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Abstract: Eimeria magna is a common coccidia in the intestines of rabbits, causing anorexia, weight loss,
diarrhea, and bloody stools. This study cloned and determined the expression levels of four Eimeria
surface antigens (EmSAGs) at different developmental stages and showed that EmSAG10 and EmSAG11
are highly expressed at the merozoite stage. Rabbits were immunized with rEmSAG10 and rEmSAG11,
and then challenged with E. magna after 2 weeks. Serum-specific antibodies and cytokine levels were
detected using ELISA. Immune protection was evaluated based on the rate of the oocysts decrease, the
output of oocysts (p < 0.05), the average weight gain, and the feed: meat ratio. Our results showed that
rabbits immunized with rEmSAG10 and rEmSAG11 had a higher average weight gain (62.7%, 61.1%),
feed; meat ratio (3.8:1, 4.5:1), and the oocysts decrease rate (70.8%, 81.2%) than those in the control
group, and also significantly reduced intestinal lesions. The specific IgG level increased one week
after the first rEmSAG10 and rEmSAG11 immunization and was maintained until two weeks after the
challenge (p < 0.05). The TGF-β, IL-4, and IL-10 levels in the serum increased significantly after the
secondary immunization with rEmSAG10 and rEmSAG11, while the IL-2 levels increased significantly
after the secondary immunization with rEmSAG11 (both p < 0.05), suggesting that rEmSAG10 can induce
a humoral and cellular immunity, while rEmSAG11 can only induce a humoral immunity. Therefore,
rEmSAG10 is a candidate antigen for E. magna recombinant subunit vaccines.

Keywords: rabbit; Eimeria magna; SAG10; SAG11; recombinant protein; immune protection

1. Introduction

Eimeria magna is a common coccidia in rabbit intestines. It mainly parasitizes the
jejunum and ileum of rabbits. It causes anorexia, weight loss, and diarrhea in rabbits.
Infection leads to bloody stools and seriously affects rabbit reproduction [1–6]. Currently,
the control of rabbit coccidiosis relies mainly on anticoccidial drugs. Although it is inex-
pensive to add anticoccidial drugs to feed, drug resistance and drug residues remain major
problems. Live, attenuated vaccines have good anticoccidial effects, but in some cases,
there is a risk of restoring virulence [7,8]. The recombinant subunit vaccine is safer, stable,
easy to make in large quantities, and costs less than the live attenuated vaccine [9].

Coccidia have a complex life history, and their antigen composition and distribution are
inconsistent across different developmental stages [10]. The immunogenicity of coccidia in
the early stages of endogenesis is stronger than in the later stages of sexual reproduction [10].
Located on the surface of coccidia during invasion, the Eimeria surface antigens (SAGs)
family is large, and their structural characteristics are obvious [11–13]. Recombinant chicken
coccidia SAGs can effectively reduce intestinal lesions and weight loss, which have certain
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immune-protective effects [14–16]. Some attenuated strains of E. magna in rabbits have been
studied [17–21], but there is no information on recombinant subunit vaccines for this species.
In the present study, we screened four SAGs from the transcriptome of E. magna. By analyzing
the transcription levels of the four genes at different developmental stages of E. magna, SAG10,
and SAG11 were selected and expressed. The immunoprotective effects of the recombinant
proteins were evaluated in animal experiments. This study aimed to provide a reference for
the development of recombinant subunit vaccines for E. magna.

2. Results
2.1. Cloning and Bioinformatics Analysis of EmSAGs Genes

SAG1 (GenBank accession number: ON468435), SAG2 (GenBank accession number:
ON468436), SAG10 (GenBank accession number: OM897224), and SAG11 (GenBank acces-
sion number: OM897225) were amplified from E. magna cDNA. The amplified fragments
were 606 bp, 126 bp, 648 bp, and 678 bp, respectively. Following the cloning and sequenc-
ing analysis, the sequence similarity of each amplified fragment was 100% with that of
EmSAG1, EmSAG2, EmSAG10, and EmSAG11 in the transcriptome data of E. magna.

2.2. Bioinformatics Analysis

There is no signal peptide region and transmembrane helix region in EmSAG1, and the
GPI anchor site is amino acid 174 (Table 1). A multiple sequence comparison of EmSAG1
and other Eimeria coccidia showed that the similarity ranged from 22.22%–33.83% (Figure 1).

Table 1. Analysis of the basic molecular characteristics of SAGs.

Genes Number of
Amino Acids

Molecular
Weight

Isoelectric
Point Signal Peptide Transmembrane

Area
GPI Anchor

Point
Linear Epitope of
B Antigen

SAG1 201 21.76 4.48 - - 174
5–33, 38–55, 63–72,
79–102, 114–118,
127–146, 157–184

SAG2 41 4.58 10.66 - - - 6–14, 16–18, 21,
23–38

SAG10 215 22.81 4.84 - 195–214 193

6–9, 18–37, 45–58,
68–72, 85–106,
119–123, 133–156,
168–186, 189–197

SAG11 247 26.07 4.94 1–23 224–246 225

17–34, 43–77,
86–101, 108–126,
129–156, 167–171,
180–190, 202–217,
220–228

There was no signal peptide region, transmembrane helix region and GPI anchor site
in EmSAG2 (Table 1). The multiple sequence alignment is invalid because its amino acid
sequence is too short.

There was no signal peptide region in EmSAG10, and its transmembrane region was a
195–214 amino acid sequence. The GPI anchor site is amino acid 193 (Table 1). EmSAG10
encoding a protein with a predicted MW of 41 kDa. The multiple sequence comparison of
EmSAG10 and other Eimeria coccidia showed that the similarities ranged from 23.4%–34.3%
(Figure 1).

The amino acid sequence of the EmSAG11 signal peptide was a 1–23 amino acid
sequence, and its transmembrane domain was a 224–246 amino acid sequence. The GPI
anchor site is amino acid 225 (Table 1). EmSAG11 encoding a protein with a predicted
MW of 42 kDa. The multiple sequence comparison of EmSAG11 and other Eimeria coccidia
showed that the similarity ranged from 26.47%–36.73% (Figure 1).
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Figure 1. Multiple sequence alignments of SAG1 (a), SAG10 (b), and SAG11 (c) from different Eime-
ria. (a) Multiple alignment of E. magna SAG1 with SAG proteins from its Eimeria: Eimeria tenella 
(UniProt: XP_013232730), Eimeria brunetti (UniProt: CDJ45679.1), Eimeria mitis (UniProt: 
XP_037878758.1), Eimeria tenella (UniProt: CAE52292.2), Eimeria necatrix (UniProt: XP_013439715.1); 
(b) Multiple alignment of E. magna SAG10 with its SAG protein from Eimeria: Eimeria tenella (Uni-
Prot: CAE52313.1), Eimeria praecox (UniProt: CDI74849.1), Eimeria acervulina (UniProt: 
XP_013251483.1), Eimeria brunetti (UniProt: CDJ51402.1), Eimeria mitis (UniProt: XP_013355552.1); (c) 
E. magna Multiple alignment of SAG11 with SAG proteins from its Eimeria: Eimeria maxima (UniProt: 
XP_013334600.1), Eimeria brunetti (UniProt: CDJ45678.1), Eimeria stiedai (GenBank accession number: 
QIS60152.1), Eimeria necatrix (UniProt: XP_013439715.1), Eimeria tenella (UniProt: CAE52299.1). Blue 
shading indicates the conserved residues. Red boxes represent B-cell epitopes. Blue boxes indicate 
T-cell epitopes of E. magna SAGs. Black circles indicate GPI anchor points. 
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encoding a protein with a predicted MW of 41 kDa. The multiple sequence comparison of 

Figure 1. Multiple sequence alignments of SAG1 (a), SAG10 (b), and SAG11 (c) from different
Eimeria. (a) Multiple alignment of E. magna SAG1 with SAG proteins from its Eimeria: Eimeria
tenella (UniProt: XP_013232730), Eimeria brunetti (UniProt: CDJ45679.1), Eimeria mitis (UniProt:
XP_037878758.1), Eimeria tenella (UniProt: CAE52292.2), Eimeria necatrix (UniProt: XP_013439715.1);
(b) Multiple alignment of E. magna SAG10 with its SAG protein from Eimeria: Eimeria tenella (UniProt:
CAE52313.1), Eimeria praecox (UniProt: CDI74849.1), Eimeria acervulina (UniProt: XP_013251483.1),
Eimeria brunetti (UniProt: CDJ51402.1), Eimeria mitis (UniProt: XP_013355552.1); (c) E. magna Multiple
alignment of SAG11 with SAG proteins from its Eimeria: Eimeria maxima (UniProt: XP_013334600.1),
Eimeria brunetti (UniProt: CDJ45678.1), Eimeria stiedai (GenBank accession number: QIS60152.1),
Eimeria necatrix (UniProt: XP_013439715.1), Eimeria tenella (UniProt: CAE52299.1). Blue shading
indicates the conserved residues. Red boxes represent B-cell epitopes. Blue boxes indicate T-cell
epitopes of E. magna SAGs. Black circles indicate GPI anchor points.

2.3. Analysis of the Transcription Level Differences in Different Development Stages of EmSAGs

The expression of EmSAG1 (p < 0.001) and EmSAG2 (p < 0.0001) in the sporidized stage
of E. magna was higher than that in other stages (Figure 2), and the expression of EmSAG10
(p < 0.0001) and EmSAG11 (p < 0.0001) in the merozoite stage was higher than that in the
other stages (Figure 2), the difference was extremely significant (p < 0.0001).
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predicted size. Both pET-32a (+) -rEmSAG10 and pET-32a (+) -rEmSAG11 were expressed 
in the inclusion bodies. pET-32a (+) -rEmSAG10 (Figure 3a) was best expressed at 37 °C, 
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best expressed at 18 °C. The induction results at different time periods showed that the 
induction effect improved with an increase in time in the range of 10 h. 

Figure 2. The relative transcriptional levels of EmSAGs at different developmental stages. (a) is the relative
transcriptional levels of EmSAG1 at different developmental stages; (b) is the relative transcriptional levels
of EmSAG2 at different developmental stages; (c) is the relative transcriptional levels of EmSAG10 at differ-
ent developmental stages; (d) is the relative transcriptional levels of EmSAG11 at different developmental
stages; Data are shown as mean ± SD of three replicates per group. ** p < 0.01, *** p < 0.001. All values
were estimated by ANOVA (Duncan’s post hoc) at p≤ 0.05.

2.4. Expression of rEmSAG10 and rEmSAG11

The successfully constructed prokaryotic expression recombinant plasmids of the two
genes were transformed into E. coli BL21 (DE3) competent cells for the induction of the
expression. pET-32a is a tagged fusion protein and we saw that a band of about 40 kDa
for rEmSAG10 and rEmSAG11, which contained the signature fusion protein was about
20 kDa, and the predicted sizes were 21 kDa and 22 kDa, respectively, so the predicted
recombinant proteins were 41 kDa and 42 kDa, and our results were consistent with the
predicted size. Both pET-32a (+) -rEmSAG10 and pET-32a (+) -rEmSAG11 were expressed
in the inclusion bodies. pET-32a (+) -rEmSAG10 (Figure 3a) was best expressed at 37 ◦C,
and pET-32a (+) -rEmSAG11 (Figure 3b) was induced at different temperatures and was
best expressed at 18 ◦C. The induction results at different time periods showed that the
induction effect improved with an increase in time in the range of 10 h.

2.5. Western Blotting of rEmSAG10 and rEmSAG11

A western blot analysis showed that the rabbit serum infected with E. magna could
recognize rEmSAG10 and rEmSAG11 (Figure 4, lanes 1 and 2), and the pET-32a tag protein
could not be recognized by the rabbit serum infected with E. magna (Figure 4, lane 3),
whereas the rabbit-negative serum did not recognize rEmSAG10 or rEmSAG11 (Figure 4,
lanes 4 and 5).

2.6. Protective Efficacy of rEmSAG10 and rEmSAG11

Following the first and second immunizations, there were no adverse reactions in
the experimental rabbits in each group. According to the average weight gain after the
immunization before the challenge, there was no significant difference between the groups
(p > 0.05), indicating that rEmSAG10 and rEmSAG11 were in our experiment. It has a good
safety profile at the doses used (Table 2).
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2.6. Protective Efficacy of rEmSAG10 and rEmSAG11 

Figure 4. Western blotting analysis of rEmSAG10 and rEmSAG11. M: Bio-red protein molecular
weight standard; lanes 1 and 2 were the identified as rEmSAG10 and rEmSAG11 in the rabbit serum
infected with E. magna; Lane 3 was the identified as the pET-32a tag protein protein in the rabbit
serum infected with E. magna; lanes 4 and 5 were identified as rEmSAG10 and rEmSAG11 in the
rabbit-negative serum for E. magna without infection.

None of the rabbits in the control group died after infection, with symptoms of mental
depression, anorexia or obvious diarrhea. The typical pathological changes were observed
in the middle and lower segments of the small intestine. The intestine was filled with
mucus, blood vessels in the intestinal wall, congestion, and bleeding in the intestinal
mucosa (Figure 5a–c); whereas in the unchallenged control group, there were no lesions in
the middle and lower segments of the small intestine (Figure 5d). In the immune groups
of rEmSAG10 and rEmSAG11, no rabbit died after infection, the rabbits were active, had
a normal appetite, and did not have diarrhea symptoms. An autopsy showed a small
number of hemorrhagic filaments in the rEmSAG10 and rEmSAG11 groups (Figure 5e), and
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there were a few bleeding spots in the crypt of the intestinal tract in the immune group of
rEmSAG11 (Figure 5f).

Table 2. Protective effects of rEmSAG10 and rEmSAG11 against an E. magna infection under different
evaluation indicators.

Group

Weight Gain after
Immunization

and before
Challenge

Gain Weight
after Challenge

Relative Weight
Gain Rate (%) Feed Meat Ratio Output of Oocysts Oocyst Decrease Ratio

Unchallenged
control 579.3 ± 117.7 a 503.1 ± 126 b 100 2.7:1 0 0

Challenged
Control 626.8 ± 133.4 a 226.8 ± 147.8 a 50.3 6.1:1 18,491.6 ± 14,467.0 a 0

Quil-A
Saponin 678.7 ± 200.1 a 236.8 ± 81.5 a 45.0 5.9:1 18,216 ± 106.8 a 13.1%

recombinant
pET-32a

tag protein
629.3 ± 156.6 a 232.5 ± 104.1 a 46.2 6:1 16,483.3 ± 8410.4 a −11.6%

rEmSAG10
immunized 602.5 ± 62.7 a 325.4 ± 78.8 b 62.7 3.8:1 5400 ± 78.9 b 70.8%

rEmSAG11
immunized 646.2 ± 103.5 a 307.5 ± 90.7 b 61.1 4.5:1 3483.3 ± 2104.1 b 81.2%

The data are presented as the mean ± standard deviation (SD). In each column, there is a significant difference
between the data marked with different letters (p < 0.05), and there is no significant difference between the data
marked with the same letter (p > 0.05), All values were estimated by ANOVA (Duncan’s post hoc) at p ≤ 0.05.
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Figure 5. Dissection of the middle and lower segments of the small intestine in each group. (a),
challenged control group; (b), recombinant pET-32a tag protein control group; (c), quil-A saponin
control group; (d), intestinal tract of the blank control group; (e), rEmSAG10 immune group; (f),
rEmSAG11 immunized group. Note: The black arrow indicates intestinal bleeding or congestion.

Compared with the control group, the relative weight gain rates of rEmSAG10 and
rEmSAG11 immunized rabbits were 62.7% and 61.1%, respectively (p > 0.05) (Table 2). In
addition, the oocyst yield in rabbits immunized with rEmSAG10 (70.8% oocyst decrease
rate) and rEmSAG11 (81.2% oocyst decrease rate) was significantly decreased (p < 0.05).
Compared with the challenged control (6.1:1), quil-A control (5.9:1) and recombinant pET-
32a tag protein control (6:1) positive control group, rEmSAG10 (3.8:1) and rEmSAG11 (4.5:1)
were the immunized group had a better feed conversion ratio.
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estimated by ANOVA (Duncan’s post hoc) at p ≤ 0.05.
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2.7. Detection of Specific Antibody Levels

Compared with the control group (challenged control, Quil-A saponin, Recombinant
pET-32a tag protein), the average specific IgG levels in the serum of the rEmSAG10 (Figure 6a)
and rEmSAG11 (both p < 0.05) (Figure 6b) immunized groups reached a higher level one week
after the first immunization, and the specific IgG level after the second immunization tended
to be stable, which could be maintained at a higher level until two weeks after the challenge.

2.8. Cytokine Detection

Following the second immunization, there were significant differences in IL-2, IL-4,
IL-10, and TGF-β concentrations between rEmSAG10 and the control group (PBS-infected,
Quil-A saponin, Recombinant pET-32a tag protein) (p < 0.05). There was no difference in
the IL-17 and IFN-γ concentrations (p > 0.05) (Figure 7). There were significant differences
in IL-4, IL-10, and TGF-β concentrations between rEmSAG11 and the control group (PBS-
infected, Quil-A saponin, Recombinant pET-32a tag protein) (p < 0.05). There were no
differences in IL-2, IL-17, or IFN-γ concentrations (p > 0.05) (Figure 7).

3. Discussion

In this study, SAG10 and SAG11, which are highly expressed in the merozoite stage of
E. magna, were selected, and then the rEmSAG10 and rEmSAG11 proteins were obtained as
subunit vaccines through the prokaryotic expression. The animal experiments showed that
rEmSAG10 and rEmSAG11 immunization led to average weight gain and decreased oocyst
output compared to the control group (PBS-infected, Quil-A saponin, Recombinant pET-32a
tag protein). The relative weight gain rates of rEmSAG10 and rEmSAG11 were 62.7% and
61.1%, respectively, and their oocyst decrease rate were 70.8% and 81.2%, respectively. The
results showed that they had a protective effect.

Eimeria magna is an intestinal coccidia found in rabbits. It mainly invades intestinal
epithelial cells, which causes intestinal bleeding and huge economic losses to the rabbit
industry. Compared with drug prevention and live vaccines, subunit vaccines are a promis-
ing alternative strategy for control [22–24]. In recent years, subunit vaccines of chicken
coccidia, such as MIC2, GAM56, and SAG4, have shown better protective effects [25–27].

A surface antigen is one of the candidate antigens for the development of a new
generation of vaccines [15,16,28]. Its core function may be to attach itself to host cells
before the parasite invasion [29], and the early infection of parasites on host cells can
stimulate the host to produce a good immune response [30,31]. Researchers inoculated
chickens with rEtSAG to induce humoral and cellular immunity and to protect against
E. tenella [32]. Subsequent studies have also confirmed that rEtSAG, as a recombinant
vaccine, can induce high levels of antibodies in the host and has a certain effect on chicken
coccidiosis infection [33]. The invasion of E. tenella SAG mainly manifests in the sporozoite
and merozoite stages [34].

IFN-γ and IL-2 are Th1-type cytokines and play an important role in the resistance
to Eimeria infection [35]. IL-2 promotes the growth and differentiation of many immune
cells [36,37]. In the present study, compared with the control group, the secretion level of
IL-2 in the experimental rabbits inoculated with rEmSAG10 was significantly increased
(p < 0.05), indicating that the anticoccidial immunity was activated in the experimental
rabbits inoculated with rEmSAG10. However, the secretion level of IFN-γ is not significant.
However, the secretion level of IFN-γ did not change significantly in this study. The
reason for this phenomenon may be that the increase of IL-10 (Th2 cytokine) promotes the
occurrence of the Th2 response, thereby inhibiting the secretion of IFN-γ [38–40].

The Th2-type cytokines, mainly IL-4, can regulate humoral immunity, activate helper
B cells [41,42], and as other studies have shown, elevated IL-4 levels after inoculation with
various recombinant proteins [43,44]. In this study, compared with the control group, we
detected IL-4 levels in the serum after two immunizations with rEmSAG10 and rEmSAG11,
and observed that IL-4 in the serum was significantly increased, and the antibody response
in this study showed that after inoculation with rEmSAG10 and rEmSAG11, the level of
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IgG in the serum was significantly increased, and both IL-4 and IgG increased, indicating
that rEmSAG10 and rEmSAG11 can induce humoral immunity, thereby playing a certain
role in the resistance to Eimeria infection.

TGF-β is produced by regulatory T cells and it is an important inflammatory regulator
that exhibits pro-inflammatory properties at low concentrations and anti-inflammatory
effects at high concentrations [45,46], and stimulates the repair of the damaged mucosal
epithelial integrity following injury [47]. IL-10 can inhibit host injury and reduce the
production of pro-inflammatory cytokines [48–51]. In this study, the expression of IL-10
and TGF-β in rEmSAG10 and rEmSAG11 after the second immunization was compared,
indicating that rEmSAG10 and rEmSAG11 can inhibit the occurrence of inflammation,
reduce host intestinal damage, and thus suggests that TGF-β and IL-10 play a role not only
in E. magna infection, but also in the immune response to E. magna antigens.

In summary, EmSAG10, and EmSAG11 are highly expressed during the merozoite stage.
The specific IgG antibody levels in the serum of rabbits immunized with rEmSAG10 and
rEmSAG11 were still high two weeks after the challenge, and TGF-β, IL-2, IL-4, and IL-10 levels
were significantly increased in the serum after the second immunization with rEmSAG10,
and TGF-β, IL-4, and IL-10 levels were significantly increased in the serum after the second
immunization with rEmSAG11, suggesting that rEmSAG10 can induce humoral and cellular
immunity. The results of animal experiments also showed that rEmSAG10 could increase the
average body weight and decrease the output of oocysts, indicating that rEmSAG10 is more
suitable as a candidate antigen for recombinant subunit vaccines of E. magna.

4. Materials and Methods
4.1. Animals, Parasites, and Serum

The Beijing strain of E. magna was provided by Professor Xianyong Liu of China Agri-
cultural University. It was subcultured and preserved at the Department of Parasitology of
Sichuan Agricultural University. Four stages of E. magna, including unsporulated oocysts,
sporulated oocysts, merozoites, and gametophytes, were isolated from a rabbit artificially
infected with E. magna.

Forty-eight 35-day-old coccidian-free New Zealand rabbits (850 ± 97.7 g, 24 males
and 24 females) were provided by the Department of Parasitology, College of Veterinary
Medicine, Sichuan Agricultural University and kept strictly in a coccidian-free environment
according to the method described by Shi et al. [52]. The young rabbits were weaned at the
age of 18 days, and fed high-temperature sterilized feeding pellets (in-house prepared at
this laboratory) in combination with human infant formula until 30 days of age, during
which boiled drinking water and feed were provided ad libitum. Anticoccidial drugs were
used in cross-rotation in water, and rabbit cages were regularly flame sterilized to prevent
contamination with other Eimeria species.

Negative and positive serum samples of E. magna were provided by our laboratory.

4.2. Total RNA Extraction and Reverse Transcription

The total RNAs from the four stages of E. magna were extracted using the RNA
Extraction Kit (TaKaRa, Dalian, China) and reverse transcribed into cDNA using a reverse
transcription system kit (PrimeScript™ RT reagent kit with gDNA Eraser, TaKaRa, Dalian,
China), and stored at −80 ◦C until use.

4.3. Cloning and Bioinformatics Analysis of the EmSAGs Genes

The sequences of EmSAG1, EmSAG2, EmSAG10, and EmSAG11 were obtained by
cloning and sequencing, and a bioinformatic analysis was performed using ExPASY (http:
//web.expasy.ory/protparam/ accessed on 28 May 2022).The physicochemical properties
of the proteins were predicted, including the number of amino acids, molecular weight, and
isoelectric point; the protein signal peptide, transmembrane region, secondary structure,
GPI anchor site, and B antigen linear epitope using SignalP-5.0 (https://www.novopro.
cn/tools/signalp.html, accessed on 28 April 2022), TMHMM-2.0 (http://www.cbs.dtu.

http://web.expasy.ory/protparam/
http://web.expasy.ory/protparam/
https://www.novopro.cn/tools/signalp.html
https://www.novopro.cn/tools/signalp.html
http://www.cbs.dtu.dk/services/TMHMM-2.0
http://www.cbs.dtu.dk/services/TMHMM-2.0
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dk/services/TMHMM-2.0, accessed on 28 April 2022), Jaview (https://webs.iiitd.edu.in/
raghava/apssp2/, accessed on 28 April 2022), (http://mendel.imp.ac.at/gpi/plant-server,
accessed on 28 April 2022), (http://tools.immuneepitope.org/bcell/ accessed on 28 April
2022) Forecast. In addition, multiple sequence alignments of EmSAG1, EmSAG2, EmSAG10,
and EmSAG11 and their homologous genes were performed using the DNAMAN software.

4.4. Transcription Level of the SAGs Genes

The cDNA was prepared by the above-mentioned method to obtain the unsporidized,
sporidized, merozoites, and gametophytes stages of rabbit E. magna as a template, and
EmSAG1, EmSAG2, EmSAG10, and EmSAG11 (Table 3) genes were amplified by real-time
quantitative PCR (Roche, Switzerland), and β-Tubulin and GAPDH (Table 3) were the two
housekeeping reference genes for comparison. A 20-µL reaction system consisted of 10 µL TB
Green Premix Ex TaqII (Tli RNaseH Plus) (2X) (TaKaRa, Dalian, China), 0.8 µL Forward primer
(Sangong, Shanghai, China), 0.8 µL Reverse primer (Sangong, Shanghai, China), 2 µL cDNA
template, and 6.4 µL ddH2O. The procedure was as follows: one-step 95 ◦C for 30 s; two-step
95 ◦C for 5 s, 60 ◦C for 30 s; 40 cycles, 95 ◦C for 15 s, 60 ◦C for 60 s, and 95 ◦C for 15 s. Three
parallel repeats were performed for each of the four genes. We screened two stable reference
genes, Em-GAPDH and Em-β-tubulin, and Em-β-tubulin was selected as the reference gene
due to its stability among the different developmental stages; we took the unsporulated stage
as the calibrator, and by subtracting the expression level of Em-β-tubulin, we were able to
compare the expression level of other developmental stages. The relative transcription levels
of the four genes at each developmental stage of E. magna were analyzed using the44Ct
(Qr = 2-44Ct) method [53], and subsequently analyzed by one-way ANOVA with a Tukey’s
post-hoc test using GraphPad Prism version 8.4.

Table 3. The qRT-PCR primers of EmSAGs and internal reference genes Em-β-tubulin, Em-GAPDH.

Name Primer Primer Sequence (5′→3′)

β-tubulin
Forward TCACTTTCGTCGGCAACTCAACC
Reverse AACTCCATCTCGTCCATACCCTCTC

GAPDH
Forward GTGTAGCGGGCGTTTGAGGATG
Reverse GTCGTTCACAGCCACCACTTCC

SAG1
Forward CGTGAAAGACTGGCAGAGAGGATTC
Reverse GGCGTCGTCGTAAGGATTGTAGAG

SAG2
Forward CAGTGTAGTGACGCCGTGGAAG
Reverse ACTTGCTTGGGGTTCGCTTGTG

SAG10
Forward CGCAACGGTTTATACATACGGTTTGG
Reverse CGGCATAGGCTGAGTTCTTGATGG

SAG11
Forward CTCTACAATCCCGTCAGCGAAGC
Reverse TTTGTGGTATTGCGTGAGGGTAGC

4.5. Prokaryotic Expression and Purification

The cDNA of E. magna prepared using the above method was used as a template, and
specific primers were designed with reference to the full-length coding sequences of the
EmSAG10 and EmSAG11 genes (Table 4).

Table 4. Primers of EmSAGs.

Name Primer Primer Sequence (5′→3′)

SAG10
Forward ATGTGGATGTTCGCAGAA
Reverse TTAAAACAGAGCAAGTCCT

SAG11
Forward ATGAGCGACCCTGTAACA
Reverse CTAGAATAGAAACGCAGCC

The extracted E. manga cDNA was used as a template for the amplification. The
reaction conditions were as follows: 95 ◦C for 3 min; 35 cycles of 95 ◦C for 45 s, 60 ◦C

http://www.cbs.dtu.dk/services/TMHMM-2.0
http://www.cbs.dtu.dk/services/TMHMM-2.0
https://webs.iiitd.edu.in/raghava/apssp2/
https://webs.iiitd.edu.in/raghava/apssp2/
http://mendel.imp.ac.at/gpi/plant-server
http://tools.immuneepitope.org/bcell/
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for 45 s, 72 ◦C for 30 s; 72 ◦C for 10 min; and 4 ◦C for 5 min. The PCR products were
ligated into the pMD-19 T vector (TaKaRa, Dalian, China) and transformed into DH5α
competent cells (Tiangen, Beijing, China). Once a single colony was identified as positive
by PCR, the plasmids were extracted and sent to Shanghai Bioengineering Co., Ltd. for
sequencing. Once sequencing was correct, the above four were subjected to a fluorescence
quantitative PCR to select EmSAG10 and EmSAG11, which were highly expressed in the
large merozoite stage, and then the successful construction of pMD19-T-Em-SAG10 and
pMD19-T-Em-SAG11 plasmid was subcloned into pET-32a(+) vector (Tiangen, Beijing,
China) after the double-enzyme digestion. The constructed pet-32a (+) -Em-SAG10 and
pet-32a (+) -Em-SAG11 were transformed into E. coli BL21 (DE3) (TianGen, Beijing, China)
and induced with IPTG (Sigma, Cream Ridge, NJ, USA) at 37 ◦C for 12 h. The cells were
collected and sonicated, and SDS-PAGE analyzed the supernatant and precipitate to verify
the expression of the recombinant protein. The recombinant proteins were purified using
an Ni2-affinity chromatography column (Qiagen, Dusseldorf, Germany), and the purity
was detected by 12% SDS-PAGE (Solebao, Beijing, China).

4.6. Western Blot Analysis of rEmSAG10 and rEmSAG11

The purified rEmSAG10 and rEmSAG11 were subjected to SDS-PAGE and transferred
to a nitrocellulose membrane (Kemaijie, Chengdu, China) using a semi-dry membrane
transfer tank (Bio-Rad Laboratories, Hercules, CA, USA). Once cleaning the membrane in
TBST three times (5 min each time), the membrane was sealed in TBST with 5% skimmed
milk powder (Sangong, Shanghai, China) at 4 ◦C for 2 h. Once the sealing was completed,
the positive and negative serums of E. magna (dilution 1:100) were added, and incubated
at 4 ◦C overnight. Following the washing of the membrane with TBST three times, it was
incubated with horseradish peroxidase-labeled goat anti-rabbit IgG (HRP-IgG) (Boster,
Wuhan, China) at a dilution of 1:1000 at room temperature for 2 h. Following the washing
of the membrane with TBST five times, the reaction was stopped with a diaminobenzidine
(DAB) substrate solution (Tiangen, Beijing, China).

4.7. Immunization Procedure and Experimental Grouping

A subcutaneous injection into the neck was used for immunization. The immunization
and vaccination statuses of each group are shown in Table 5.

Table 5. Experimental grouping.

Group Number of Rabbits Inoculation Treatment (1 mL in
Total)

Insect Attack
(×105)

Unchallenged control 8 Sterile PBS –
Challenged control 8 Sterile PBS 1 × 105 sporulated oocysts/week 4/oral

Quil-A saponin 8 Saponin (2 mg/mL) 1 × 105 sporulated oocysts/week 4/oral

Recombinant pET-32a tag protein 8 recombinant pET-32a tag protein
(150 µg) + saponin (2 mg/mL) 1 × 105 sporulated oocysts/week 4/oral

rEmSAG10 immunized 8 SAG10 protein (150 µg) + saponin
(2 mg/mL) 1 × 105 sporulated oocysts/week 4/oral

rEmSAG11 immunized 8 SAG11 protein (150 µg) + saponin
(2 mg/mL) 1 × 105 sporulated oocysts/week 4/oral

The rabbits were immunized for the first time at 42 days of age and then immunized
with the same dose 14 days later. The blood samples were collected and stored at−20 ◦C, The
body weight was recorded every 7 days. Except for the unchallenged control group, each
rabbit in each group was orally inoculated with 1× 105 newly collected sporulated oocysts.
Each experimental rabbit was infected with 100 g of anticoccidial-free feed every day.
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4.8. Evaluation of the Protective Efficacy of rEmSAG10 and rEmSAG11

Safety observation: The body weight was measured at the time of the first immuniza-
tion, second immunization, and the challenge, and the health status of all experimental
rabbits was observed after immunization.

Following infection, the mental state, appetite for food, and diarrhea were observed,
and all experimental rabbits were sacrificed 14 days after infection. The lesions of the
jejunum and ileum were observed, photographed and recorded, and the relative weight
gain rate, feed to meat ratio, and the oocyst decrease rate were measured. According to
the national standard for the diagnosis of coccidiosis in animals (GB/T18647-2020), the
appropriate amount of rectal fecal samples were collected for the quantitative examination
of oocyst output. The average oocysts per gram (OPG) of each group was counted, and the
reduction rate of the oocysts was calculated.

The average weight gain before the challenge was equal to the body weight before the first
immunization. The average weight gain after the challenge was equal to the body weight before
the sacrifice and before the challenge. The relative weight gain rate = (average weight gain of
each experimental group/average weight gain of unchallenged group) × 100%; The rate of
feed to meat = (total feed before feeding − total amount of residual feed after sacrificed)/total
weight gain after infection; Output of oocysts = experimental group OPG/number of animal;
Oocyst decrease rate (%) = (challenged control group OPG -immune group OPG)/(challenged
control group OPG) × 100%.

4.9. Detection of the Serum Antibody IgG

The serum was collected by weekly blood sampling before the first vaccination until
the sacrifice period, and the levels of the specific IgG of rEmSAG10 and rEmSAG11 were
determined by indirect ELISA, and the serum samples (1:100 dilution) of goat anti-rabbit
IgG (Doctor De, Wuhan, China) were detected by the HRP labeled secondary antibody.

4.10. Cytokine Detection

An ELISA kit (CUSABIO, Wuhan, China) was used to determine the concentrations of
IL-2, IL-4, IL-10, IL-17, TGF-β, and IFN-γ in the serum of the experimental rabbits after the
second immunization (before the challenge) according to the instructions.

4.11. Data Analysis

All data were analyzed using SPSS software (IBM SPSS version 20.0; SPSS Inc., Chicago,
IL, USA) using one-way analysis of variance and the Duncan post-hoc multiple range test.
There was no significant difference between the different experimental groups when p > 0.05,
but there was a significant difference when p < 0.05. The difference was extremely significant
(p < 0.01). All data are expressed as mean ± standard deviation (SD). Graphs were generated
using GraphPad Prism 8.4 software.

5. Conclusions

Our results indicate that rEmSAG10 can induce a humoral and cellular immunity and
have certain immune protective effects, and rEmSAG10 can be used as a candidate antigen
for recombinant subunit vaccines of Eimeria magna in rabbits.
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