liver kinase B1 loss in
KRAS-driven lung tumor cells to maintain levels of free fatty
acids, while autophagy deficiency led to excessive FAO and
energy crisis (104). Also, LDs are turned over to generate FAs
through cytosolic lipolysis and autophagy-mediated lipophagy
for FAO in response to nutrient starvation (100, 101).
Intriguingly, LD biogenesis is also induced as response to
mTORC1-regulated high autophagic flux during starvation
(157). This seemingly counterintuitive process, via gathering
autophagic-released FAs into new LDs, provides a lipid
buffering system to alleviate lipotoxic cellular damage in
autophagy (102, 157). And finally, these starvation-induced
LDs are also lipolytically degraded (157). DGAT1 is required
in this protective LD formation in tumors to selectively channel
FAs into new LDs, which can be blocked by ATGL (157).
Suppressing the ATGL activity, HIG2 is confirmed to be
essential in LD biogenesis independently of HIF-1
transactivation (103). In addition to these effects on
modulating cellular lipid amount, serum-deprivation
significantly influences lipidomic profiles of tumor cells while
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no robust changes are observed under hypoxic condition (99). In
this lipidomic study, cancer cells displayed profound alterations
in TG compositions as well as decrease in cellular levels of all
CE subspecies.

The essential role of starvation-induced autophagy in
providing metabolic substrates to prevent energy crisis suggest
promising application of autophagy inhibitors. But as basal
autophagy is important for maintaining cellular homeostasis,
the mechanisms for each tumor type and their dependence on
autophagy need to be fully elucidated. It is required for utility of
autophagy inhibition in combination with nutrient deprivation
and to reduce side effects in normal tissues.

3.4 Stromal Cells
During formation of malignancies, tumor cells recruit stromal
cells efficiently and educate them to form a suitable TME for
progression as well as metastasis (158). These surrounding cells
includes cancer-associated adipocytes (CAAs), cancer-associated
fibroblasts (CAFs), immune cells and endothelial cells (ECs). The
complex interplay between cancer cells and stromal cells leads to
a reciprocal metabolic reprogramming of both cell types.
Mounting evidences have illuminated that stromal cells,
particularly CAAs and CAFs, critically modulate cellular lipid
metabolism in solid tumors exploiting mechanisms like
paracrine transfer of metabolites or non-cell-autonomous
regulation of metabolic signaling pathways.

3.4.1 Cancer-Associated Adipocyte and Adipokines
CAAs represent a vital source of lipids and adipocytokines, and
their essential roles in driving metabolic reprogramming and
facilitating tumor progression and drug resistance are
increasingly appreciated, particularly in obesity-related cancers
FIGURE 4 | Lipid metabolism reprogramming of cancer cells under nutrient deprivation. Low serum condition allows cancer cells to be more reliant on de novo
lipogenesis for FA acquisition rather than exogenous uptake, which is mainly favored by elevated SREBP. As exogenous MUFAs supply is restricted, SCD1 is
upregulated to maintain FA desaturation. Nutrient deprivation can induce autophagy in cancer cells and LDs are turned over to generate FAs through cytosolic
lipolysis and autophagy-mediated lipophagy. But LD biogenesis is also induced in response to high autophagic flux, providing a lipid buffering system to alleviate
lipotoxic cellular damage in autophagy. “+” in circle means positive effects and “-” in circle stands for inhibition.
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such as prostate, breast, ovarian and colon cancers (4, 5, 159,
160). These types of cancers are prone to growth and metastasis
in an adipocyte-rich microenvironment. Thus, defining the
dynamic crosstalk between CAA and tumor help to address
the clinical challenges confronted by obesity-related
malignancies. Secreted signaling molecules from cancer cells
can trigger lipolysis in CAAs and degraded lipids are smuggled
to the cancer cells in a way mediated by lipoproteins, exosomes
and serum albumin (105). These lipids can either be stored in
LDs or fueled by b-oxidation, indicating adipocytes as an energy
provider in the TME. Apart from this, CAAs can induce
metabolic switch of cancer cell from glycolysis to lipid-
dependent energy generation. This was demonstrated in a
number of co-culture studies that the uptake and
mitochondrial utilization of fatty acids in cancer were
significantly promoted by CAAs (19, 160). Co-culture of
ovarian cancer cells with omental adipocytes upregulated
CD36 expression and accelerated FFA uptake in cancer cells
(19). Elevated expression level of FABP4 is identified to be a key
event in regulating adipocyte-induced lipid responses of co-
cultured ovarian cancer cells, including b-oxidation, lipid
peroxidation and reactive oxygen species (ROS) generation (5,
106). Both CD36 and FABP4 are regulated by PPARg signaling
and CD36 is suggested as an upstream regulator of FABP4 (106).
However in breast cancers, it is the elevated expression of FABP5
rather than CD36 or FABP4 that play critical roles in
acceleration of FA trafficking and nuclear activation of PPARg,
along with induction of lipolysis and ATGL-mediated utilization
of accumulated lipids (4).

Though the exact mechanisms underlying CAA-cancer cell
crosstalk are unclear, it is acknowledged that secretion of
adipocytokines and metabolic substrates contribute to the
CAA-induced modulation. Leptin, a hormone mainly derived
from adipocytes, shows pleiotropic effects on regulating energy
balance and cancer progression (161, 162). Leptin has been
known to boost FAO and OXPHOS for energy generation
(107), whereas inhibit glycolysis and shift glucose catabolism
towards biosynthetic pathways to provide intermediate
precursors in breast and colon cancers (107, 108). It was
reported that overexpression of CPT1 and upstream activation
of AMPK/PPARa signaling pathway and c-Myc/PGC-1 pathway
are involved in leptin-stimulated FAO (108). Moreover, leptin-
activated JAK/STAT3 pathway also takes part in activating FAO
through upregulation of CPT1B in breast cancer stem cells,
which is critical for self-renewal and chemoresistance (109).
Under physiological conditions, enhanced FAO is usually
accompanied with reduced FAS. Consistently, researcher
previously proved this in HCT116 and MCF-7 cells treated
with leptin for 48 h, as decreased FASN expression together
with increased FAO indicated (107). However, these two
pathways can occur simultaneously in cancer cells under
certain conditions, such as in previously mentioned acidosis-
adapted cancer cells and breast cancer cells exposed to oxidative
stress (51). A recent study has suggested that leptin drives a
concomitant increase in FAO and FAS in MCF-7 cells, which is
ascribed to the activation of autophagy (110). Specifically, leptin-
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activated autophagy enhances lipolysis and the release of free
FAs, which further facilitates leptin-induced FAO for energetic
production. Meanwhile, the expression of SREBP-1 is
upregulated by leptin via autophagy and PI3K/AKT signaling
pathway, resulting in overexpressed FASN and enhanced de novo
lipogenesis. Researchers showed that inhibiting or silencing
SREBP-1 or FASN impeded cancer cell viability promoted by
leptin. Yet, the contradictory results of FASN expression in
breast cancer indicated in these two studies need further
verification to see whether the effect of leptin varies in time-
dependent or dose-dependent manner (107, 110). Another study
also revealed that leptin elevated expression of SREBP-2 via
PI3K/AKT signal ing, thus upregulating acetyl-CoA
acetyltransferase 2 (ACAT2) to favor the migration and
invasion of breast cancer cells (111). Taken together, leptin
reconstructs cancer cellular lipid metabolism by multifactorial
modulating biosynthesis and utilization of lipids, which further
facilitate tumor progression.

Adiponectin is another adipocyte-specific hormone, yet elicits
molecular effects opposed to leptin, as it may restrict tumorigenic
processes. While identification and better understanding in the
effect of adiponectin is cancer-specific lipid reprogramming still
need further investigation, adiponectin is putatively considered
as a negative modulator of lipogenesis. Adiponectin decreased
lipid uptake through suppressing CD36 and LDLr expression in
cancer cells (112, 163). As both an activator of AMPK and
inhibitor of PI3K/AKT pathway, adiponectin is presumed to
promote FAO and restrain lipogenic biosynthesis in cancer. Yet,
this hypothesis requires corresponding proofs in the context of
complicated signaling network of cancer cells. In addition,
adipokines like visfatin and resistin also showed the potential
to stimulate lipogenesis in liver cancer cells with elevated FASN
expression (113). Inflammatory cytokines released by adipocyte,
such as TNF-a, IL-6, are also able to affect cancer lipid
metabolism with paracrine and endocrine activity, which will
be discussed later.

3.4.2 Cancer Associated Fibroblast
The role of CAFs, a major cellular component within tumor
stroma, in the progression and spread of various cancers has
been well-established (164). Rather than just being educated by
tumor cells, CAFs have been suggested to play an active role in
shaping tumor metabolism, including the lipid metabolic
pathways (165). Through self-metabolic reprogramming, CAFs
serve as hubs of lipids to support breast cancer cells growth with
over-expression of FASN (114). FATP1 and CD36 are found as
putative targets to disturb the smuggling of lipids between CAFs
and breast cancer cells (114, 166). In addition to FAs, other CAF-
derived metabolites like alanine are also utilized in pancreatic
cancer cells as carbon sources for biosynthetic processes,
including lipid synthesis (115). A recent study in PDAC cells
showed that lysophosphatidylcholines (LPC) from CAFs cells
supported membrane synthesis in cancer cells as well as the
production of LPA by autotaxin (ATX) that was further engaged
in paracrine activation of PI3K/AKT pathways (167). These
CAF-derived metabolites and bioactive molecules are
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transported to tumor cells, at least partly, by CAF-derived
exosomes (CDEs). Containing proteins, miRNAs and intact
metabolites, CDEs are initially identified as a key component
to support tumor growth under nutrient-deprived stress (117).
CDEs could switch mitochondrial OXPHOS towards a
glycolysis- and glutamine-dependent reductive carboxylation
phenotype in cancer cells, thus replenishing for de novo
lipogenesis (117). Interestingly, these metabolic alterations
elicited by CDE-metabolite were independent of oncogenic
KRAS in pancreatic cancer, suggesting CAFs’ ability to
reprogram and support cancer cell metabolism independent of
oncogene activation (117). The researchers later identified the
glutamine anabolic pathway in CAF as a possible target to cause
systemic metabolic vulnerabilities in ovarian cancers (168).
Besides, miR-522 in the CDEs was found to suppress the lipid-
ROS production in gastric cancer, via inhibiting the main
mediator arachidonate lipoxygenase 15 (118). Ferroptosis, a
form of cell death due to dysregulated membrane lipid
peroxidat ion aris ing from an iron-dependent ROS
accumulation, is thereby inhibited in gastric cancer,
contributing to the tumor growth and decreased chemo-
sensitivity to cisplatin and paclitaxel (118).

3.4.3 Immune Cell and Endothelial Cell
As a crucial determinant of the phenotype and function of
immune cells, metabolic reprogramming in immune cells
caused by TME has been fairly defined and applied in
manipulation of immune responses for cancer. Lipid
metabolism alterations in immune cells also play a role in
coordinating immunosuppression and tumor immune escape
(169). However, only few researches described the effect of
immune cells and their released factors on lipid rewiring of
their neighboring cancer cells.

CD8+ T cells take a leading position in anti-tumor response
among the tumor-infiltrated immune cells and activated effector T
cells in theTMEmainlydependonglycolysis andFAS,whilememory
T cells and CD4+ regulatory T cells maintain their functions by
enhancingFAO(169).Metabolic competition by tumor cells restricts
T cells and dampen their interferon gamma (IFNg) production and
other functions, thus facilitating tumorprogression.A study reported
that during immunotherapy, activated CD8+ T cell would enhance
lipid peroxidation in tumor cells and finally led to ferroptosis.
Mechanistically, it was illuminated that the IFNg released from
CD8+ T cells restrained uptake of cystine by tumors through
downregulating the expression of SLC3A2 and SLC7A11, two
subunits of the glutamate-cystine antiporter system x. This further
inhibits glutathione synthesis and induces a decrease in glutathione
peroxidase 4 expression, which is essential in the antiperoxidant
defence, consequently promoting cell lipid peroxidation. Targeting
IFNg or iron-dependent lipid peroxidation pathway in combination
with checkpoint blockade therefore provides new insights for
combinatorial cancer treatment (119).

Growing evidence has shown that metabolic restriction
imposed by tumor cells would restrict immune cell function
thus promote immunoescape and caner progression (158, 169).
In gastric adenocarcinoma, FAO-dependent tissue-resident
memory T cells was outcompeted by cancer cells for lipid
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uptake. Blockade of PD-L1 would promoting lipid uptake and
resulting better survival of Trm cells, in vitro and in vivo (170).
However, a recent work indicated that the suppression of
immune cells is not caused by cell-extrinsic nutrient
competition, evidenced by the fact that the uptake of
glutamine and lipids was dominated by cancer cells instead of
by immune cell in TME (171, 172). Therefore, more researches
are required to clarify this issue.

In most tumors, tumor associated macrophages (TAMs) adopt
an ‘alternative’ phenotype (M2-like) exerting anti-inflammatory
and pro-tumoral effects. Studies have proved that enhanced FAO,
elevated expression of CD36 and accumulated lipids are essential in
activation and differentiation in TAMs (173). In ovarian cancers, it’s
uncovered that tumor cells can scavenge cholesterol from TAMs by
promoting membrane-cholesterol efflux (120). IL-4 mediated
signaling such as inhibition of IFNg-induced gene expression is
promoted due to the increased cholesterol efflux in TAMs, which is
associated with pro-tumoral functions (120).

The ECs within tumor also undergo phenotype alteration to
provide a promoting niche for cancer cells. An in vitro experiment
reported that ECs triggered coherent and non-cell line specific
increase in expression of both glycerophospholipid and poly-
unsaturated fatty acids (PUFA) in cancer cells, which could be
associated with remodeling of cancer cellular membrane to improve
cellular cross-talk or modulate signaling pathways (121). But the
underlying manipulation mechanism needs further explanation.

3.4.4 Therapeutic Strategies Targeting Stromal Cells
Abovemechanisms canbe exploited therapeutically at the level of the
stromal cells to impede tumor progression. Inhibition of lipogenesis
or lipolysis in stromal cells and lipids uptake bymalignant cellswould
be the most attractive approach to cut off lipid supply to tumor cells.
However, these specific targeting strategies havenot been validated in
well-designed clinical trials and accompanying effects onother cells is
a big challenge. Moreover, targeting CAAs alone is less likely to be
effective since they are unlikely to lead to a complete reversal and
ablation of tumor growth. Small-molecule inhibitors designed to
target CAFs have also been developed, either by blocking the
activation and trans-differentiation of stromal cells into CAFs, or
silencing signalingpathwaysactivated inCAFsand theirdownstream
effectors (174). Blocking secretion and uptake of stroma-derived
exosomes also represents a tantalizing target for clinical
implementation to disrupt the level of de novo lipogenesis and
oxidation. When targeting ECs, some methods are designed to
normalize tumor vasculature, thus mitigating hypoxia and acidosis
in TME and improving the efficacy of therapies (175). Overall, an
integrated view of these cell-cell interactions needs to be further
established for improved therapeutics andmanageable adverse effects
when simultaneously targeting multiple components of the TME.

3.5 Cytokines
Cytokines are messenger molecules secreted by diverse cell types,
which plays a pivotal role in the intensive cross cell dialog in
TME. Cytokines, like growth factors and interleukins (ILs), can
either stimulate tumor progression or suppress tumor growth,
generally depending on the context (176). This sparks a heated
search for potent mechanisms and combination therapies, and
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the immunomodulatory and inflammatory potential of cytokines
have been extensively explored in tumors. Here we focus on its
impacts on lipid metabolism.

Tumornecrosis factora (TNF-a), amultifunctional cytokine and
adipokine, is primarily produced by adipocytes, activated
macrophages and monocytes in the TME and can be induced by
LPA (177). It is linked to direct induction of lipid accumulation in
HepG2 cells, at least partially via the inhibition of AMPK and
downstream activation of mTOR/SREBP-1 pathway (122).
Similarly, exacerbated cholesterol accumulation in HepG2 cells is
also attributed to TNF-a that interrupts cholesterol efflux through
PPAR-regulated ATP binding cassette transporter A1 (ABCA1)
pathway (178). IL-17A, an important pro-inflammatory cytokine
produced by T helper 17 cells, could directly increase FA uptake in
ovarian cancer, perhaps also in adipocytes, through upregulation of
FABP4 instead of CD36 (124). STAT3 signaling is proved to be
activated in this regulation, but not exclusively. IL-15 is found to
enhance the expression of FABP1 and FABP4 in a prostate cancer
murinemodel via gene expression analysis, but the possible pathway
involved needs further investigation (125). Study also reveals that IL-
6might induce fat loss in cancer cachexia by regulatingwhite adipose
tissue lipolysis andbrowning (126).TNF-aaswell playanegative role
in modulating lipid biosynthesis and storage in cancer cachexia via
downregulation PPARg pathway (123).

TGF-b is a multipotent growth factor that could be highly
secreted by cancer cells and surrounding stromal cells. As
previously described, TGF-b signaling promotes FA uptake
and TG accumulation into LD formation in acidosis-adapted
cancer cells, favoring epithelial-to-mesenchymal transition
(EMT) (92). However, the opposite observation has also been
depicted. Down-regulated of FASN and ACC as well as
decreased levels of carbohydrate-responsive element-binding
protein (ChREBP) and SREBPs in non-small cell lung cancer
are reported upon TGF-b-induced EMT (127). Moreover, FAO
and mitochondrial OXPHOS are elevated in TGF-b1-induced
EMT in MCF–7 cells through the AMPK pathway (128). These
contrasting findings imply that TGF-b might play multifaceted
roles in modulating lipid metabolism of cancer EMT, which
would be determined in a context-dependent manner.

While the active participation of cytokines in inflammatory and
immunity modulation receives considerable attention, their
underlying impact on tumor metabolism is nonnegligible and is a
worthy problem to probe for therapeutic cytokine applications. It’s
hoped that novel combination approaches neutralizing
inflammation, lethal metabolic alterations and immuno-
suppression can improve the outcome of cytokine-targeted anti-
tumor therapy.

3.6 Metabolites
3.6.1 Microbiota Metabolites: SCFAs
The gastrointestinal (gut) microbiome has emerged as a pivotal
microenvironmental factor for certain cancers, such as gastric
cancer, colorectal cancer and HCC (179–181). The dysbiosis of
gut microbiota diversity and related alterations in the level of gut
microbial metabolites rewire the metabolic milieu and
consequently contribute to the cancer progression. Dietary
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fiber is fermented by gut bacteria into short-chain fatty acids
(SCFAs), including acetate, butyrate and propionate in a 3:1:1
stoichiometry (182). SCFAs are considered important substrates
for energy metabolism, with propionate serving as a substrate for
gluconeogenesis while acetate and butyrate serving as substrates
for de novo lipogenesis.

Though acetate can also be acquired from deacetylation
processes and ethanol metabolism, dietary food saccharolytic
fermentation by intestinal microbiota is thought to be the main
source of exogenous acetate (182). Intriguingly, acetate is specially
positioned at the intersection of metabolism and genetics for its
roles as both a carbon source for lipid biomass and an epigenetic
regulator of post translational protein modification (129). Cancer
cells exhibited activated cytosolic ACSS2-mediated acetate
metabolism, which promotes tumor growth by replenishing the
acetyl-CoA pool under hypoxia, acidosis and other stressed
conditions (90). Consistent with this, radiolabeled acetate taken
up by cancer cells has been shown to be greatly elevated than
normal cells and mainly donates to the carbons in FAs under
hypoxia (130). Moreover, uptake of radiolabeled acetate can reflect
FASN expression levels and further the sensitivity to FASN-
targeted therapy in prostate cancer cell lines as it reduces
significantly with the presence of FASN inhibitors (131, 183).
Therefore, [1-11C]-acetate PET based on these mechanisms is a
promising non-invasive tool to diagnose cancers and even predict
FASN-targeted therapy outcome and recurrence in clinical
applications (184, 185). Beyond an alternative source of acetyl-
CoA production, acetate is also implicated in initiating epigenetic
regulation to lipogenic genes of FASN, for cancer cell survival
under hypoxic stress (129). These might also provide new insights
into FASN-targeted therapy.

Similarly, butyrate is mitochondrially oxidized to acetyl-CoA for
lipid synthesis and represents the major energy source for normal
colonocytes while cancerous colonocytes primarily undergo aerobic
glycolysis (186). However, it reduces cancer cell growth while
improves differentiation and this differential growth impact of
butyrate on normal and neoplastic colonic cells has been known as
the “butyrate paradox”. Butyrate in the glycolytic cancer cells is
inefficiently metabolized and its accumulating in nucleus exerts
antineoplastic effects, which are mediated, at least partially by
inhibiting histone deacetylase (HDAC) activity and epigenetically
regulating downstream target genes (186). The function of butyrate
(either being oxidized or being a HDAC inhibitor) is related to its
concentration, since low dose (<0.5 mM) meets the energy needs
while high concentration (0.5~5mM) leads to inhibitory outcome in
in vitro experiments (187). With regard to its effects on cancer
metabolism, though initially highly glycolytic, colon cancer cells
can switch to a butyrate/glutamine-utilizing phenotype induced by
butyrate, which is characterized by a lower production of lactate and
raised incorporation of carbons derived from glutamine into lipids
(132). Mechanistically, the expression of membrane glucose
transporter 1 and cytoplasmic glucose 6 phosphate dehydrogenase
decreased under the regulation ofAKT signaling, leading to inhibited
glucose metabolism and nucleotide synthesis and causing
proliferation arrest (188). Besides, butyrate positively regulates the
expression ofM2-pyruvate kinase (PKM2) and PDK in colon cancer
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cells, significantly suppressing upstream glycolytic intermediates
being diverted into biosynthetic pathway (132, 133). Thereby,
butyrate contributes to acetyl-CoA pool directly or indirectly
through stimulating glutamine utilization and favors a lipogenesis
phenotype, as LD accumulation is observed in butyrate-treated
colonic cancer cells (132). When considering butyrate as an
anticancer agent, whether and how these metabolic altering
contributes to the proliferation inhibitory impact of butyrate still
needs further exploration, and cancer types other than colorectal
cancer should also be further studied.

Given the facts that the increased risk of certain gastroenteric
tumors is linked to alterations of gut microbiota species and reduced
production of SCFAs, efforts have been made to elucidate the
relation between dietary pattern and gut microbiota. Dietary
interventions like high-fiber diets and the supplementation with
polyunsaturated fatty acids, polyphenols and probiotics, which are
known to regulate gut microbiota and generate SCFAs, have
emerged as potential therapeutical strategy to prevent or to be
used as adjuvants to conventional therapy (189). Of note, there is
not a simple linear relationship between gut SCFA levels and
individual dietary components or bacterial strains. Algorithms to
predict individual responses to dietary and pharmaceutical
interventions based on microbial metabolites is essential for any
nutrition-based approaches. Alternative strategies such as increasing
gut microbial production of beneficial metabolites and specific
inhibitors for microbial pathways that produce harmful
metabolites also has great potential in the long run.

3.6.2 Oncolipids: LPA
LPA is a byproduct of the lipid biosynthesis pathway that presents at
high level in several cancer patients. It functions as a growth factor
stimulating oncogenesis and invasiveness through activating G
protein-coupled receptors (190). It is extracellularly converted from
stroma-derived LPC by a secreted lysophospholipase D, ATX. LPA
has been shown to induce a glycolytic shift in cancer cells, while
studies also reveal that it elicits pro-lipogenic actions in ovarian
cancer by transcriptionally up-regulating SREBP-FASN and
dephosphorylation of AMPK-ACC pathways, which is mediated
by an LPA receptor LPA2 (135, 136). Noteworthy, LPAwas shown to
activateHIF-1a via inducing a pseudohypoxic response, thus further
modulating metabolism alterations in ovarian cancer mediated by
HIF-1a (135). ATX/LPA axis was also found to be involved in lipid
desaturation, via stimulating SCD expression, neutral lipid liver
deposition and TG accumulation in HepG2 cells (137). Although it
still remains to be confirmed whether ATX/LPA can have the same
effect in other cancer types, the ATX/LPA axis, communicating with
other lipid modified signaling, is engaged in lipid metabolism in
malignant cells and is emerging as a novel cancer hallmark.

3.6.3 BCAA
Branched chain amino acids (BCAAs; leucine, isoleucine and
valine) are essential amino acids that are only available from
dietary protein rather than from endogenous synthesis. The
increase in plasma BCAAs has been associated with pancreatic
cancer risk and cancer cells have exhibited increased BCAA uptake
as well as over-expressed BCAA aminotransferase (BCAT), for
proliferation (191, 192). BCAA metabolism in PDAC cells has
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been unveiled as critical carbon source for FA synthesis, as the
knockdown of BCAT leads to dramatic reduction in levels of FAs
and TGs, as well as the inhibition of tumor cell proliferation (138).
Mechanistically, elevated BCAAs selectively activates mTOR
signaling and triggers phosphorylation of downstream effectors,
including SREBPs (139). BCAT also promotes mitochondrial
biogenesis and function in a mTOR-dependent manner (140).
Thence, disruption of the BCAA level or targeting pivotal
enzymes indicates an exploitable therapeutic strategy for cancer
therapy. However, as the most straightforward strategy, controlling
dietary BCAA intake shows controversial effects in cancer therapy
(193–197). An integral investigation is therefore required to find out
whether this method has benefits for certain types of cancer.
4 CONCLUSIONS AND FUTURE
PERSPECTIVES

The indisputable dependence on lipids for carcinogenesis and
progression emphasizes a lipid metabolic plasticity of the
malignant cells that may be employed at multiple molecular levels
as therapeutic targets, especially in obesity-related cancers. Current
preclinical and clinical studies have shown that a variety of
compounds targeting enzymes and/or signaling involved in lipid
metabolism show promising antineoplastic effects (198). However,
side effects resulted from incomplete knowledge of complicated
regulatory mechanisms of lipid metabolism are big challenges
ahead. In addition to oncogenic events, TME is another critical
player that has an emerging role in the shift of lipid metabolic
pathways. Here we summarize some key factors in the TME,
including stress factors (hypoxia, acidosis and nutrient
deprivation), cellular factors (tumor associated stromal cells) and
molecular factors (cytokines andmetabolites) and their influence on
lipid rewiring. Still, continued efforts are needed to determine all the
underlying microenvironmental factors and their interactions. In
this way, it will be possible to better correlate altered lipid profiles
with changingmicroenvironment and to better explore the potential
of lipid metabolism as an anticancer approach. Also, detailed
mechanisms must be further completed to achieve the desired
effect and avoid negative impacts in normal metabolic functions.
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a-KG a-ketoglutarate
ABCA1 ATP-binding cassette transporter A1
ACAD Acyl-CoA dehydrogenase
ACAT Acetyl-CoA acetyltransferase
ACC Acetyl CoA carboxylase
ACLY ATP citrate lyase
ACSL Acyl-CoA synthetase long chain
ACSS2 Acetyl CoA synthetase 2
AGPAT Acylglycerophosphate acyltransferase
ACST Alanine–serine–cysteine transporter
AMPK AMP-activated protein kinase
ATGL Adipose triglyceride lipase
ATX Autotaxin
BCAA Branched-chain amino acid
BCAT BCAA aminotransferase
CAA Cancer-associated adipocyte
ccRCC Clear-cell renal cell carcinoma
CAF Cancer-associated fibroblast
CE Cholesterol ester
Chk Choline kinase
CPT Carnitine palmitoyltransferase
DGAT Diacylglycerol acyltransferase
EC Endothelial cell
ER Endoplasmic reticulum
ETC Electron transport chain
FA Fatty acid
FABP Fatty acids binding protein
FAO Fatty acid oxidation
FAS Fatty acid synthesis
FASN Fatty acid synthase
FATP Fatty acid transport protein
HCC Hepatocellular carcinoma
HDAC Histone deacetylase
HIF Hypoxia-inducible factor
HIG2 Hypoxia-inducible protein 2
HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase

(Continued)
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HMGCS 3-hydroxy-3-methylglutaryl-CoA synthase
HSPG Heparan sulfate proteoglycan
LCAD Long-chain acyl-CoA dehydrogenase
LD Lipid droplet
LDLr Low-density lipoprotein receptor
LKB1 Liver kinase B1
LPA Lysophosphatidic acid
LPC Lysophosphatidylcholine
LXR Liver X receptor
MAPK Mitogen-activated protein kinase
mTOR Mammalian target of rapamycin
MCAD Medium-chain acyl-CoA dehydrogenase
MUFA Monounsaturated fatty acid
OGDH2 2-oxoglutarate dehydrogenase
OXPHOS Oxidative phosphorylation
PDAC Pancreatic adenocarcinoma
PC phosphocholine
PDC Pyruvate dehydrogenase complex
PDK Pyruvate dehydrogenase kinase
PEDF Pigment epithelium-derived factor
PGC-1a Peroxisome proliferator-activated receptor g coactivator 1a
PKM2 Pyruvate kinase M2
PLIN2 Perilipin 2
PPAR Peroxisome proliferator-activated receptor
PUFA Polyunsaturated fatty acid
SCD Stearoyl-CoA desaturase
SFA Saturated fatty acid
SIAH2 Siah E3 ubiquitin protein ligase 2
SNAT2 Sodium-coupled neutral amino acid transporter
SREBP Sterol regulatory element binding transcription factor
TAM Tumor-associated macrophage
TCA Tricarboxylic acid cycle
tCho Total choline-containing compound
TG Triacylglycerol
TGF-b2 Transforming growth factor-b2
TME Tumor microenvironment
VLDLr Very-low-density lipoprotein receptor
WAT White adipose tissue
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