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A B S T R A C T   

With the advancement of e-commerce and modern technological development, credit cards are 
widely used for both online and offline purchases, which has increased the number of daily 
fraudulent transactions. Many organizations and financial institutions worldwide lose billions of 
dollars annually because of credit card fraud. Due to the global distribution of both legitimate and 
fraudulent transactions, it is difficult to discern between the two. Furthermore, because only a 
small proportion of transactions are fraudulent, there is a problem of class imbalance. Hence, an 
effective fraud-detection methodology is required to sustain the reliability of the payment system. 
Machine learning has recently emerged as a viable substitute for identifying this type of fraud. 
However, ML approaches have difficulty identifying fraud with high prediction accuracy, while 
also decreasing misclassification costs due to the size of the imbalanced data. In this research, a 
soft voting ensemble learning approach for detecting credit card fraud on imbalanced data is 
proposed. To do this, the proposed approach is evaluated and compared with numerous sophis-
ticated sampling techniques (i.e., oversampling, undersampling, and hybrid sampling) to over-
come the class imbalance problem. We develop several credit card fraud classifiers, including 
ensemble classifiers, with and without sampling techniques. According to the experimental re-
sults, the proposed soft-voting approach outperforms individual classifiers. With a false negative 
rate (FNR) of 0.0306, it achieves a precision of 0.9870, recall of 0.9694, f1-score of 0.8764, and 
AUROC of 0.9936.   

1. Introduction 

Online payment is becoming more common in all types of transactions today. The major reasons for this are the availability of credit 
cards and the growth of the e-commerce platform. There are 2.8 billion credit card users globally and 1.06 billion in the United States 
[1]. Online sales alone in the USA already make up 10 % of all retail sales and are estimated to increase by 15 % annually [2]. Ac-
cording to the Unisys protection index, Americans are significantly more concerned about credit and debit card theft than terrorism 
[3]. Credit card-based transactions have grown to be a vulnerable target for criminals, hackers, and thieves. It is not necessary to 
physically present the credit card while using it online; only the information of the card should be provided. One-Time Passwords 
(OTPs) sent via email are occasionally taken into consideration as an additional authentication step. A USA-based company called 
Fidelity National Information Services reports that just in April 2020, the dollar volume of attempted illegitimate transactions jumped by 
35.8 %. Credit card fraud costs around $28.6 billion worldwide in 2020, with the United States having the highest number of incidents 
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and expected to reach $408 billion in transactions over the next ten years [4]. Therefore, it is essential to secure online transactions by 
effectively differentiating between fraudulent and authorized credit card transactions. 

This type of real-time fraud detection issue can be effectively solved using machine learning. Big data, computational intelligence, 
machine learning, and deep learning technologies have been heavily invested in by numerous research and commercial groups to 
provide effective strategies for the problem [5]. However, a few common problems affect performance in general regardless of the 
technique used. For example, the training data typically has an imbalanced distribution. It characterizes prior transactions and causes 
various overfitting issues, resulting in poor performance of the adopted classifiers. This is due to the fact that the number of counterfeit 
samples available is frequently far less than the number of legitimate samples. In cases where the legitimate class is much larger than 
the fraudulent class, classifiers may have high accuracy in detecting legitimate transactions but struggle to accurately identify 
fraudulent transactions [6–8]. This results in a significant degree of imbalance, making it impossible to define a reliable evaluation 
model. As a result, analyzing and learning from unbalanced data is a difficult task. 

The novelty of this study is to propose a soft voting ensemble learning-based approach for detecting credit card fraud in an un-
balanced dataset. The proposed approach also assesses and compares several advanced under-sampling (i.e., random under-sampling), 
oversampling (i.e., SMOTE and ADASYN), and hybrid sampling (i.e., SMOTE-Tomek and SMOTE-ENN) techniques to deal with the 
imbalanced data. In total, sixty-six (66) credit card fraud classifiers (including fifty-five (55) using sampling and eleven (11) without 
sampling techniques) and eighteen (18) soft voting ensemble classifiers (including fifteen (15) using sampling, and three (3) without 
sampling techniques) have been developed. The optimal classifier demonstrates extremely high testing performance for identifying 
and classifying credit card fraud. Experimental results show that a soft voting ensemble learning approach with a combination of 
XGBoost, MLP, and KNN outperforms individual ML classifiers in terms of recall and FNR on the under-sampled dataset. The moti-
vation behind this study lies in the fact that the performance of different machine learning classifiers and ensemble classifiers has not 
been previously investigated in the past for the credit card fraud detection challenge.The rest of the manuscript is organized as follows: 
Section 2 provides a succinct overview of the key studies on credit fraud detection that have been published in the past. Section 3 
discusses the problem motivation. Section 4 emphasizes the proposed methodology for detecting credit card fraud. Section 5 presents 
an experimental setup and shows how ML classifiers, including ensemble learning techniques, perform on both imbalanced (i.e., 
without sampling) and balanced (i.e., with sampling) datasets. Finally, Section 6 provides concluding remarks with study strengths and 
limitations of the study and the possibilities for future research. 

2. Literature review 

Numerous methods have been proposed to detect fraudulent credit card transactions; one recent approach employed machine 
learning algorithms as a solution. These algorithms demonstrate their ability [9] and effectiveness in differentiating between genuine 
and fraudulent transactions [10]. There are two main methods for detecting fraudulent transactions. The first one employs supervised 
learning algorithms [11], which require labeling the dataset in order to identify patterns that distinguish fraudulent from 
non-fraudulent transactions. We identified Neural Networks [12], Fuzzy Logic [13], Particle Swarm Optimization [14], Regression 
Model [15], Genetic Algorithm [16], Naive Bayes [17], and Decision Trees [18] as a few frequently used supervised learning tech-
niques. Ghosh and Reilly [19] suggested that K-Nearest Neighborhood (KNN) shows promising results on credit card fraud detection. 
The authors measured the performance of their proposed model based on factors such as specificity and sensitivity. However, the 
accuracy of the model is not satisfactory. This indicates the authors dealt with a significantly skewed dataset. Furthermore, Pro-
dromidis and Stolfo [20] proposed a risk-based ensemble model to classify fraudulent and legitimate credit card users. Later, Stolfo 
et al. [21] used data mining techniques to counterfeit transactions on massive real-time data. The second technique detects fraudulent 
transactions using unsupervised learning algorithms [22]; this method utilizes unlabeled data to classify samples as fraudulent or 
authentic. We observed K-Means [23] and Self-Organizing Maps (SOMs) [24] as examples of this technique. 

Moreover, Yu & Wang [25] implemented logistic regression to solve the classification problem. The authors discretized fraudulent 
cases using Gaussian mixture models (GMM) and used the synthetic minority over-sampling technique (i.e., SMOTE) for balancing a 
credit card fraud dataset. In another work, Ozcelik et al. [26] applied ML models using genetic algorithms for fraud detection. Next, 
Soltani et al. [27] provided a method for detecting fraudulent activities on both benchmarks and real-world data. In addition, Zar-
eapoor et al. [28] focused on supervised methods for detecting credit card fraud. The authors compared numerous ML algorithms and 
illustrated how these algorithms behave differently under diverse conditions. 

Besides, Vats et al. [29] proposed ML methods for identifying fraudulent credit card transactions. The authors discussed about how 
dealing with categorical data might be challenging when a valid transaction appears fraudulent or when a valid transaction appears 
fraudulent. However, a number of ML methods (including logistic regression, support vector machines, neural networks, and linear 
regression) would not operate with categorical data. Likewise, Patel and Singh [30] proposed a genetic algorithm-based approach to 
address the challenge of imbalanced classes in credit card fraud detection. Additionally, the use of the Random Forest (RF) algorithm to 
identify credit card fraud was investigated by Xuan et al. [31]. In the context of detecting credit card fraud, the authors most likely 
discussed their methodology, experimental findings, and insights into the potential advantages and limits of this strategy. A funda-
mental investigation employing RF to identify fraudulent transactions was also carried out by Kumar et al. [32]. 

Above and beyond this, some academics suggested artificial intelligence approach for classifying legitimate and fraudulent credit 
card users. For instance, Jain et al. [33] applied several AI techniques to counterfeit fraudulent transactions on a credit card. 
Furthermore, Carta et al. [34] applied a Prudential Multiple Consensus (PMC), Gaussian Naive Bayes (GNB), Random Forest (RF), 
Gradient Boosting (GB), and Adaptive Boosting (AB) algorithm to detect credit card fraud. The authors compared the PMC model with 
different performance metrics such as specificity, miss rate, sensitivity, fallout, and AUC. Moreover, Varmedja et al. [35] used logistic 
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regression (LR), RF, Naïve Bayes (NB), multilayer perceptrons, and an artificial neural network (ANN). Then, Puh and Brkić [36] 
studied the performance of different algorithms, namely RF, Support Vector Machine (SVM), and LR, in detecting credit card fraud. 
The authors (Varmedja et al., [35]; Puh & Brkić, [36]) solved the class imbalance problem in the data set using the composite minority 
oversampling (SMOTE) technique. Furthermore, John and Naaz [37] used both the local outlier factor (LOF) and isolation forests to 
detect fraudulent transactions. However, the authors did not address the unbalanced class problem in the dataset. As well, Najadat 
et al. [38] employed a bidirectional long short-term memory (BiLSTM) and bidirectional gated recurrent unit (BiGRU)-based model to 
identify fraudulent cases in the credit card fraud dataset. 

Also, some researchers applied deep learning techniques to detect fraud countermeasures in credit card transactions. For instance, 
Van et al. [39] applied a technique for automatically identifying credit card theft in online stores based on client spending patterns. 
Moreover, Kumar et al. [40] developed a method for predicting fraud and legitimate transactions in terms of time and money based on 
ML algorithms and statistics. The authors also applied calculus and linear algebra in the construction of advanced machine learning 
models. In addition, Khatri et al. [41] analyzed various supervised learning models to identify fraudulent credit card transactions. In 
another work, Taha and Malebary [42] proposed a method for detecting credit card fraud using light gradient boosting machine 
(LightGBM). Additionally, Vengatesan et al. [43] tested the performance of LR and KNN on an unbalanced credit card fraud dataset, 
and Hema [44] used RF, LR, and category boosting (CatBoost) to identify credit card fraud. Additionally, Asha and KR [45] proposed 
an approach utilizing SVM, KNN, and ANN models to identify credit card fraud. However, none of the authors (Khatri et al., [41]; Taha 
and Malebary, [42]; Vengatesan et al., [43]; Hema, [44]; Asha and KR, [45]) mentioned the issue of class imbalance. Some researchers 
used the differential evolution hyperparameter optimization approach to identify fraudulent credit card transactions, differential 
evolution (DE) algorithm to address the issue of data imbalance, and optimized XGBoost algorithm to categorize fraudulent trans-
actions [46]. Kafhali and Tayebi [47] developed an effective credit card fraud detection solution by integrating Differential Evolution 
for hyperparameter selection in XGBoost, addressing imbalanced data with SMOTE and ENN. Their optimized XGBoost algorithm 
demonstrated superior performance, achieving 99.94% accuracy, 80.68% precision, 86.02% recall, 83.27% F-measure, and a 99.21% 
AUC score, surpassing other machine learning models in this study. Kafhali and Tayebi [48] also proposed a novel oversampling 
technique leveraging generative adversarial neural networks to address imbalanced datasets, outperforming established methods like 
SMOTE, Random Oversampling (ROS), and ADASYN. Their approach demonstrated superior performance in handling imbalanced 
issues in a real-world European credit card dataset when evaluated against three machine learning algorithms. Ranjit Panigrahi et al. 
[49] suggested a host-based intrusion detection method to solve the problem of imbalanced intrusion detection dataset. In the pre-
processing phase, they initially employed an enhanced random sampling technique to generate balanced samples from highly un-
balanced data sets. Subsequently, an improved multiclass feature selection process was used to filter the datasets. In the final stage, a 
merged tree construction technique built on a detector based on C4.5 was developed. According to the experimental findings, their 
suggested approach obtains high detection accuracy. 

In addition, there had been a number of research studies conducted on ensemble learning techniques. For example, Wang and Han 
[50] presented a model to anticipate credit card fraud based on integrated SVM and cluster analysis. Moreover, Bhanusri et al. [51] and 
Sellam et al. [52] executed different ML algorithms such as LR, NB, and RF with ensemble classifiers on an imbalanced dataset. 
Furthermore, Alfaiz and Fati [53] proposed a two-step credit card fraud detection method. The first step names the top three machine 
learning algorithms out of the nine. The second stage integrates the three best algorithms with nineteen resampling techniques. Each 
model in both phases was evaluated based on the AUROC curve, accuracy, recovery, precision, and F1 score. Padhi et al. [54] 
implemented six boosting techniques, that is, XGBoost, AdaBoost, Gradient Boosting, LightGBM, CatBoost, and Histogram-based 
Gradient Boosting, which were hybridized using a stacking framework to predict stock market direction across various datasets 
from different countries. Employing overfitting protection and evaluating with multiple metrics, the study suggests Meta-LightGBM as 
a promising predictive model with minimal training and testing accuracy differences, potentially offering investors a tool for risk 
control and short-term, sustainable profits. Last but not least, Nandi et al. [55] designed an ensemble multi-classifier system (MCS) 
model incorporating the behavior-knowledge space (BKS) for identifying credit card fraud. The authors measured the performance of 
their proposed approach with majority voting on publicly available real-world financial data sets. However, the issue of class 
imbalance in the dataset was not addressed by the authors. 

3. Problem motivation 

Considering the limitations mentioned in Section 2, the main contribution of this study is to propose a soft voting ensemble learning 
approach for the efficient detection of fraudulent transactions. Furthermore, this study investigates the challenges of dealing with an 
imbalanced dataset of credit card fraud countermeasures. The research objectives are as follows.  

• To investigate and analyze various machine learning algorithms to identify credit card fraud as accurately as possible.  
• To evaluate the proposed model by grouping the selected ML models into triples, known as the “soft voting ensemble learning 

approach”.  
• To achieve high prediction accuracy in fraud detection while concurrently minimizing misclassification costs.  
• To perform a comprehensive comparative analysis to determine the most effective classifier for credit card fraud detection. 

4. Materials and methods 

In this study, a soft voting ensemble learning approach is presented for identifying fraudulent cases in credit card transactions. The 
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approach is anticipated to be able to evaluate credit card transactions and determine whether they are legitimate or fraudulent. This 
section outlines the structure of the proposed system for detecting credit card fraud, including system architecture, feature scaling, 
sampling and scaling data, as well as ML algorithms. 

4.1. System architecture 

Fig. 1 presents the proposed system architecture for detecting credit card fraud using the ML models. First, the credit card dataset is 
preprocessed (i.e., class sampling and scaling data using standardization and normalization) in the data preprocessing phase. To detect 
fraudulent transactions, a set of experiments is performed to observe which one is best. Several ML classification algorithms have been 
applied to the original credit card fraud dataset. Furthermore, random undersampling, oversampling (e.g., SMOTE, ADASYN), and 
hybrid sampling (e.g., SMOTE-Tomek, SMOTE-ENN) techniques are used to deal with an imbalanced dataset. The steps involving the 
sampling methods are described in Section 3.3. 

Moreover, the proposed model is tested by combining the predictions of multiple classifiers, which is known as the ‘soft voting 
ensemble learning’ approach. In order to achieve the highest classification accuracy possible, it enables greater flexibility in the 
combination of strategies. The three independent models with the highest performance levels are combined using various method-
ologies to find the most viable combination. Combining more than three of the best-performing individual models adds time 
complexity while producing the same results [56]. The soft voting strategy initially assigns weights to each base classifier. It generates 
prediction probabilities for each test sample belonging to various classes during the testing phase. Later, these probabilities are 
multiplied with the weights assigned to each class label, and then they are averaged. Ultimately, test samples are grouped into the class 
with the highest average probability. Data samples are mathematically categorized by the soft voting technique as the argmax 
(argument of maxima) of the sum of assigned probabilities. The system architecture of the soft voting ensemble approach used in this 
study to detect credit card fraud is shown in Fig. 2. 

Fig. 1. System architecture for credit card fraud detection using ML techniques.  

Fig. 2. System Architecture of the proposed soft voting ensemble learning approach.  
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The pseudo-code of the proposed soft voting ensemble learning approach for identifying credit card fraud is presented in the 
following algorithm. 

Algorithm 1 
A soft voting ensemble learning approach for credit card fraud detection  

Input: The credit card fraud dataset 
Output: Prediction result (Legitimate/Fraud) 

Let’s the whole dataset consists of i instances and X features. 
The class variable is Y so labels_Yi = [2] 
Function F: X→ labels_Yi 
Procedure Split_data (dataset): 
#Split the dataset into training and testing data 

Training_data, Testing_data = split (dataset) 
Procedure datasampling (dataset): 
# Apply sampling technique to the dataset 

return sampled_dataset 
C1 = LR (Training_dataset, Testing_data) 
C2 = RF (Training_dataset, Testing_data) 
C3 = XGB (Training_dataset, Testing_data) 
C4 = SVM (Training_dataset, Testing_data) 
C5 = AdaBoost (Training_dataset, Testing_data) 
C6 = SGD (Training_dataset, Testing_data) 
C7 = MLP (Training_dataset, Testing_data) 
C8 = DT (Training_dataset, Testing_data) 
C9 = GNB (Training_dataset, Testing_data) 
C10 = GB (Training_dataset, Testing_data) 
C11 = KNN (Training_dataset, Testing_data) 
Procedure ensemble_model (Training_dataset, Testing_data): 
# Create instances of the three top-performing individual models 
model1 = C2 # For example, Random Forest 
model2 = C3 # For example, XGBoost 
model3 = C7 # For example, MLP 
# Fit each individual model on the training data 

model1.fit(Training_dataset, Testing_data) 
model2.fit(Training_dataset, Testing_data) 
model3.fit(Training_dataset, Testing_data) 

# Assign weights to models based on their performance with validation data 
weight_model1 = 0.4 
weight_model2 = 0.4 
weight_model3 = 0.2 
# Create a soft voting ensemble with the three models and weights 
ensemble = VotingClassifier(estimators=[ 

(’model1′, model1), 
(’model2′, model2), 
(’model3′, model3) 

], voting=’soft’, weights=[weight_model1, weight_model2, weight_model3]) 
# Fit the ensemble on the training data (no need to fit individual models again) 
Ensemble.fit (Training_dataset, Testing_data) 
# Make predictions using the ensemble 
Predictions = ensemble.predict (Testing_data) 
return Predictions 
# Usage of the ensemble model 
Sampled_data = datasampling(dataset) 
Training_data, Testing_data = Split_data(Sampled_data) 
predictions = ensemble_model(Training_data, Testing_data)  

4.2. Feature scaling 

Feature scaling is one of the most essential stages in the preprocessing of data before building a machine learning model [57]. The 
performance of a machine learning model heavily relies on proper scaling, as it impacts the separation between data points. For 
instance, in distance-based measurements, unscaled features with a larger value range can dominate the analysis [58]. Algorithms that 
demand quick convergence, such as neural networks, often necessitate feature scaling [59]. In this study, the StandardScaler method 
[60] was employed to rescale the credit card transaction dataset. This process standardizes each column to have a mean of 0 and a 
standard deviation of 1 by subtracting the mean and dividing by the standard deviation. Typically, the training dataset encompasses 
80% of the data, with the remaining 20% allocated to the testing dataset. These datasets are constructed using random sampling, where 
the dataset is shuffled, and 80% of the instances are randomly assigned to the training dataset, while the remaining 20% form the 
test/validation dataset. This randomization mitigates potential biases stemming from data ordering or patterns in the original dataset, 
ensuring the representativeness of both datasets. Subsequently, the model’s performance is assessed on the testing dataset, which 
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contains unseen data, providing an estimate of how well the model will perform on new, unseen instances. 

4.3. Sampling of credit card fraud data 

Imbalanced data typically alludes to situations when the classification of classes is not equally divided. When learning from skewed 
data, predictive performance suffers [61]. Furthermore, due to baseline classifiers’ preference for the majority class, the minority class 
(typically the class of interest) in the imbalanced dataset would be incorrectly categorized. A serious concern in the domain of fraud 
detection is a screwed-up class distribution. And the possible explanation is that the fraudulent class seems to be misclassified as 
"normal". Furthermore, classifiers that learn to always estimate the majority class could acquire 99 % accuracy. However, such 
classifiers are inadequate for identifying the fraud class. Nevertheless, while the fraud class has the highest cost of misclassification, 
classifiers often have poor accuracy when detecting fraud classes. 

The credit card transaction dataset is highly imbalanced, with legitimate cases at 284,315 and fraud cases at 492 (refer to Section 
5.1). There are numerous approaches available to overcome imbalanced learning problems, which are classified into two groups [62]: 
(i) data-level approach (data sampling), and (ii) algorithm-level approach (cost-sensitive learning). The data-level technique reba-
lances the distribution of classes by adjusting the class ratio. On the contrary, the algorithm-level method provides the classes with 
different weights (i.e., a higher cost to the class of interest). We emphasize data sampling techniques that increase data for the minority 
class (over-sampling), decrease data from the majority class (under-sampling), or do both (hybrid sampling). Hybrid methods combine 
the advantages of the two previous methods [63]. 

4.3.1. Under-sampling techniques 
The under-sampling technique reduces the quantity of observations from the majority class to have less of an impact on ML al-

gorithms while creating a balanced dataset [64]. When the dataset is massive, the approach performs best. Additionally, reducing the 
amount of training data eliminates the storage issue while also improving runtime. However, it may remove some significant instances 
from the dataset while decreasing the number of instances. 

The random under-sampling strategy identifies random instances from the majority class and eliminates them from the training 
dataset in such a way that the majority and minority class ratios become 1:1 [65]. For instance, there are 492 minority instances and 
284,315 majority instances in the credit card transaction dataset. We reduce it to 394 to maintain a 1:1 ratio by randomly deleting the 
majority class. 

4.3.2. Over-sampling techniques 
The over-sampling strategy increases the quantity of data available to the minority class, which has a greater impact on ML al-

gorithms [66]. To balance the data, it duplicates the observations from the minority class. It is sometimes referred to as "up-sampling." 
Oversampling has the advantage of causing no information or data loss. However, it could duplicate observations in the dataset, which 
eventually results in overfitting the dataset [67]. There are several sophisticated over-sampling methods, such as SMOTE and ADASYN.  

(a) Synthetic Minority Oversampling Technique (SMOTE): SMOTE is an oversampling approach that uses the K-Nearest 
Neighbor algorithm to produce synthetic data [68]. The overfitting problem due to random oversampling is reduced with the 
help of this technique. Through the use of interpolation between the positive instances that are close together, it concentrates on 
the feature space to produce new instances [69].  

(b) Adaptive Synthetic Sampling Approach (ADASYN): ADASYN generates synthetic data based on the density of the data [70]. 
The density of the minority class has an inverse relationship with the development of synthetic data [71]. In low-density 
minority-class areas, a disproportionately larger amount of synthetic data is generated than in higher-density areas. In other 
words, more synthetic data is created in the less dense areas of the minority class [72]. 

4.3.3. Hybrid sampling techniques 
The classification techniques could not be directly implemented on the skewed dataset [73]. Hence, the unbalanced dataset must be 

converted into a balanced dataset. It is possible to achieve this through the use of hybrid sampling. If classification models are per-
formed precisely on an unbalanced dataset in which samples from one class are much larger than samples from another class, then the 
predictions may be biased more towards the majority class [74]. In this scenario, the predicted outcome could be inaccurate. 

An imbalanced dataset can be converted into a balanced dataset using a variety of techniques. Hybrid data sampling is one of the 
most widely used techniques. There are two techniques available combining over and under-sampling, which makes them hybrid 
methods [75], such as SMOTE-Tomek and SMOTE-ENN.  

(a) Synthetic Minority Oversampling Technique and Tomek (SMOTE-Tomek): SMOTE method generates random samples by 
inserting additional points within marginal outliers and inliers [76]. This problem can be fixed by clearing the space left behind 
after oversampling. Regarding this, Tomeklink is used to clean the space [77].  

(b) Synthetic Minority Oversampling Technique and Edited Nearest Neighbor (SMOTE-ENN): SMOTE is a well-known 
oversampling technique that could be combined with some under-sampling approaches. The ENN approach is a prominent 
under-sampling strategy. The concept of SMOTE-ENN is over-sampling using SMOTE and cleaning using ENN. 
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To understand the concepts of Tomek and ENN, let us consider an example. Assume that two data points a and b are from separate 
classes, and m (a, b) is the distance between a and b. If there is no data c, such that m (a, c) < m (a, b) or m (b, c) < m (b, a), the pair (a, 
b) is a Tomek. If two data samples form a Tomek, then one of them is either noise or borderline. In this approach, instead of merely 
eliminating data from Tomek’s majority class, data from both classes is eliminated. On the contrary, ENN eliminates data whose class 
differs from the majority of its k-nearest neighbors and continues to remove data until the remaining dataset is at a minimum [78]. 
ENN removes more occurrences than Tomek. Consequently, it is thought to provide more comprehensive data cleaning in depth. 

4.4. Machine learning algorithms 

There are several machine learning algorithms available to detect counterfeit fraud in a particular domain. For our proposed credit 
card fraud detection model, we choose the following algorithms. 

4.4.1. Logistic regression (LR) 
Logistic regression (LR), a supervised classification technique, returns the probability of a binary dependent variable that is esti-

mated from an independent variable in the dataset. It is a regression model that explores the interaction between several independent 
variables and has a categorical dependent variable. The probability of an outcome with the two possible values of zero or one, yes or no, 
and false or true is predicted using LR. There are several LR models available, including binary logistic, multiple logistic, and binomial 
logistic. 

LR is different from linear regression. For instance, linear regression yields a straight line, whereas LR displays a curve. Further-
more, LR generates logistic curves that depict values between zero and one depending on the number of predictors or independent 
variables used. 

4.4.2. Random forest (RF) 
Random Forest (RF) is one of the most frequently used ML algorithms in both developed models and real-world instances. It 

randomly selects features that are independent variables. Additionally, the rows are chosen at random using row sampling, and 
hyperparameter optimization is used to calculate the size of the decision tree. The outcome of a classification problem is the maximum 
occurrence output from each Decision Tree (DT) model inside the RF. The root node is generated randomly in RF. This is the 
fundamental difference between random forest and the traditional DT algorithm. 

4.4.3. eXtreme gradient boosting (XGBoost) 
XGBoost has been extensively utilized in many domains to obtain state-of-the-art outcomes on various data challenges. It is a very 

efficient and scalable ML algorithm for tree boosting. The basic idea of “boosting” is to merge a sequence of weak classifiers with low 
accuracy to develop a strong classifier with improved classification performance. 

4.4.4. Support vector machine (SVM) 
SVM is a prominent supervised learning technique for analyzing data used for classification and regression. SVM modeling consists 

of two steps: first, training a dataset to produce a model; and second, using this model to predict information from a testing dataset. 
SVM is a discriminative classifier that may be expressed theoretically by a separating hyperplane. The model represents the training 
data points as points in space, and the mapping is then performed to partition the points that belong to distinct classes by as large a 
distance as possible. New data points are mapped onto the same space, and their location inside the gap is predicted. 

4.4.5. Adaptive boosting (AdaBoost) 
Boosting is an ensemble modeling strategy that aims to generate a strong classifier from a collection of weak ones. In this method, 

models are added repeatedly until either the whole training data set is correctly predicted or the maximum number of models is 
reached. AdaBoost was the first effective boosting technique designed for binary classification. It is an abbreviation for "adaptive 
boosting," which is a prominent boosting strategy that combines numerous poor classifiers into a single effective classifier. 

4.4.6. Stochastic gradient descent (SGD) 
SGD is a popular optimization technique in ML applications for determining model parameters that correspond to the best fit 

between expected and actual outputs. The term "stochastic" refers to a system or process connected with a random probability. SGD is 
an iterative approach to improving the smoothness of an objective function. For each iteration, SGD takes a few samples at random 
rather than the whole data set. 

4.4.7. Multilayer perceptron (MLP) 
MLP is a type of feedforward artificial neural network that generates a set of results based on a set of inputs. MLP is used to refer to 

any transitional ANN, but it is also used explicitly to refer to networks consisting of multiple layers of perceptrons. MLP is characterized 
by many layers of input nodes connected as directed graphs between the input and output layers. 

4.4.8. Decision tree (DT) 
DT is applied to the applications of classification and regression. The working method is the same for both, although certain 

formulas differ. Entropy and information gain are used to build the DT model for classification issues. Entropy indicates how randomly 
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data is distributed, whereas information gain reveals how much knowledge we might get from a given attribute or feature. The DT 
model for regression is built using the Gini and Gini indexes. When solving classification problems, the root node is selected based on 
information gain, which prioritizes nodes with high information gain and low entropy. Furthermore, the feature with the least Gini is 
preferred as the root when solving regression problems. The hyperparameter optimization approach is used to compute the depth of 
the tree using a grid search cross-validation procedure. 

4.4.9. Gaussian Naive Bayes (GNB) 
GNB is a variant of Naive Bayes (NB) that applies the Gaussian normal distribution and works with continuous data. NB is a group of 

supervised ML classification algorithms based on the Bayes theorem. It is a simple classification method with high functionality. GNB 
accepts continuous-valued features and models each as a Gaussian (normal) distribution. 

4.4.10. Gradient boosting (GB) 
GB is a greedy approach that can quickly overfit a training dataset. GB is a machine learning boosting technique that represents a 

decision tree for vast and complicated data. As we all know, ML algorithm errors are widely categorized into two types: bias errors and 
variance errors. As one of the boosting strategies, GB is used to decrease the model’s bias error. GB can predict both continuous target 
variables (as a regressor) and categorical target variables (as a classifier). The cost function is Mean Square Error (MSE) when it is used 
as a regressor, but Log loss when it is used as a classifier. 

4.4.11. K-nearest neighbor (KNN) 
KNN is a straightforward technique that reserves all existing instances and identifies new instances based on the majority vote of its 

K-neighbors. The instance is assigned to the class because it has the highest frequency of occurrence among its KNN, as determined by a 
distance function. 

4.4.12. Ensemble techniques 
The ensemble technique is a general meta-approach in machine learning that creates numerous models and then combines them to 

achieve the best outcomes [79]. Ensemble approaches often generate more accurate results than a single model. Boosting, bagging, and 
stacking are the most prevalent ensemble techniques. Ensemble techniques are effective for regression and classification because they 
decrease bias and variance while improving model accuracy [80]. 

5. Experimental findings, comparative analysis, and discussion 

This section describes how the proposed model performs on the credit card dataset to identify fraudulent transactions. 

5.1. Dataset description 

We apply the proposed credit card fraud detection approach to a publicly available, processed real-world dataset [81]. The dataset 
consists of a collection of credit card transactions made by European cardholders on two separate days in September 2013. Andrea Dal 
Pozzolo and his colleagues collected and evaluated the data as part of research cooperation between World Line and the Machine 
Learning group at ULB (University Libre de Bruxelles) on big data mining and fraud detection [82]. 

Table 1 
Dataset details.  

Transactions Legitimate Fraudulent Features Classes 

284,807 284,315 492 30 2  

Fig. 3. Analysis of valid and fraud transactions (0: valid and 1: fraud).  
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Fig. 4. Histogram for feature time and other features (e.g., v1 to v28).  

Fig. 5. Heatmap.  
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In the dataset, there are 492 frauds out of 284,807 transactions that occurred in the last two days of September 2013, as shown in 
Table 1. The dataset is highly imbalanced, with the positive class (fraud) accounting for just 0.173 % of all transactions (see Fig. 3). 
There are in total 31 variables that have been analyzed, with three variables unaltered (i.e., Time, Amount, and Class) and the remaining 
28 variables provided as V1, V2, …, and V28 with their altered values using Principal Component Analysis (PCA) due to confidentiality 
concerns. Time presents the distance between the initial transaction and the following transaction, as well as any time limits or var-
iations between the two. Amount is the amount of money used during the transaction. Class has two values: 0 and 1; 0 signifies a 
genuine transaction, whereas 1 denotes a fraudulent one. 

Fig. 4 shows the histogram of each column in the dataset, and Fig. 5 represents a heatmap indicating a strong correlation matrix 
between different variables in the dataset. Furthermore, it shows the characteristics that are essential for the overall categorization. We 
observe that some of the feature values are nearly zero. This means there is no strong relationship found between different V pa-
rameters. Moreover, the important thing is to focus on the Class attribute of the dataset. In Fig. 5, the lighter blue indicates a positive 
correlation, whereas the deep blue represents a strong negative correlation. For example, V11 would be a stronger positive correlation, 
whereas V17 would be a stronger negative correlation. 

5.2. Performance metrics 

Since it has a considerably higher misclassification cost, the present study places emphasis on the suspicious class (i.e., fraud) in the 
fraud detection domain. Many performance metrics are employed to evaluate the performance of the proposed model. It is inap-
propriate to evaluate the performance of the model only by accuracy, as the dataset utilized in this study is highly skewed. Hence, the 
following quality measurements (including accuracy) are considered in the present study to obtain further insights into the results 
given by each classifier.  

• Accuracy: The accuracy of a classifier determines how correctly the classifier categorizes the training tuple. Predicting the class 
label of tuples is the purpose of this measurement, and the testing sets of the classifier estimate its accuracy. An accuracy value is 
generated by dividing the number of observations that were successfully predicted by the total number of observations. It is the 
most intuitive performance indicator. Accuracy is measured by using the following formula, Eq. (1): 

Accuracy=
TP + TN

TP + FP + TN + FN
(1)    

• Precision: Precision is the number of True Positives divided by the number of True Positives (TP) and False Positives (FP). The 
percentage of tuples classified as positive depends on precision, which is a measure of exactness. In fraud detection, precision is 
important because it indicates how many of the predicted fraud cases are actually fraud. Precision is measured by the following 
formula, Eq. (2): 

Precision (P)=
TP

TP + FP
(0 < P < 1) (2)    

• Recall: Recall is the number of True Positives (TP) divided by the total number of True Positives (TP) and False Negatives (FN). 
Recall is also known as the “True Positive Rate” or “Sensitivity”. Recall is a measure of thoroughness that determines how many 
positive tuples were identified. In fraud detection, recall is crucial because it indicates the proportion of actual fraud cases that are 
correctly identified. Recall is expressed as follows in Eq. (3): 

Recall (R)=
TP

TP + FN
(0 < R < 1) (3)    

• F1 Score: F1-score is the weighted average of precision and recall. It provides a balance between precision and recall. F1-Score is 
especially useful when there is a significant class imbalance, as it considers both false positives and false negatives. It can be 
measured using Eq. (4): 

F1 − Score=
2 ∗ Precision ∗ Recall

Precision + Recall
(4) 

In this study, recall is given more emphasis as it shows how sensitive the classifier is to detecting fraudulent transactions. Addi-
tionally, the area under the receiver operating characteristic curve (AUROC) measures the model’s accuracy in distinguishing between 
the two classes of data observations. AUROC scores for credit card records range from 0.50 to 1.00, where a score of 0.50 represents a 
random classifier and a score of 1.00 indicates a perfect classifier. AUROC scores above 0.80 are generally considered indicative of a 
competent classifier. This means that the classifier has a good ability to distinguish between fraudulent and non-fraudulent trans-
actions, demonstrating a high level of predictive accuracy. 

In addition, we examine the misclassification rate of fraudulent classes by FNR and FPR. As a key performance indicator, the 
misclassification rate indicates the rate of incorrect predictions without distinguishing between positive and negative outcomes. 
Accurately predicting fraudulent transactions is critical for detecting credit card fraud. Therefore, the best model with the lowest FNR 

M. Azim Mim et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e25466

11

(number of fraudulent transactions considered legitimate transactions) and highest recall is selected for this study. Furthermore, 
receiver operating characteristics (ROC) representing the value of TPR as a function of FPR for different cut-off points are analyzed. A 
point on the ROC curve indicates sensitivity/specificity pairs corresponding to decision thresholds. 

5.3. Comparative analysis and discussion 

In the present study, different ML algorithms are initially applied to the original (highly imbalanced) credit card dataset. Then we 
consider random under-sampling, SMOTE, ADASYN, SMOTE-Tomek, and SMOTE-ENN, respectively, as under-sampling, over-
sampling, and hybrid sampling techniques for the credit card dataset. Five sampling techniques listed in Table 2 are applied, and as a 
consequence, five separate credit card training datasets of different sizes are produced. 

A comparative analysis of eleven ML models with and without the sampling technique is presented in Table 3. Our study has 
revealed that RF excels in precision, achieving the highest value of 0.9868 and simultaneously minimizing the FPR to 0.0000 on the 
original dataset. Additionally, RF achieves the highest F1-score of 0.8677 when utilizing the SMOTE-Tomek hybrid sampled dataset. 
Furthermore, MLP exhibits superior discrimination capabilities, with the highest AUROC value of 0.9881 when utilizing the SMOTE 
oversampled dataset. This emphasizes MLP’s ability to accurately discriminate between legitimate and fraudulent transactions. For the 
under-sampled dataset, XGBoost stands out with the highest recall of 0.9388, indicating its exceptional ability to capture a significant 
proportion of actual fraud cases while keeping the FNR at a low value of 0.0612. This underscores the effectiveness of XGBoost in 
reducing the risk of missing fraudulent transactions in scenarios with imbalanced classes. In this study, recall is prioritized as a crucial 
metric, emphasizing the sensitivity of classifiers in detecting fraudulent transactions. Our findings highlight the exceptional perfor-
mance of XGBoost, securing the highest recall values and minimizing the FNR, as detailed in Table 3. 

In our continuous pursuit of optimizing model performance, the ensemble-based soft-voting approach is applied to the same 
datasets using three distinct voting classifier (VC) combinations, incorporating the top-performing classifiers, namely XGBoost, RF, 
MLP, and KNN. Table 4 presents a comparative analysis of the soft-voting ensemble learning approach for both original imbalanced 
and sampled datasets. In the soft voting strategy, the voting classifier (VC1), a combination of RF, XGBoost, and MLP, achieves the 
highest AUROC of 0.9936 for the ADASYN oversampled dataset. VC2 (RF, XGBoost, KNN) provides the highest precision and F1-score 
of 0.9870 and 0.8764 respectively, and also coupled with FPR of 0.0000 for the original dataset. VC3 (XGBoost, MLP, and KNN) excels 
in recall with a value of 0.9694 and maintains the lowest FNR of 0.0306 for the under-sampled dataset. The results of soft voting 
classifiers (refer to Table 4) yield substantial improvements, surpassing the individual classifiers (refer to Table 3) in terms of all the 
performance matrices. The performance analysis bar charts of different classifiers on both the imbalanced and sampled datasets are 
shown in Fig. 6, while the ROC curve graphs are depicted in Fig. 7. 

To demonstrate the significance of our work, the proposed soft-voting approach is compared with previous studies considering the 
same dataset (see Table 5). It is observed that our proposed model outperforms existing methods in terms of precision, F1 score, 
AUROC, and recall. These metrics are of paramount importance in fraud detection, ensuring an effective ability to identify and prevent 
fraudulent activities. It is worth noting that our current study does not outperform other models in terms of accuracy, despite its 
remarkable performance. The accuracy metric, when dealing with a highly imbalanced dataset such as the credit card dataset, can be 
misleading. Therefore, it is essential to consider a broader range of performance metrics, including FNR, FPR, precision, F1 score, 
recall, and AUROC. 

5.4. Statistical test 

In contemporary computer science practice, researchers must determine whether or not the obtained improvements are statistically 
significant, since the experimental outcomes are usually insufficient to state that one algorithm performs better when compared to 
other competitors. In this paper, the Friedman test [83] is used to determine the statistical significance of the proposed soft voting 
approach (VC1, VC2, and VC3) over other individual ML algorithms (i.e., XGBoost, because it outperforms other ML algorithms in 
terms of recall and FNR). The evaluation metrics considered for each classifier include accuracy, precision, F1-score, recall, AUROC, 
FNR, and FPR. The Friedman test results on various datasets employing different sampling techniques are reported in Table 6. The 
original dataset yields a significant Chi-squared statistic of 24.0000 with a corresponding P-value of 0.0005. The under-sampled 
dataset exhibits a Chi-squared statistic of 20.0357 and a p-value of 0.0027, indicating a statistically significant difference. The 
over-sampled datasets, utilizing SMOTE and ADASYN techniques, both display a Chi-squared statistic of 22.7143 with P-values of 
0.0009. Similarly, the hybrid sampled datasets (SMOTE-Tomek and SMOTE-ENN) show a Chi-squared statistics of 22.1786 and 
24.0000, respectively, with corresponding P-values of 0.0011 and 0.0005. 

Table 2 
Sampling of credit card dataset.  

Method Type Legitimate Instances Fraudulent Instances New Total Instances 

Random Under-sampling Under-sampling 394 394 788 
SMOTE Over-sampling 227,451 227,451 454,902 
ADASYN Over-sampling 227,451 227,373 454,824 
SMOTE-Tomek Hybrid-sampling 226,808 226,808 453,616 
SMOTE-ENN Hybrid-sampling 227,451 218,649 446,100  
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Table 3 
Comparative analysis of ML classifiers.  

Classifier Datasets Sampling Techniques 
Used? 

Sampling 
Techniques 

Accuracy Precision F1- 
score 

Detection Rate Misclassification 
Rate 

Recall AUROC FNR FPR 

LR Original No No 0.9991 0.8636 0.6951 0.5816 0.9747 0.4184 0.0002 
Under- 
sampled 

Yes Random- 
Sampling 

0.9502 0.0308 0.0596 0.9184 0.9712 0.0816 0.0498 

Over-sampled Yes SMOTE 0.9826 0.0814 0.1491 0.8878 0.9770 0.1122 0.0173 
ADASYN 0.9799 0.0718 0.1330 0.8980 0.9299 0.1020 0.0200 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9835 0.0857 0.1563 0.8878 0.9071 0.1122 0.0163 
SMOTE-ENN 0.9675 0.0452 0.0860 0.8878 0.9620 0.1122 0.0323 

RF Original No No 0.9996 0.9868 0.8621 0.7653 0.9525 0.2347 0.0000 
Under- 
sampled 

Yes Random- 
Sampling 

0.9759 0.0620 0.1161 0.9184 0.9795 0.0816 0.0240 

Over-sampled Yes SMOTE 0.9995 0.8723 0.8542 0.8367 0.9650 0.1633 0.0002 
ADASYN 0.9995 0.8646 0.8557 0.8469 0.9700 0.1531 0.0002 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9996 0.9011 0.8677 0.8367 0.9791 0.1633 0.0002 
SMOTE-ENN 0.9995 0.8542 0.8454 0.8367 0.9857 0.1633 0.0002 

XGBoost Original No No 0.9996 0.9620 0.8588 0.7755 0.9811 0.2245 0.0001 
Under- 
sampled 

Yes Random- 
Sampling 

0.9610 0.0399 0.0766 0.9388 0.9825 0.0612 0.0389 

Over-sampled Yes SMOTE 0.9994 0.8000 0.8276 0.8571 0.9860 0.1429 0.0004 
ADASYN 0.9994 0.8137 0.8300 0.8469 0.9827 0.1531 0.0003 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9994 0.8283 0.8325 0.8367 0.9835 0.1633 0.0003 
SMOTE-ENN 0.9993 0.7830 0.8137 0.8469 0.9847 0.1531 0.0004 

SVM Original No No 0.9993 0.9683 0.7578 0.6224 0.5000 0.3776 0.0000 
Under- 
sampled 

Yes Random- 
Sampling 

0.4841 0.0019 0.0039 0.5816 0.5494 0.4184 0.5161 

Over-sampled Yes SMOTE 0.4854 0.0013 0.0027 0.3980 0.4723 0.6020 0.5144 
ADASYN 0.4622 0.0015 0.0029 0.4592 0.4701 0.5408 0.5378 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.4851 0.0013 0.0027 0.3980 0.4723 0.6020 0.5147 
Yes SMOTE-ENN 0.4634 0.0014 0.0028 0.4388 0.5279 0.5612 0.5366 

AdaBoost Original No No 0.9993 0.8554 0.7845 0.7245 0.9779 0.2755 0.0002 
Under- 
sampled 

Yes Random- 
Sampling 

0.9451 0.0283 0.0550 0.9286 0.9798 0.0714 0.0549 

Over-sampled Yes SMOTE 0.9866 0.1074 0.1926 0.9286 0.9644 0.0714 0.0133 
ADASYN 0.9987 0.5950 0.6575 0.7347 0.9611 0.2653 0.0009 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9871 0.1104 0.1972 0.9184 0.9822 0.0816 0.0127 
SMOTE-ENN 0.9874 0.1135 0.2022 0.9286 0.9827 0.0714 0.0125 

SGD Original No No 0.9989 0.8333 0.5921 0.4592 0.5000 0.5408 0.0002 
Under- 
sampled 

Yes Random- 
Sampling 

0.9816 0.0021 0.0038 0.0204 0.5000 0.9796 0.0168 

Over-sampled Yes SMOTE 0.9845 0.0811 0.1469 0.7755 0.8500 0.2245 0.0151 
ADASYN 0.9982 0.1250 0.0189 0.0102 0.5100 0.9898 0.0001 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9950 0.1655 0.2447 0.4694 0.9200 0.5306 0.0041 
SMOTE-ENN 0.0026 0.0017 0.0034 1.0000 0.8750 0.0000 0.9991 

MLP Original No No 0.9995 0.8864 0.8387 0.7959 0.9694 0.2041 0.0002 
Under- 
sampled 

Yes Random- 
Sampling 

0.9443 0.0089 0.0173 0.2857 0.6835 0.7143 0.0546 

Over-sampled Yes SMOTE 0.9852 0.0984 0.1779 0.9286 0.9881 0.0714 0.0147 
ADASYN 0.9935 0.1955 0.3204 0.8878 0.9747 0.1122 0.0063 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9952 0.2507 0.3910 0.8878 0.9825 0.1122 0.0046 
SMOTE-ENN 0.9890 0.1255 0.2206 0.9082 0.9855 0.0918 0.0109 

DT Original No No 0.9992 0.7477 0.7805 0.8163 0.9079 0.1837 0.0005 
Under- 
sampled 

Yes Random- 
Sampling 

0.8905 0.0142 0.0281 0.9184 0.9044 0.0816 0.1095 

Over-sampled Yes SMOTE 0.9979 0.4405 0.5564 0.7551 0.8167 0.2449 0.0017 
ADASYN 0.9978 0.4167 0.5396 0.7653 0.8417 0.2347 0.0018 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9977 0.4134 0.5343 0.7551 0.8766 0.2449 0.0018 
SMOTE-ENN 0.9977 0.4130 0.5390 0.7755 0.8868 0.2245 0.0019 

GNB Original No No 0.9778 0.0604 0.1124 0.8163 0.9671 0.1837 0.0219 
Under- 
sampled 

Yes Random- 
Sampling 

0.9840 0.0744 0.1350 0.7245 0.9675 0.2755 0.0155 

Over-sampled Yes SMOTE 0.9922 0.1429 0.2375 0.7041 0.9199 0.2959 0.0073 
ADASYN 0.9918 0.1409 0.2365 0.7347 0.9110 0.2653 0.0077 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9923 0.1437 0.2388 0.7041 0.9200 0.2959 0.0072 
SMOTE-ENN 0.9924 0.1459 0.2417 0.7041 0.9600 0.2959 0.0071 

GB Original No No 0.9989 0.7375 0.6629 0.6020 0.7855 0.3980 0.0004 
Under- 
sampled 

Yes Random- 
Sampling 

0.9616 0.0404 0.0775 0.9387 0.9808 0.0611 0.0384 

(continued on next page) 
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This finding indicates that there is a statistically significant difference in performance across at least one performance metric among 
the classifiers. The Friedman p-value, which is below the conventional significance threshold of 0.05, provides evidence to reject the 
null hypothesis (H0), suggesting that the performance of the proposed soft voting method is statistically significant compared with 
other individual algorithms. In summary, the Friedman Test results reveal statistically significant differences between XGBoost and VC 
(VC1, VC2, and VC3) for the five sampled datasets. These findings provide valuable insights into the performances of XGBoost and VC 
across diverse sampling strategies. Additionally, the significance of these results emphasizes the importance of considering different 
sampling methods in the evaluation and deployment of machine-learning models for imbalanced classification tasks. 

6. Conclusion 

Undoubtedly, credit card fraud is a significant concern for all financial firms. The European credit card holder dataset is an 
excellent example of a skewed dataset because the majority of entries represent valid transactions and only a small portion mark 
fraudulent actions. Therefore, it is not accurate to evaluate the performance of classifiers based only on accuracy. Our findings 
highlight the effectiveness of precision, recall, F1-score, AUROC, and FNR as critical evaluation metrics. We apply eleven machine 
learning algorithms and three soft-voting classifiers on both the original imbalanced and sampled datasets, as outlined in our meth-
odology. Therefore, by prioritizing precision, recall, F1-score, AUROC while minimizing the FNR, the proposed ensemble-based soft- 
voting method outperforms individual ML classifiers for each evaluation metric. Finally, a statistical test is performed to confirm the 
significance of outcomes. These results emphasize the pivotal role of model selection and ensemble methods in enhancing fraud 
detection in real-world scenarios. The approach we develop enables authorities to get notified of credit card fraud and take the 
appropriate steps to investigate the transaction, and classify it as either fraudulent or legitimate. The implications of this study will 
contribute significantly to advancing security measures and risk mitigation in the financial industry. 

Limitations and future work 

Despite the outstanding outcomes of our proposed methodology, certain drawbacks should be addressed in the future. This study is 
limited to the European credit card dataset (2013), but it could be more comprehensive if it includes recent credit card datasets such as 
the European dataset (2022), UCI dataset, and IEEE-CIS dataset. In further research, it is suggested that hyperparameters be tuned 
using metaheuristic techniques in combination with a deep neural network model to identify fraudulent transactions. Furthermore, it 
would be pertinent to compare the trade-off to other methods, particularly the computational complexity of the models. The findings of 
this study should be further validated in real-world financial settings to ensure practical effectiveness. Additionally, researchers could 
explore post-hoc tests to identify which specific sampling methods differ from each other. 

Data availability 

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud, last accessed on December 24, 2023. 
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Table 3 (continued ) 

Classifier Datasets Sampling Techniques 
Used? 

Sampling 
Techniques 

Accuracy Precision F1- 
score 

Detection Rate Misclassification 
Rate 

Recall AUROC FNR FPR 

Over-sampled Yes SMOTE 0.9941 0.2131 0.3444 0.8980 0.9744 0.1020 0.0057 
ADASYN 0.9938 0.2051 0.3340 0.8980 0.9847 0.1020 0.0060 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9939 0.2052 0.3333 0.8878 0.9646 0.1122 0.0059 
SMOTE-ENN 0.9941 0.2112 0.3412 0.8878 0.9863 0.1122 0.0057 

KNN Original No No 0.9995 0.9383 0.8492 0.7755 0.9336 0.2245 0.0001 
Under- 
sampled 

Yes Random- 
Sampling 

0.6723 0.0032 0.0063 0.6020 0.6656 0.3980 0.3276 

Over-sampled Yes SMOTE 0.9495 0.0190 0.0368 0.5612 0.7681 0.4388 0.0498 
ADASYN 0.9470 0.0178 0.0345 0.5510 0.7625 0.4490 0.0523 

Hybrid- 
sampled 

Yes SMOTE-Tomek 0.9496 0.0191 0.0369 0.5612 0.7687 0.4388 0.0498 
SMOTE-ENN 0.9288 0.0140 0.0273 0.5816 0.7546 0.4184 0.0706  
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Table 4 
Comparative analysis of soft-voting classifiers.  

Strategy Voting Classifier (VC) Dataset Sampling Techniques Accuracy Precision F1-score Detection Rate Misclassification Rate 

Recall AUROC FNR FPR 

Soft-Voting VC1 (RF, XGBoost, MLP) Original No 0.9996 0.9747 0.8701 0.7857 0.9807 0.2143 0.0000 
Under-sampled Random-Sampling 0.9902 0.1395 0.2418 0.9082 0.9794 0.0918 0.0097 
Over-sampled SMOTE 0.9993 0.7727 0.8173 0.8673 0.9893 0.1327 0.0004 

ADASYN 0.9994 0.8000 0.8276 0.8571 0.9936 0.1429 0.0004 
Hybrid-sampled SMOTE-Tomek 0.9994 0.8058 0.8259 0.8469 0.9848 0.1531 0.0004 

SMOTE-ENN 0.9993 0.7679 0.8190 0.8776 0.9862 0.1224 0.0005 
VC2 (RF, XGBoost, KNN) Original No 0.9996 0.9870 0.8764 0.7959 0.9817 0.2041 0.0000 

Under-sampled Random-Sampling 0.9696 0.0507 0.0962 0.9388 0.9763 0.0612 0.0303 
Over-sampled SMOTE 0.9996 0.9121 0.8783 0.8469 0.9782 0.1531 0.0001 

ADASYN 0.9996 0.9121 0.8783 0.8469 0.9724 0.1531 0.0001 
Hybrid-sampled SMOTE-Tomek 0.9996 0.9022 0.8737 0.8469 0.9706 0.1531 0.0002 

SMOTE-ENN 0.9995 0.8485 0.8528 0.8571 0.9770 0.1429 0.0003 
VC3 (XGBoost, MLP, KNN) Original No 0.9996 0.9625 0.8652 0.7857 0.9820 0.2143 0.0001 

Under-sampled Random-Sampling 0.6261 0.0044 0.0088 0.9694 0.9661 0.0306 0.3745 
Over-sampled SMOTE 0.9988 0.6115 0.7173 0.8673 0.9755 0.1327 0.0009 

ADASYN 0.9994 0.7850 0.8195 0.8571 0.9743 0.1429 0.0004 
Hybrid-Sampled SMOTE-Tomek 0.9890 0.1213 0.2128 0.8673 0.9738 0.1327 0.0108 

SMOTE-ENN 0.9990 0.6667 0.7500 0.8571 0.9797 0.1429 0.0007  
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Fig. 6. Performance analysis bar chart of eleven ML and three soft-voting classifiers on the (a) Original imbalanced dataset, (b) Under-sampled 
dataset, (c) SMOTE-oversampled dataset, (d) ADASYN-oversampled dataset, (e) SMOTE-Tomek hybrid sampled dataset, (f) SMOTE-ENN hybrid 
sampled dataset. 
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Fig. 7. ROC curve for comparing the performance of ML and soft-voting classifiers on the (a) Original imbalanced dataset, (b) Under-sampled 
dataset, (c) SMOTE-oversampled dataset, (d) ADASYN-oversampled dataset, (e) SMOTE-Tomek hybrid sampled dataset, (f) SMOTE-ENN hybrid 
sampled dataset. 
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