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ABSTRACT
The thalamic connectivity system, with the thalamus as the central node, enables transmission of the brain’s neural
computations via extensive connections to cortical, subcortical, and cerebellar regions. Emerging reports suggest
deficits in this system across multiple psychiatric disorders, making it a unique network of high translational and
transdiagnostic utility in mapping neural alterations that potentially contribute to symptoms and disturbances in
psychiatric patients. However, despite considerable research effort, it is still debated how this system contributes to
psychiatric disorders. This review characterizes current knowledge regarding thalamic connectivity system deficits in
psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum
disorder, across multiple levels of the system. We identify the presence of common and distinct patterns of deficits in
the thalamic connectivity system in major psychiatric disorders and assess their nature and characteristics. Spe-
cifically, this review assembles evidence for the hypotheses of 1) thalamic microstructure, particularly in the medi-
odorsal nucleus, as a state marker of psychosis; 2) thalamo-prefrontal connectivity as a trait marker of psychosis; and
3) thalamo-somatosensory/parietal connectivity as a possible marker of general psychiatric illness. Furthermore,
possible mechanisms contributing to thalamocortical dysconnectivity are explored. We discuss current views on the
contributions of cerebellar-thalamic connectivity to the thalamic connectivity system and propose future studies to
examine its effects at multiple levels, from the molecular (e.g., glutamatergic) to the behavioral (e.g., cognition), to gain
a deeper understanding of the mechanisms that underlie the disturbances observed in psychiatric disorders.

https://doi.org/10.1016/j.bpsgos.2021.09.008
The thalamus is a subcortical structure that is the center of the
thalamic connectivity system, through which most of our
brain’s neural computations flow, with multiple connections to
cortical, subcortical, and cerebellar regions (1). As the node of
this extensive system, the thalamus plays a pivotal role in the
processing of sensory inputs and is an essential hub for
cognitive processing, such as working memory, attention,
flexible goal-directed tasks, sleep, and sensory perception.
Recent investigative methods in neuroimaging have presented
the thalamic connectivity system as a unique network of high
translational and transdiagnostic utility in mapping the neural
alterations that may potentially contribute to symptoms and
deficits in psychiatric patients (2–5). Unlike the traditional
neuroimaging approaches in which the thalamus was delin-
eated and investigated, advancements in technology have
enabled modern approaches to leverage the key pivotal
properties of the thalamus: this structure is composed of
multiple nuclei topologically arranged with respect to the cor-
tex, each with distinct inputs and outputs, and therefore, tha-
lamocortical connectivity patterns are, to a great extent,
segregated. However, even with much effort, it is still debated
how the thalamic connectivity system contributes to psychi-
atric disorders.
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This narrative review aims to assess how currently available
evidence reveals the contribution of thalamic connectivity
system abnormalities to psychiatric disorders, as well as to
evaluate the nature and characteristics of the components of
the thalamic connectivity system. This article provides an
overview of the structure and function of the thalamus, fol-
lowed by evidence of thalamic connectivity system abnor-
malities in patients with schizophrenia, bipolar disorder, major
depressive disorder (MDD), and autism spectrum disorder
(ASD) by integrating studies across multiple levels of the sys-
tem. We identified markers of disease-specific and general
psychopathology in the thalamic connectivity system and
assessed their nature and characteristics. Specifically, this
review assembles evidence for the hypotheses of 1) thalamic
microstructure, particularly in the mediodorsal nucleus, as a
state marker of psychosis; 2) thalamo-prefrontal connectivity
as a trait marker of psychosis; and 3) thalamo-somatosensory/
parietal connectivity as a possible marker of general psychi-
atric illness. Finally, the article explores potential underlying
mechanisms of thalamocortical dysconnectivity in psychiatric
disorders. We discuss the current views on the downstream
effects of cerebellar-thalamic connectivity on the thalamic
connectivity system and propose future studies to examine its
l Psychiatry. This is an open access article under the
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effects at multiple levels, from the molecular (e.g., gluta-
matergic) to the behavioral (e.g., cognition) levels. Gaining a
deeper understanding of the underlying mechanisms of the
thalamic connectivity system, as well as the identification of
markers of disease-specific and general psychopathology, will
facilitate the use of this network as a novel strategy for better
treatment and even earlier prevention of psychiatric disorders.
THE THALAMUS AND THE THALAMIC
CONNECTIVITY SYSTEM

The thalamus is a walnut-sized, paired structure that sits in the
middle of our brain. It consists of approximately 60 topo-
graphically arranged nuclei, each of which has distinct inputs
and outputs to cortical, subcortical, and cerebellar regions.
The nuclei are largely segregated, with the exception of the
thalamic reticular nucleus. Thalamic nuclei, predominantly
organized in reciprocal feedback loops, receive input from
layer 6 of largely nonoverlapping cortical areas. Thus, thala-
mocortical connectivity patterns have unique characteristics in
that they are topographically arranged and segregated, and
with the exception of the thalamic reticular nucleus and midline
nuclei, the connectivity patterns are mostly confined to a single
hemisphere and provide a major source of excitatory input to
the cortex (Figure 1).

The functions of thalamic nuclei are defined by their inputs,
and based on these inputs, thalamic nuclei can be categorized
into two groups: first-order and higher-order (HO) nuclei (6).
First-order nuclei relay driver input from the subcortex and
relay the primary sensory information to the cortex. Such nuclei
include the lateral geniculate nucleus, the medial geniculate
Figure 1. Schematic diagram of the thalamic connectivity system at the neural an
first-order (FO) and higher-order (HO) thalamic nuclei. (Right) Schematic diagram
amygdala;BG, basal ganglia; BS, brainstem;DCN,deepcerebellar nuclei; LD, lateral d
limbic system; MB, midbrain; MD, mediodorsal nucleus; MGN, medial geniculate
intercollicular pathways; SMC, somatosensory cortex; VA, ventral anterior nucleus; V
nucleus; VPL, ventral posterolateral nucleus; VPM, ventral posteromedial nucleus.
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nucleus, the ventral posterior nucleus, and parts of the ventral
anterior/lateral nuclei, which relay visual information from the
retina, auditory information from the inferior colliculus, so-
matosensory input from the medial lemniscus, and motor input
from the deep cerebellar nuclei, respectively. In addition to
receiving input from cortical layer 6 in reciprocal feedback
loops as first-order nuclei do, HO nuclei receive additional
input from layer 5 that is organized in a feedforward structure.
Thus, HO nuclei receive driver input from layer 5 of upstream
cortical areas and relay it to other cortical areas, forming
cortico-thalamo-cortical, or transthalamic, pathways; in this
manner, they work to relay information from one cortical area
to another (7,8). Such nuclei in the brain include the medi-
odorsal nucleus (MD), which receives inputs from the amyg-
dala, limbic system, basal ganglia, midbrain, and brainstem
and has reciprocal connections with the prefrontal cortex (PFC)
and pulvinar, which receives inputs from the superior colliculus
and has reciprocal connections with the PFC and temporal,
parietal, and occipital cortices. Through transthalamic path-
ways, HO nuclei send information based on activity in lower
cortical areas to the target (higher) cortical areas, and while
doing so, they can modulate or even block the message (9),
selectively gating the information and positioning themselves
as a key player in cortical processes such as cognitive func-
tioning (Figure 1).

Lesion studies have revealed that different nuclei are
associated with different behavioral changes, including
cognitive functions and psychiatric symptoms [ventral lateral
nucleus: sensory processing impairments, synesthesia (10);
pulvinar: social cognition and attention impairments (11); MD:
PFC-dependent abilities (12)]. The involvement of the MD and
d systemic levels. (Left) Schematic diagram showing the neural transmission of
of pathways between the frontal and parietal cortices to the thalamus. AMY,
orsal nucleus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus; LS,
nucleus; ML, medial lemniscus; PFC, prefrontal cortex; Retina IC, retina and
I, ventral intermediate nucleus; VL, ventral lateral nucleus; VP, ventral posterior
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PFC in cognitive functioning is being examined in detail across
various species. In mice, an optogenetic study reported
distinct roles of afferent and efferent projections between the
mediodorsal PFC and MD in supporting goal attributes (13).
The differential roles of the PFC and MD in cognitive control
were further investigated in monkeys, and unlike MD neurons,
which specialized in decision making and response selection,
PFC neurons specialized in preferential encoding of the envi-
ronmental state (14). In humans, a recent neuroimaging study
revealed an association between improved cognitive abilities
and increased thalamocortical connectivity in the pulvinar, MD,
intralaminar nucleus, and nuclei of the lateral group (15).
THALAMIC CONNECTIVITY SYSTEM
ABNORMALITIES IN PSYCHIATRIC DISORDERS

Schizophrenia

Schizophrenia is a severely debilitating disorder characterized
by positive and negative symptoms and cognitive deficits.
Abnormalities involving thalamic deficits have been extensively
investigated in schizophrenia. Multiple large consortium and
meta-analytic studies have reported reduced thalamic volume
in patients with chronic schizophrenia, as well as those with
first-episode psychosis (FEP) (16–18). The significance of the
region to schizophrenia pathophysiology has been extensively
demonstrated. Thalamic volume is the strongest classifier
distinguishing between patients with FEP and healthy control
subjects (19); furthermore, an increased thalamic volume is
associated with improved cognitive functioning in patients with
schizophrenia (20).

HO nuclei, such as the MD and pulvinar, are heavily impli-
cated in schizophrenia pathophysiology. As revealed by
postmortem studies, patients with schizophrenia have reduced
neuron counts, density, and total volume in the MD, anterior
nucleus, and pulvinar (21). Abnormalities in density and volume
in the MD and pulvinar have also been confirmed in vivo in
multiple neuroimaging studies [for a review on the thalamus in
schizophrenia, see (22,23)]. Furthermore, it is suggested that
these structures could be a hub of not only cognition but also
cortical structural changes in schizophrenia, with their pro-
gressive loss of volume being associated with structural ab-
normalities of the cortex (24). Moreover, their densities show
state-like characteristics, and they are reduced only in pa-
tients with FEP and not in their unaffected relatives (2,25).

The most commonly used method to evaluate the thalamic
connectivity system in schizophrenia calculates the connec-
tivity between the thalamus and 5 or 6 cortical regions (3,4,26).
Interestingly, when applied to diffusion tensor imaging (DTI)–
based structural connectivity and task-free functional con-
nectivity studies, regardless of magnetic strength [e.g., 3T or
7T (27)], this method yields consistent results of reduced
thalamo-prefrontal and increased thalamo-somatosensory/
parietal connectivity patterns in patients with chronic schizo-
phrenia, patients with FEP, and individuals at clinical high risk
for psychosis, as well as patients with early-onset schizo-
phrenia (28). Furthermore, it has been reported that task-free
functional dysconnectivity does not show a progressive
deterioration in schizophrenia (29). Currently, thalamocortical
dysconnectivity consisting of reduced thalamo-prefrontal and
334 Biological Psychiatry: Global Open Science October 2022; 2:332–
increased thalamo-somatosensory/parietal connectivity is
considered a core neurobiological abnormality in schizo-
phrenia [for further reading, see (23,30,31)]. Recently devel-
oped methods to investigate the interconnectivity of the
thalamus, cerebellum, and cortex revealed dysconnectivity
among the thalamus, cerebellum, and temporal cortex (32–34),
which highlights the widespread involvement of the thalamus
in brain activity and suggests the cerebellum as the next key
region to investigate.
Bipolar Disorder

Bipolar disorder is characterized by cycles of mania and
depression. The volume of the thalamus is reduced in bipolar
disorder in postmortem and neuroimaging meta-analysis
studies (35,36). However, when thalamic volume was investi-
gated in individuals with prodromal bipolar disorder, the in-
dividuals showed no reductions (37). Similarly, in a recent
voxel-based meta-analysis, the anterior thalamic radiation, a
white matter structure that is also associated with emotion
regulation difficulties in this disorder (38), was compared be-
tween patients with bipolar disorder and prodromal individuals.
While patients with bipolar disorder showed reduced fractional
anisotropy and increased radial diffusivity, no such deficits
were seen in individuals at risk for bipolar disorder (39), sug-
gesting that disruptions in the thalamic connectivity system do
not occur or are too subtle to be detected in the very early
stages of bipolar disorder.

Another intriguing aspect of thalamic connectivity system
abnormalities in bipolar disorder is that thalamic volume ab-
normalities in bipolar disorder tend to be weaker than those in
schizophrenia, which is suggested to relate to the increased
neurodevelopmental disruption in schizophrenia relative to
bipolar disorder (18,36). Interestingly, a similar trend was also
shown in thalamocortical connectivity deficits in bipolar dis-
order. In a meta-analysis of task-free functional connectivity
studies, bipolar disorder showed similar patterns of thalamo-
cortical dysconnectivity to schizophrenia, and as with thalamic
abnormalities, it showed a similar or lower degree of deficits
in thalamocortical dysconnectivity relative to schizophrenia
(31). Furthermore, the recent evidence of significant associa-
tions between decreased thalamo-prefrontal connectivity
and increased thalamo-somatosensory/parietal connectivity
suggests that these dysconnectivity patterns could be a part of
a common mechanism shared by schizophrenia and bipolar
disorder.
Major Depressive Disorder

MDD is characterized by substantial impairments in emotional
and cognitive processing. Accumulating evidence suggests
deficits in the thalamus in MDD. MD in particular has been
reported to show increased metabolism and blood flow (40).
Patients with MDD show reduced thalamic volume (41), and
clinical implications have been reported for its negative asso-
ciation with symptom severity (42). Further studies using
electroconvulsive therapy showed improvement in thalamic
volume and its positive associations with clinical improve-
ments in patients with MDD after electroconvulsive therapy
(43–45).
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Figure 2. A diagram of multiple levels of the system leading to thalamic
connectivity system disruptions. The proteins and genes highly implicated in
psychiatric disorders are often essential in glutamatergic transmission in the
brain, particularly within the thalamic connectivity system, which comprises
the thalamus and thalamic connectivity patterns. These effects are taken up
to show disease-specific or general psychopathology characteristics within
the system. Schizophrenia and bipolar disorder share reduced thalamo-
prefrontal connectivity and increased thalamo-somatomotor/parietal con-
nectivity. Major depressive disorder (MDD) is characterized by reduced
thalamo-prefrontal connectivity and increased thalamo-temporal and
thalamo-somatomotor/parietal connectivity patterns, and autism is charac-
terized by increased thalamo-temporal and thalamo-somatomotor/parietal
connectivity patterns. Shaded blue, red, pink, green, and gray areas indi-
cate the prefrontal cortex, somatomotor/parietal cortex, temporal cortex,
thalamus, and cerebellum, respectively. GABA, gamma-aminobutyric acid;
NAA, N-acetylaspartate.
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In addition to the clinical associations, studies have also
demonstrated treatment-responsive characteristics of the
thalamic connectivity system in MDD. When task-free func-
tional connectivity between the thalamus and the mood-
regulating cortical areas is compared between patients with
treatment-resistant and non–treatment-resistant MDD,
treatment-resistant patients show reduced connectivity and
greater spontaneous thalamic activity (46). Higher thalamic
activity has also been reported to be correlated with lower
clinical improvement in response to antidepressants in MDD
(47), indicating its heavy involvement in MDD pathophysiology.

Similar to the schizophrenia literature, the thalamocortical
connectivity of patients with MDD has been investigated using
5 or 6 cortical regions of interest. DTI-based anatomical con-
nectivity and task-free functional connectivity studies have
reported decreased thalamo-prefrontal connectivity and
increased thalamo-temporal and thalamo-somatosensory/
parietal connectivity patterns (5,48–52). Among these,
thalamo-temporal connectivity has been reported to have
particular clinical significance in MDD. Task-free thalamo-
temporal connectivity has been shown to have a positive
correlation with symptom severity (49) and to occur irre-
spective of age of onset, unlike thalamo-prefrontal functional
connectivity, which is significantly reduced in adult-onset MDD
(48). To date, thalamo-temporal connectivity is one of the most
clinically implicated connectivities in MDD.

Autism Spectrum Disorder

ASD is a highly heritable neurodevelopmental condition
associated with impairments in reciprocal social communica-
tion and patterns of rigid or repetitive behavior. There is sub-
stantial evidence supporting structural and functional
thalamocortical connectivity deficits in ASD. Structurally,
increased DTI-based thalamo-somatosensory connectivity
and decreased DTI-based thalamo-prefrontal, thalamo-
parietal, and thalamo-temporal connectivity patterns have
been reported (53,54). Functionally, studies have demon-
strated reduced task-free thalamo-prefrontal connectivity and
increased task-free thalamo-temporal connectivity (53,54). A
recent study using a large dataset from the Autism Brain Im-
aging Data Exchange reported increased task-free thalamo-
prefrontal, thalamo-temporal, and thalamo-sensorimotor
functional connectivity patterns, with more pronounced ef-
fects in temporal cortical areas, including the temporoparietal
junction (55). Further corroborating the notion of thalamo-
temporal hyperconnectivity in ASD, a study reported that the
pathophysiology of ASD is more likely related to thalamo-
cortical hyperconnectivity (i.e., temporoparietal and posterior
cingulate cortices) than to amygdala-cortical hypoconnectivity
(56), as well as reduced effective connectivity (57). However,
despite the strong findings supporting thalamo-temporal
connectivity deficits in ASD, the meaning or clinical relevance
remains to be elucidated because studies have yet to reveal
significant correlational relationships.

STATE- VERSUS TRAIT-RELATED THALAMIC
CONNECTIVITY SYSTEM DEFICITS IN PSYCHIATRIC
DISORDERS

Among psychiatric disorders, schizophrenia is one of the most
comprehensively studied disorders in terms of investigating
Biological Psychiatry: Global O
individuals in different phases of the course of illness, which
includes individuals at clinical high risk for psychosis, patients
with FEP, and patients with chronic schizophrenia, as well as
individuals at genetic or familial high risk. This approach has
enabled investigating and elucidating trait-/state-related
markers and thus has provided information regarding potent
endophenotypes and biomarkers. As described in the previous
sections, thalamic connectivity system deficits are currently
being reported at multiple levels of analysis across multiple
psychiatric disorders, with some of the patterns being shared
across some disorders, such as altered thalamo-prefrontal and
thalamo-somatosensory/parietal connectivity patterns and
microstructural reductions in the MD (Figure 2).

Thalamo-Prefrontal Connectivity: A Trait Marker of
Psychosis?

Reductions in thalamo-prefrontal connectivity are shared to
different degrees, both structurally and functionally, among
schizophrenia, bipolar disorder, and MDD, implicating this as a
pen Science October 2022; 2:332–340 www.sobp.org/GOS 335
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transdiagnostic connectivity feature in psychosis (5,52,58–61).
Considering the strong implication of the relevance of thalamo-
prefrontal connectivity in cognition, which has been supported
by animal and human studies, it may be a fair view to attempt
to understand these differences in terms of cognitive func-
tioning deficits, in particular executive functioning, which are
seen across disorders and prodromal states (62–65). Indeed,
thalamo-prefrontal connectivity has been shown to be asso-
ciated with cognition at rest in psychosis (59), dependent on
cognitive demand during tasks in schizophrenia (66), and can
also be increased by cognitive remediation training (67).
Together with the DTI-based structural connectivity study
reporting the association of thalamo-prefrontal connectivity
with working memory (68), the current literature implicates
thalamo-prefrontal connectivity in cognitive function in
psychosis.

However, further evidence demonstrating reductions in both
structural and functional thalamo-prefrontal connectivity in
early-stage psychosis, individuals at clinical high risk for psy-
chosis, and those with genetic high risk for psychosis may
require the current interpretation of this phenomenon to be re-
evaluated (26,69–75). Notably, asymptomatic relatives/siblings
of schizophrenia share decreased thalamo-prefrontal con-
nectivity but not increased thalamo-sensorimotor connectivity
(72,74), suggesting that this biological phenotype may be
considered a useful intermediate phenotype in linking genetic
effects to schizophrenia pathophysiology. Indeed,
schizophrenia-related genes have been confirmed to be
associated with MD–dorsolateral PFC connectivity (76,77).
Taken together, current evidence suggests that reduced
thalamo-prefrontal connectivity may represent a heritable trait
and vulnerability factor for psychosis. Thalamo-prefrontal
connectivity has also been reported to be reduced in ASD.
However, no study has yet compared deficits with schizo-
phrenia, bipolar disorder, or MDD. Such studies, together with
longitudinal studies, will help fully corroborate this notion.

Thalamo-Somatomotor/Parietal Connectivity:
A Marker of General Psychiatric Illness?

Studies have consistently reported increased thalamo-
somatomotor/parietal connectivity across psychiatric disor-
ders. For example, studies have reported that increased
thalamo-somatomotor/parietal connectivity is shared across
schizophrenia, bipolar disorder, and MDD (5,52,58–60) but is
not seen in asymptomatic relatives/siblings of patients with
schizophrenia (72,74); however, the relevance of this deficit
remains unclear because it is one of the understudied com-
ponents in the thalamic connectivity system. Notably, thalamo-
somatosensory/parietal connectivity has been shown to be
modulated by electroconvulsive therapy in MDD and schizo-
phrenia (45,69). Studies on this phenomenon are limited, but it
is currently postulated to reflect the expression of these mental
illness phenotypes or related secondary factors (72). Interest-
ingly, reports have consistently demonstrated, as previously
described, significantly increased thalamo-somatomotor/
parietal connectivity in ASD. Furthermore, it has been re-
ported that thalamocortical connectivity deficits are shared
genetically across psychiatric disorders (78).
336 Biological Psychiatry: Global Open Science October 2022; 2:332–
Although further studies are needed, it is possible to
speculate based on current knowledge that this observation of
increased thalamo-somatomotor/parietal connectivity may be
reflective of a factor that is present in various psychiatric dis-
orders (i.e., a general psychopathology factor, or p factor) or
perhaps underlies them (i.e., a general psychopathophysio-
logical factor). Previous studies have found that a higher p
factor was associated with structural disturbances within the
cerebello-thalamo-cortical circuit (79). If this truly is the case, it
could explain our rather slow advancements in gaining deeper
understanding of this deficit, even with the rigorous perfor-
mance of correlation analyses with multiple measures, such as
clinical scores and cognitive function. It could be, as sug-
gested in a review study by Giraldo-Chica and Woodward (30),
that we are not testing the correct measures and need to
broaden our perspective to find other, perhaps new, measures.

Thalamic Microstructure in the MD: A State Marker
of Psychosis?

Recent neuroimaging methods have enabled in vivo segmen-
tation of the thalamus into nuclei using the topographic
properties of the thalamus. This new and exciting method has
yet to be applied across multiple psychiatric disorders but has
already shown promising results in the study of psychosis.
Current neuroimaging findings, together with postmortem
findings in schizophrenia, suggest that the most strongly
implicated thalamic nuclei are the MD and pulvinar (2,80),
which are also strongly implicated across psychiatric disorders
(81). Studies have revealed volumetric reductions in the MD
and pulvinar in psychosis and youths with psychosis spectrum
symptoms (80) and microstructural reductions in FEP (2).
Several studies investigating genetic associations have re-
ported that unless multivariate analyses are applied to detect
very subtle changes, volumetric integrity is preserved in
healthy relatives of patients with schizophrenia despite their
high genetic loading (82,83). A study further investigated
thalamic microstructural integrity in a sample of unaffected
relatives of those with psychosis, in whom reduced thalamo-
orbitofrontal connectivity was previously reported (71), to
elucidate whether such disruptions were associated with the
thalamic microstructure; however, the microstructure was
intact and volumetric integrity was preserved (25). Further ex-
aminations are required, but the current line of evidence sug-
gests state-like characteristics of the MD and pulvinar, which
may provide a foundational basis for a new avenue of reverse-
translational studies related to the thalamic connectivity sys-
tem for developing better treatments and better detection
strategies.

INVOLVEMENT OF THE CEREBELLUM IN
THALAMOCORTICAL DYSCONNECTIVITY

There are yet a limited number of studies postulating the
common source of thalamocortical dysconnectivity, particu-
larly in thalamo-prefrontal and thalamo-somatosensory/
parietal connectivity patterns observed in schizophrenia and
bipolar disorder. However, recent findings have indicated that
the impact of cerebellar neurons on different thalamic nuclei
varies substantially and highlight the possibility that cerebellar
340 www.sobp.org/GOS
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output differentially controls various parts of the thalamocort-
ical network (84–89). Manipulating cerebellar output affects
sensorimotor integration by somatosensory and motor
cortices and thereby directs thalamocortical activity related to
voluntary movements (90–92). Furthermore, emerging evi-
dence has supported the functional topography of sensori-
motor, cognitive, and affective subregions in the cerebellum,
with each distinct process linked to different processing re-
gions across the brain (e.g., anterior cerebellum: sensorimotor
areas; posterior cerebellum: PFC and parietal association
cortices).

Studies have also reported cerebellar-thalamic connectivity
deficits. In schizophrenia, it has long been postulated via the
cognitive dysmetria theory that cerebello-thalamo-cortical cir-
cuitry disruptions lead to impairments in the coordination of
mental processes (93). In addition to the structural circuitry
having reduced integrity (94), being associated with cognitive
functioning (95), and being disrupted from preclinical to
chronic stages of schizophrenia (96), cerebello-thalamo-
cortical circuitry holds value as a strong classifier between
patients with first-episode schizophrenia and healthy control
subjects (97). Functionally, it is hyperconnected and is a robust
state-independent neural signature for psychosis prediction
and characterization (98) and a heritable trait in schizophrenia
(99). Similarly, the critical role of the cerebellar circuitry and the
presence of disruptions in this circuitry have also been re-
ported in bipolar disorder (100), MDD (101), and ASD (102).
Evidence has demonstrated that connectivity between the
thalamus and cerebellum is a common biological mechanism
underlying multiple psychiatric disorders, particularly psy-
chotic disorders (103).
Downstream Effects of Cerebellar Circuitry on the
Thalamic Connectivity System

Studies elucidating detailed relationships between the thal-
amus and cerebellum can reveal the downstream effects of
disruptions in the cerebellum and cerebellar circuitry on the
thalamus, providing evidence for consequential downstream
effects of thalamic disruption on the cortex. However, it is very
difficult to explore these causal relationships in humans
because 1) current neuroimaging methods are insufficient for
the task, 2) invasive measures are needed, and 3) these re-
lationships must be examined in longitudinal studies with long
follow-up durations. Nonetheless, it is crucial to aim to provide
information on these fundamental mechanisms in our brain.
Particular study designs (such as translational and reverse-
translational designs) and powerful, high-precision technolo-
gies show significant promise, potentially enabling such
questions to be addressed with previously unattainable spatial
and temporal resolution. To date, only a small number of
studies are available, but in one recent study with a reverse-
translational design, dysfunctional delta rhythms in the
medial frontal cortex during an interval timing task were
explored in an animal model. Both frontal and cerebellar neu-
rons were modulated, and subsequent optogenetic cerebellar
stimulation in mice normalized the dysfunctional frontal net-
works, which has also been observed in patients with
schizophrenia, highlighting the direct impacts of the cere-
bellum on frontal networks, particularly in cognitive processing
Biological Psychiatry: Global O
(104). Neuroimaging studies, although they cannot address
direct causality, have revealed that cerebellar gray matter re-
ductions may be associated with modulation of cerebellar-
thalamic connectivity and the frontoparietal network (105).
When investigating whether thalamic dysconnectivity patterns
were shared with other nodes in a larger system, the
corticostriatal-thalamic-cerebellar circuit, cerebellum, and
striatum showed similar patterns of disruption, highlighting that
thalamic connectivity deficits may not be focal disruptions but
may be understood as a part of disturbances in a larger sys-
tem, such as the corticostriatal-thalamic-cerebellar circuit, or
perhaps in the context of a brain-wide level of NMDA receptor
disruptions (106). Future studies are warranted to explore the
effects of NMDA receptor disruptions in the cerebellar circuitry
on the thalamic connectivity system.

CONCLUSIONS

Overall, there are shared and distinct patterns of deficits in the
thalamic connectivity system across schizophrenia, bipolar
disorder, MDD, and ASD. The disease-specific deficits include
reduced thalamo-prefrontal connectivity in schizophrenia and
bipolar disorder and increased thalamo-temporal connectivity
in MDD and ASD. However, we do not yet know the relative
degree of deficits across illnesses or, due to methodological
differences across studies, the differential localization of defi-
cits within the system. More exploration into sources causing
thalamic connectivity system disruption needs to be con-
ducted, although in this review, we provide the possibility that
the cerebellum and cerebellar circuits would be a fruitful model
to study. Furthermore, current evidence supports thalamo-
prefrontal connectivity as a heritable trait and a marker of
vulnerability to psychosis, and additional studies may be
required to fully substantiate this notion, but thalamo-
somatomotor/parietal connectivity is a possible general psy-
chiatric illness marker. Taken together, current evidence
supports the transdiagnostic validity of the thalamic connec-
tivity system, and future studies elucidating further details of
this system are highly warranted.
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