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Abstract

Background: The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to
external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes),
are particularly influenced by surrounding temperatures.

Methodology/Principal Findings: By comparing the development and growth of two genotypes of coho salmon (wild-type
and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8u and
18uC, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection.
Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric
analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival
rates of both genotypes occurred at 12uC. At lower temperatures, eggs containing embryos with enhanced GH production
hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16uC. GH
transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild
genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the
growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves.

Conclusions: Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide
range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH
transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes
suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic
fish would be expected to differentially respond and adapt to shifts in environmental conditions compared with wild type,
influencing their ability to survive and interact in ecosystems. Understanding these relationships would assist environmental
risk assessments evaluating potential ecological effects.
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Introduction

Growth of organisms arises as a net outcome of numerous

behavioural and physiological functions and is influenced by

variables such as food intake, digestion, absorption, and

assimilation, as well as metabolic expenditure and excretion.

The physiological limitations to growth are in turn strongly

influenced by both biotic factors, such as the size of the individual

and the availability of nutrition, and by abiotic factors, such as day

length and temperature [1].

Poikilotherms, such as most fish, have limited biological means

to control and regulate body temperature. Consequently they are

particularly affected by thermal conditions which influence their

metabolic rate and oxygen consumption, growth and other

physiological characteristics [2,3,4,5]. Since ambient temperatures

vary both daily and seasonally, poikilotherms are often within a

temperature regime that is not optimal for all functions. Hence

these organisms have developed mechanisms to survive various

thermal conditions both above and below optimal ranges [3,6].

The nervous and endocrine systems are major signalling

pathways between external cues, such as the ambient temperature,

and internal physiology responding to environmental changes [7].

Hormones, the chemical messengers of the endocrine system, exert

profound effects on organisms’ physiology and behaviour and are

able to act simultaneously on many target tissues, including the

brain [8]. Thus, it is not surprising that the neuroendocrine
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machinery, more than any other physiological system, is critically

involved in the evolution of entire suites of complex adaptive traits

[9]. In general, hormonal control systems are rather complicated,

including multiple levels of hierarchical control, negative and

positive feedback loops and numerous signal substances. Conse-

quently, an alteration in the secretion of one hormone not only

affects the parameters of one control system but also others, and

can have pleiotropic effects on many bodily functions [10].

Growth hormone (GH) is a principal regulator of somatic

growth in vertebrates, being produced in the pituitary gland and

regulated by neuroendocrine controls integrating external envi-

ronmental (e.g. increased daylength and temperature in the spring)

and internal metabolic (e.g. energy status) signals. GH has major

metabolic effects on lipid mobilization and protein accretion,

increases gluconeogenesis, and enhances feed intake and conver-

sion during growth [11,12], in part mediated by insulin-like

growth factors (IGF). In addition to the direct effect on growth

regulation, GH has been shown to increase feeding behaviour in

fish [11], however is not known whether this occurs by direct

action on the central nervous system or indirectly through

metabolic or downstream endocrine targets [12,13]. It has been

suggested that GH may pass through the blood-brain barrier and

stimulate its own receptor in the CNS, affecting neuroendocrine

secretion of appetite by regulating peptides such as neuropeptide

Y, bombesin, and cholecystokinin [14].

Transgenic animals can be useful models for studying long-term

functional effects of neuroendocrine systems without applying

invasive procedures to the test organism. In this way, transgenic

model organisms increase the possibility to examine the costs and

benefits of increased production of hormones without treatment

effects such as repeated hormone injections [15,16]. Studying GH-

transgenic organisms also provides an opportunity to investigate

how changes in growth hormone axis alter fish development,

growth, and morphometrics.

Growth hormone transgenic salmon constitutively expressing

GH in non-pituitary tissues show elevated plasma GH levels,

earlier fry emergence dates and increased daily specific growth

rates compared to wild-type under hatchery-conditions

[15,17,18,19,20,21]. The significantly increased growth rate of

GH transgenic fish is associated with strongly elevated appetite

and feed intake, and feed conversion efficiency relative to wild-

type [19,21,22,23,24]. Consequently, when fed to satiation,

transgenic individuals of the same age as wild-type are much

larger [17,20]. GH-transgenic salmon also demonstrate greater

general activity and, because of the increased drive to forage, are

more willing to take risks [22,25,26,27].

Many aquatic habitats are presently experiencing environmental

shifts which may influence the rate of growth and maturation of

animals, with consequences for fitness and further effects on

ecosystems. Studying growth in different thermal conditions provides

insights into the possible changes in and effects on physiological

parameters (such as GH production and physiological effects) under

changing ecological conditions. In the present study, the develop-

mental rate and growth rates of wild-type and GH-transgenic coho

salmon at 6 different temperatures ranging between 8u and 18uC has

been assessed and modelled. Further, a morphometric analyses of

juvenile salmon has been undertaken to detect differences in body

shape of fish reared at different temperatures.

Methods

Experimental animals and conditions
This study was performed at the DFO/UBC Centre for

Aquaculture and Environmental Research, West Vancouver,

Canada which houses a contained aquatic system designed to

prevent the escape of transgenic fish. Our research was approved

by and conducted according to guidelines of the Department of

Fisheries and Oceans Pacific Region Animal Care Committee

(AUP 08-003). Coho salmon of wild genotype were the offspring of

wild-caught parents from the Chehalis River, BC, Canada.

Transgenic coho salmon were originally produced by microin-

jecting eggs from wild parents with the gene construct OnMTGH1

with a metallothionein-B promoter driving the over-expression of

the type-I GH gene from sockeye salmon (O. nerka) [17]. The

transgenic strain utilized (M77) was maintained through crosses

with wild salmon and thus contain on average the same genetic

background as the wild-type fish except for the presence of the

OnMTGH1 transgene. Experimental transgenic fish were the

offspring of wild caught females from the Chehalis River and

homozygous M77 transgenic males reared at the experimental

facility. Half-sib wild-type experimental fish originated from the

same females that were crossed to wild males obtained from the

Chehalis River.

Hatching and development of eggs and alevin
In March 2006, 24 Whitlock-Vibert hatching boxes (www.

fedflyfishers.org) were filled with 80 eyed eggs each of either

transgenic or wild-type genotype (previously incubated at 10uC
from fertilization). The boxes were placed into twelve 200 L tanks,

which were divided into six groups. Fresh well water was either

heated or chilled and mixed in a flow-through system to gradually

change tank water temperatures from 10uC to constant 8u, 10u,
12u, 14u, 16u and 18uC (with 2 replicate tanks at each

temperature). Temperatures of 8u and 12uC where changed over

a period of 18 hours. 14uC, 16u and 18u C were reached after 28,

38 and 48 hours respectively. Two boxes, one with transgenic and

the other with wild-type eggs were placed into each tank so both

types experienced the same temperature change. Artificial light

was kept on a 10 h light: 14 h dark photoperiod regime.

The hatching boxes were checked every second day and any

dead eggs or alevin were recorded and removed. Dates for

reaching specific stages such as hatching or complete absorption of

the yolk sack were observed for each genotype and temperature.

Growth of fry and juveniles
In May 2006, two floating incubation containers (15 L each,

with bottom and side mesh to allow water flow), containing 30

first-feeding fry of either wild-type or transgenic genotype

previously incubated at 10uC, were placed into each 200 L tank.

The water temperatures were gradually changed to constant at 8u,
10u, 12u, 14u, 16u and 18uC (see above), the artificial daylight was

constant at 10 h light:14 h dark per day. Thereafter, experimental

fish were hand-fed to satiation, by throwing small amounts of

pellets into the tank until fish lost interest in eating, with

commercial fish food (Skretting Inc.,) from 6 (younger fry) to 2

(juveniles) times every day. The size of food pellets was chosen

throughout the experiment to be appropriate according to fish

size. Once every second week for 14 weeks, fish were either

weighed in groups for an average group weight, or were weighed

individually, resulting in seven data points for each group. After 14

weeks the replicate groups of the same genotype and temperature

were pooled and released into the twelve 200 L tanks (genotypes

separate) for an additional 35 days of growth.

Growth/survival statistics and analyses
No significant differences were detected between the two

replicates groups for the same treatment (at egg, fry or juvenile

stages). Consequently, the data were pooled for further analyses.

Salmon Growth
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The probability and time of egg hatching and survival of alevin

to complete absorption of the yolk sack at different temperatures

were tested with Kaplan-Meier survival analysis. Differences in

alevin weight at the time when 50% of the individuals in a specific

treatment group had absorbed their yolk sac completely, and data

on the general weight differences between fry/juveniles of two

genotypes at different temperatures, were tested with two-way

ANOVAs with mass in grams as the dependent variable and the

genotypes and temperatures as fixed factors.

The growth coefficient (Gc) for groups of juvenile coho salmon

was calculated from a simple mathematical model presented by

Iwama and Tautz [28,29]. Gc was calculated based the following

formula: Wf
1/3 = Wi

1/3 + (T/10006Gc) 6Time; there Wf
1/3 is

the cube root of the final weights in grams; Wi
1/3 is the cube root

of the initial weight in grams; T is the temperature in uC and Time

is in days between measurements of Wf and Wi. A value 1 of Gc

suggests that the fish are growing according to the model whereas

values above or below indicate higher or lower growth rates,

respectively, than what is predicted from the model. Additionally

we fit our data into a classic exponential growth function: W = a6
eb 6 time, where a (intercept), and b (slope) were estimated

constants.

Morphometrics
Differences in body shape among genotypes and rearing

temperatures were examined by geometric morphometrics

methods [30,31]. We digitized 11 landmarks (Fig. 1) using the

software program tpsDig2 [32]. Variation in shape was small

enough to allow statistical analysis to be performed as assessed by

TpsSmall [33]. Landmarks were analysed in Tps-Relw which uses

the Generalized orthogonal least-squares Procrustes (GPA)

procedure to produce both affine (uniform) and non-affine (non-

uniform) partial warp scores (representing morphological defor-

mations from a consensus individual) [34]. Differences in body

shapes due to genotype and rearing temperature (while controlling

for difference in size) were tested with a two-way MANCOVA

where centroid size (similar to body size) was the covariate and the

affine and non-affine partial warp scores as response variables

(reported as Pillai’s trace). Because the discriminant analysis used

to describe groups differences was applied to the combined groups

of genotype and temperature (hence n = 15 per group), partial

warp scores could not be used. Instead, we extracted relative warps

(RW) using TPSRelw [34]. An initial discriminant analysis was

then applied to all relative warps and centroid size as predictor

variables. The test of equality of group means was then used to

assess which RW would be included in the final analysis since each

group only had 15 individuals and hence not all 18 RW could be

used for classification [35]. This strategy resulted in RW 3, 5, 8,

17, and 18 being excluded and the other 13 RW being included in

subsequent analysis. This procedure allowed us to take advantage

of the most information initially obtained from the partial warps

scores considering both the number of landmarks and the sample

size.

Results

Development
There was an effect of both genotype and temperature on the

probability and timing of hatching of coho salmon eggs (Fig. 2; left

side of Table 1) with typically shorter time to hatch with increasing

temperature, and transgenic genotypes hatching sooner than wild-

type. At temperatures 8u, 10u, 12u and 14uC, a significant

difference in hatching timing was found between wild-type and

transgenic fish (x2 = 10; 30; 11; 11 respectively for each

temperature, p,0.01; 0.0001; 0.001; 0.001; Kaplan-Meier; pair-

wise comparison Log Rank/Mantel-Cox). There was no difference

in timing between genotypes at 16u and 18u C (x2 = 0.23 and 0.28;

p = 0.63; 60 respectively). The magnitude of difference in hatch

timing between genotypes increased as temperature decreased.

No differences in survival of fry (to the total absorption of the

yolk sack stage) were found between different genotypes (p.0.05

at all cases; Kaplan-Meier; pair-ways comparison, Log Rank/

Mantel-Cox). However we did observe differences in survival of

alevin at different temperatures (right side of Table 1) with the

maximum survival at 12 degrees (over 90% alive fry in both

genotypes) and noticeably decreased survival values for fry at 16u
(around 40% alive fry in both genotypes) and 18uC (2.5% live fry

in both genotypes). The number of days from the date of hatching

12
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10 11

Figure 1. Locations of the 11 landmarks on a digital photograph. Red dots are marking the 1) tip of the nose, 2) centre of the eye, 3) dorsal
dividing-line of head and body, 4) ventral dividing-line of head and body, 5) posterior point of operculum, 6) anterior end of dorsal fin, 7) anterior end
of adipose fin, 8) central caudal dividing line of body and tail, 9) anterior end of anal fin, 10) anterior end of pelvic fin, 11) lowermost part of the
stomach.
doi:10.1371/journal.pone.0009980.g001
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until the time when 50% of the group had absorbed their yolk

sacks decreased with increasing temperature and differed between

genotypes (from 35 days at 8uC to 25 days at 16uC in wild fish and

from 28 days at 8u to 22 days at 16uC in transgenics). The number

of day-degrees between hatching and buttoning up (closure of the

abdomen) was higher at higher temperatures but lower in

transgenics than in the wild fish (280 in wild alevin and 224 in

transgenic alevin at 8uC; 400 in wild alevin and 352 in transgenic

alevin at 16uC). There was a significant interaction effect between

temperature and genotype on the weights of alevin at the time

when 50% of the group had absorbed their yolk sacks (F4.601 = 5.1;

p,0.001). There were no differences at 8 and 18 degrees, but

transgenic alevin were found to be lighter than wild-type fish at

intermediate temperatures (Fig. 3).

Growth
Based on the size of fish at 120 days of growth post first feeding,

there was a clear interaction between genotype and temperature,

with transgenic fish growth being relatively more stimulated as

temperature increased (Fig. 4). Since variances could not be made

homogenous when analyzing the weight data from fry/juveniles

(due to the large difference in growth between transgenic and wild-

type fish), analyses of differences between temperatures were

done separately for the two genotypes. For both transgenic

(F5, 269 = 91.5, p,0.001) and wild-type (F5, 265 = 91.5, p,0.001)

fish, temperature affected growth in a positive direction. In both

genotypes, fish at 8uC grew slowest with an increasing temperature

having a relatively larger effect on transgenic fish than on wild-

type fish. The coefficient of variation for final weights was higher

in transgenic than in wild-type at all temperatures (Table 2).

The percentage of juvenile coho salmon surviving to the day

120 of the experiment at 8u 10u, 12u, 14u, 16u and 18uC for wild-

type fish were 78%, 73%, 55%, 85%, 88% and 72% respectively,

and for transgenic fish 86%, 72%, 56%, 75%, 88% and 80%

respectively. Tank effects are not suspected as effects were seen in

all four tanks randomly distributed in the experimental design).

Survival of the fish did not differ between genotypes (binary

logistic regression; Wald x2 = 0.12, p = 0.73) but did vary with

temperature (Wald x2 = 20.9, p,0.001) with no significant

interaction (Wald x2 = 4.3, p = 0.50). Because 16uC fish had the

highest survival, this group was used as reference category to

which survival of the others groups was compared (simple contrast

coding in SPSS). This revealed that fish at 10uC (Wald x2 = 4.2,

p = 0.042), 12uC (x2 = 14.5, p,0.001) and 18uC (x2 = 4.9,

p = 0.026) had lower survival than at 16uC with no difference

between 16uC and 8uC or 14uC (both p.0.14).

In general the growth coefficient (Gc) values of the wild-type fish

were found to be lower than predicted by the model of Iwama and

Figure 2. Timing and percentage of eggs hatching. Wild-type (W) and GH-transgenic (T) coho salmon eggs hatching at different temperatures
(8–18uC).
doi:10.1371/journal.pone.0009980.g002

Table 1. Temperature effects on hatching and survival.

Hatch timing Survival to first feeding

W T W T

uC x2 p x2 p x2 p x2 p

8 vs. 10 23.8 0.000 58.9 0.000 1.1 0.293 0.5 0.483

10 vs. 12 74.2 0.000 37.8 0.000 4.1 0.043 0.1 0.799

12 vs. 14 1.7 0.195 47.2 0.000 5.7 0.017 0.2 0.618

14 vs. 16 5.3 0.021 0.2 0.645 23.7 0.000 36.9 0.000

16 vs. 18 52.2 0.000 56.8 0.000 55.4 0.000 58.2 0.000

The table shows statistical output from comparison of temperature effects on
the probability and timing of hatching (left side, compare also with Fig. 2), and
on the survival to the absorption of the yolk sac (right side) of wild-type (W) and
transgenic (T) coho salmon (Kaplan-Meier; Log Rank/Mantel-Cox).
doi:10.1371/journal.pone.0009980.t001
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Tautz [29], and further decreasing at higher temperatures. In

contrast, the situation was the opposite in the transgenic fish

(Table 2). Slopes estimated by the function W = a 6 eb 6 time are

presented in Table 3 and Fig. 5. Transgenic salmon showed

increasing growth rate slopes with temperature up to 14uC
(Spearman r = 0.81, P = 0.05), whereas wild-type fish showed a

decreasing response to temperature (Spearman r = 20.88,

P = 0.020).

Morphometrics
Body shapes of fish were influenced by both centroid size

(F18, 150 = 6.5, p,0.001) and interactions between genotype and

temperature (F90, 770 = 6.5, p,0.001). Seven of 18 partial warps

were significantly (p,0.05) affected by centroid size, nine were

significantly different for genotype and nine for temperature, and

six were significant for the interaction between genotype and

temperature.

The first discriminant function explained 72.6% and the second

function explained 12.6% of the variation in shape. Means of the

populations in the discriminant space were significantly different

between all groups except the wild fish at 12u and 10uC and

between wild fish 14u and 16uC, with no overlap between the

genotypes. None of the wild fish at neighboring temperatures were

significantly different after multiple test corrections, and transgenic

fish from the 14–18uC groups were not significantly different.

Separation of the groups was still high, with 97.8% of the fish

being classified to the correct category (Fig. 6). Three wild fish

were misclassified: one wild fish at 8u classified as a wild fish 10uC,

one wild fish 16u as a wild fish 14uC, and one wild fish 18u as a

wild fish 14uC. One 10u transgenic fish was misclassified as a 16u
transgenic.

Visualization plots of the first two relative warps (RW)

explaining together 50.2% of the variation in shape illustrates

the clear difference between wild-type and transgenic genotypes

(Fig. 7). Associated with negative values on the first RW were

transgenic fish with relatively deeper bodies and smaller heads,

especially the distance between the eye and the tip of the nose.

Hence, this RW explained mostly deformations (change in

landmark location) in vertical space. In wild-type fish, slender

bodies are evident and relatively larger heads. Shape effects

associated with RW2 were less clear but had a tendency to

associate positive values with increasing temperature. The

deformation grid suggests that most deformation for this RW

was in horizontal space with positive values being associated with

longer ventral and shorter dorsal arcs, with the opposite for

negative values.

Discussion

Defining the effects of temperature on biological functions is

important to understand the contribution of climatic factors to the

fitness and the ecological interactions of organisms at both

individual and population levels [6]. Hormones play an essential

role in the control of these mechanisms since many of them act on

or are produced by the central nervous system and in that way link

environmental stimuli to behaviours and physiology [36]. The

present study shows a strong effect of temperature on develop-

mental rate, juvenile growth and morphology that differed

between wild-type and GH-transgenic coho salmon.

A positive correlation between growth rate and temperature is

well known for most poikilotherm fish species, including salmonids

[1]. Salmonid fishes show consistently increasing growth rates in

temperatures ranging from 0uC to approximately 15uC [1,37].

Within this interval, growth acceleration is achieved through

higher metabolism supported by increased food consumption and

conversion efficiency [6]. At very high temperatures, growth

enhancement ultimately cannot be maintained because of rapidly

ascending metabolic costs [1]. However, further increase in growth

is still possible within a few degrees over the optimal, if demands

for maintaining growth rate can be met by increased rations and

sufficient oxygen supply. At very high temperatures (more than

 

Figure 3. Average weights of alevin. Wild-type and GH-transgenic coho salmon alevin reared at different temperatures at the time when half of
the group had completely absorbed their yolk sacks.
doi:10.1371/journal.pone.0009980.g003
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20uC) the feeding rate of most salmonids declines sharply, and is

completely inhibited at temperatures several degrees below the

incipient lethal level. In this state, the non-optimal temperature

limits the oxygen supply in the organism leading to hypoxemia and

rapidly falling performance in fish [5].

Consistent with previous studies [37], we observed reduced egg

and alevin survival rate at the highest study temperatures. At 18uC
the percentage of eggs surviving to hatching averaged 9% for the

two genotypes, but rapidly increased to 70% at 16uC and 90% at

12uC. Post-hatch alevin survival of both genotypes was highest at

  

  

Figure 4. Growth of transgenic (A) and wild-type (B) coho salmon juveniles. Juveniles were reared from first-feeding until an age of 120
days at temperature from 8 to 18uC. Different letters denote significant differences at the p,0.05 level (Tukey’s post hoc test) on ln-transformed
values after 120 days (figures based on raw values). Note the more than 10-fold larger Y-axis scale for the transgenic fish.
doi:10.1371/journal.pone.0009980.g004
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12uC (ca 90% of hatchlings), whereas at 16uC less than 40% of

alevin survived to complete absorption of the yolk sack.

GH and IGF-I are major regulators of somatic growth, and

according to several studies, there is a close positive relationship

between the levels of these hormones in fish and the ambient water

temperature [38,39,40,41,42,43,44]. Both of these genes have

been shown to be active in salmonid embryos, even before the

development of the pituitary gland [43,45,46]. Yet, variation of

temperature has been shown not to change (aside from timing

arising from different rates of development) the levels of GH and

IGF-I protein and transcript in salmonid embryos, implying that

these hormones play a lesser role in mediating temperature effects

during embryogenesis [43,45,46]. High produion of GH in salmon

embryos in the present study, however, did, at lower temperatures

(8u to 14uC), shorten the development time of eggs compared to

wild-type [15,20]. Thus, even though GH may not play a primary

role in the regulation of temperature effect in salmon embryos, as

evident in the present study, an over-expression of GH still

promotes development and decrease the incubation time in

transgenic coho embryos compared to the wild-type.

According to Gabillard et al. [39] the thermal influence on

embryonic development of salmonids is best explained by the

actions of another growth factor – IGF-II, as the amount of

mRNA for this hormone does increase with temperature. IGF-II is

known in mammals to act primarily as a mediator of growth

prenatally [47]. The strain of GH transgenic salmon used in the

present study does not display elevated levels of IGF-II mRNA at

later stages of development (i.e. fingerling) [48], but it is not known

whether this gene is activated by GH transgenesis at earlier stages.

It is possible that the earlier hatching at higher temperatures (16u
to 18uC) in both genotypes may have been mediated by

temperature-mediated IGF-II action which was able to dominate

over effects of GH. At later stages, GH transgenesis and

temperature are both able to stimulate growth rate.

The temporal aspect of emergence of fry is a critical element in

salmon life histories, and fry that emerge at appropriate times will

have adaptive advantages in initial feeding and predator avoidance

compared to the fry emerging too early or too late. Consequently,

natural selection should time spawning events and egg develop-

ment rates to correspond with the optimum time for fry emergence

in each particular stream environment [49]. During the period of

emergence the usage rate of yolk stores sustaining growth until the

fry emerge depend strongly on environmental temperature

[49,50]. Fry that emerge at appropriate time will therefore have

adaptive advantages in initial feeding, predator avoidance and in

the temporal integration with other life history needs compared to

the fry emerging too early or too late in the cycle.

Thermal conditions in nature fluctuate between years, creating

slightly different temporal optima for each year in the spawning

and incubation time. Fry with high production of GH will most

likely hatch and emerge earlier than the fry with the lower

expression of GH at all physiologically adaptive temperatures.

This shift towards earlier hatching and emergence of eggs and fry

of the GH-enhanced salmon may cause a fitness disadvantage in

the life-histories of these fish at temperatures that are experienced

by conspecifics under natural conditions. However, it is possible

that being first to emerge could also confer an advantage for fry

with high GH production, if they are able to establish territories

before the conspecifics with lower GH production emerge [51].

The present data showed a greater decrease in body weight in

Table 2. Coefficient of variation (Cv) and growth coefficients
(Gc).

wild-type transgenic

TuC Cv Gc Cv Gc

8 0.38 0.77 0.47 2.96

10 0.37 0.82 0.57 4.16

12 0.31 0.79 0.46 7.94

14 0.40 0.78 0.54 8.96

16 0.34 0.64 0.39 10.18

18 0.36 0.65 0.54 9.34

The table shows the Cv of weight (Cv = standard deviation/average weight) at
the end of the growth trial and Gc [29] for wild-type and transgenic coho
salmon at different temperatures.
doi:10.1371/journal.pone.0009980.t002

Table 3. Estimates of the growth function W = a 6 eb 6 time.

Temp Parameters Transgenic Wild-type

estimate SE R2 estimate SE R2

8 a 0.260 0.032 0.76 0.240 0.015 0.76

b 0.029 0.001 0.020 0.001

10 a 0.260 0.050 0.69 0.320 0.020 0.76

b 0.034 0.002 0.019 0.001

12 a 0.480 0.087 0.79 0.370 0.021 0.81

b 0.036 0.002 0.019 0.001

14 a 0.430 0.099 0.73 0.530 0.031 0.74

b 0.039 0.002 0.018 0.001

16 a 0.670 0.100 0.83 0.590 0.027 0.77

b 0.037 0.001 0.016 0.000

18 a 0.720 0.160 0.72 0.540 0.029 0.77

b 0.037 0.002 0.018 0.001

The table illustrates the estimates of intercept (a) and slope (b) and the estimate of the least-square fit to the function (R2). SE is based on the number of individuals.
doi:10.1371/journal.pone.0009980.t003
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transgenic alevin with increasing temperatures than in the wild-

type fish (caused by a general increased usage rate of the yolk sack).

Consequently, increased GH-production may lead to greater

sensitivity to environmental conditions and an enhanced necessity

to find sufficient food supplies compared to wild genotype [15].

Indeed, populations of GH transgenic fry are less able to withstand

periods of limited food availability than are wild type populations

[52].

Although the majority of the weight gain of anadromous

salmonids occurs in the ocean environment, growth rate of

 

Figure 5. The slope (b) values of fitting the growth data to a classic exponential growth function: W = a6eb 6 time. Error bars represent
95% confidence intervals.
doi:10.1371/journal.pone.0009980.g005

Figure 6. Canonic variate plot (CV). CV of transgenic (T) and wild-type (W) coho salmon body morphology reared at 8–18uC. Means of the
populations in the discriminant space were significant between genotypes and groups except in wild-type fish at neighboring temperatures. and
transgenic fish between 14–18uC.
doi:10.1371/journal.pone.0009980.g006
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juvenile fish in their home streams is also of great importance,

especially for salmonids that must acquire minimum sizes before

they can smolt and migrate to the sea. The size achieved by

juvenile coho salmon at the end of their first summer has a strong

effect on their later success of over-wintering and smolting. Larger

size has also been shown to result in competitive advantages in

processes of feeding and establishing territories [6]. As even minor

temperature shifts strongly influence the growth and development

in salmonids and cause essential alterations in life history patterns,

any long-term non-adaptive variation in response to thermal

conditions is likely to have important consequence on individual

physiology and fitness [49].

GH secretion can be influenced by temperature [12], however,

Danzmann et al. [53] found a reduced capacity of GH to influence

growth of juvenile domesticated rainbow trout (Oncorhyncus mykiss)

reared at high temperatures. In contrast, the present data showed

a clear positive effect of temperature on growth rates of transgenic

juvenile coho salmon, indicating that the over-production of GH

does promote growth in this species even at high rearing

temperatures. These two studies used different modes of

administration of GH (injection, vs. endogenous overproduction

in transgenics) which may result in differential rates of turnover of

active GH protein that could influence growth stimulation effects.

The cause for the low survival of coho salmon juveniles in this

experiment at 12u is not known, however, it is possible that a

pathogen has its peak of virulence at this temperature; however,

this is only a speculation.

It is well-known that metabolic costs and requirements of

oxygen of fish increase at higher temperatures, making increased

growth rates difficult to maintain [1,4]. The present study suggests

that the increased growth rates of fish with elevated GH levels

were supported at temperatures several degrees higher than in the

wild-type fish. From the mathematical estimations of growth rates

(Fig. 6) we observe an increase in the values of growth slopes of

GH-enhanced salmon up to 14u C, whereas slopes were slightly

negative over the entire range of temperatures in wild-type fish. In

other words, the relationship between growth rate and relative size

of fish is negatively affected by temperature in wild fish, but

increases (up to 14u C) in fish with elevated GH-production. Thus,

over-production of GH in coho salmon allows them to meet the

increasing demands of growth by enhanced nutritional intake to a

larger degree than occurs in wild-type, suggesting that the optimal

thermal conditions for GH-enhanced coho salmon might be

higher than for the wild-type fish.

Iwama and Tautz [29] developed a simple model for

predicting the growth of salmonids at different temperatures

in intensive aquaculture conditions. Their model includes

assumptions (such as growth increasing steadily with increasing

temperature) that may not be true under all circumstances, and

thus should be applied with this knowledge in mind [54].

However, their model is still useful to compare growth slopes of

groups of salmonids (for instance between strains with different

growth rates, or populations in different environmental

conditions). In the present experiment we calculated growth

coefficients (Gc), comparing the actual growth rate represented

by our data with the theoretical growth rate of the model. Both

genotypes showed best agreement with the model at lower

temperatures but reacted to increased temperatures in opposite

ways: wild-type fish showed a lower than predicted growth rate

at higher temperatures, whereas the Gc values for GH-

transgenic fish were up to 10 times higher at high temperatures

than predicted by the model. These relative differences in Gc

between genotypes at different temperatures suggest a greater

response to temperature in fish with elevated GH levels than

predicted by the model. When comparing our results to the Gc

values for various stocks of salmonids (see Table 1 in Iwama

Figure 7. Relative warps. The plot shows the first two relative warps with corresponding deformation grid from the extreme of the relative warps
axes. Derived from morphometric analyses of wild-type (W) and transgenic fish (T) reared at 8–18uC.
doi:10.1371/journal.pone.0009980.g007
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[28]) we find that the Gc values of the wild-type fish in general

agree with data from other salmonids, whereas the Gc for GH-

enhanced fish differs greatly (as predicted from their known

accelerated growth).

Different rearing temperatures not only affected the growth rate

but also the body morphology of juvenile wild-type and GH-

enhanced coho salmon. While the change in body shape in wild-

type fish seemed to be gradual over the temperatures, in GH-

enhanced salmon the effect was sharper, giving rise to a group of

fish (reared at 14u–18uC) characterized by very large bodies and

relatively small heads. Earlier studies analyzing the morphological

effects of GH-transgenesis in fish have demonstrated noticeable

differences in the shape and development of the head and in most

cases also a change in the head/body size ratio compared to the

wild fish [55,56,57,58]. In accordance with these morphological

changes, fish with increased GH-production in this study in

general showed relatively deeper bodies and smaller heads with a

reduced distance between the eye and the tip of the nose, whereas

wild-type fish were characterized by slender bodies and relatively

larger heads. However a tendency to longer ventral and shorter

dorsal arcs was noticed at higher temperatures in both genotypes.

Changes in body shape could affect the swimming capacity of

fish and change their ability to escape predators [59]. A lower

swimming speed of fast-growing GH-transgenic coho salmon of

the same size as wild-type has been observed [60]. A genotype

effect on body shape was evident in the present study which could

influence swimming capacity in transgenic fish compared to wild-

type, but it could also reduce susceptibility to predators,

particularly when these are gape-limited [61]. Thus it is

conceivable that GH-levels in fish in natural surroundings would

be heavily exposed to balancing natural selection modifying the

rates of somatic growth. The direction of the selection will likely

depend on multiple factors such as abundance and type of

predators and food availability.

The present study has observed effects of temperature on

growth, survival and body morphology in GH transgenic and wild

type coho salmon. Importantly, the two genotypes respond

differently to temperature, indicating genotype by environment

interactions are influencing phenotypic development between

these strains.
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