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Abstract

Purpose

Interest in using T1 as a potential MRI biomarker of chronic obstructive pulmonary disease

(COPD) has recently increased. Since tobacco smoking is the major risk factor for develop-

ment of COPD, the aim for this study was to examine whether tobacco smoking, pack-years

(PY), influenced T1 of the lung parenchyma in asymptomatic current smokers.

Materials and Methods

Lung T1 measurements from 35 subjects, 23 never smokers and 12 current smokers were

retrospectively analyzed from an institutional review board approved study. All 35 subjects

underwent pulmonary function test (PFT) measurements and lung T1, with similar T1 mea-

surement protocols. A backward linear model of T1 as a function of FEV1, FVC, weight,

height, age and PY was tested.

Results

A significant correlation between lung T1 and PY was found with a negative slope of -3.2

ms/year (95% confidence interval [CI] [-5.8, -0.6], p = 0.02), when adjusted for age and

height. Lung T1 shortens with ageing among all subjects, -4.0 ms/year (95%CI [-6.3, -1.7],

p = 0.001), and among the never smokers, -3.7 ms/year (95%CI [-6.0, -1.3], p = 0.003).

Conclusions

A correlation between lung T1 and PY when adjusted for both age and height was found,

and T1 of the lung shortens with ageing. Accordingly, PY and age can be significant
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confounding factors when T1 is used as a biomarker in lung MRI studies that must be taken

into account to detect underlying patterns of disease.

Introduction
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease that is a
major cause of morbidity and mortality and is considered the third largest cause of death
worldwide [1, 2]. There is a major need to develop new treatments for COPD, as no currently
available drug therapy suppresses the persistent progression of the disease [3]. Whole-lung spi-
rometric lung function tests are commonly used for characterization of COPD. However, these
methods only measure global lung function, resulting in a loss of sensitivity in early/mild dis-
ease and pathophysiological abnormalities that may be present in this heterogeneous condition
[4, 5]. Improved disease characterization of COPD is therefore needed as it will allow the use of
personalised medicine approaches to COPD treatment, an emerging field in which imaging
biomarkers are likely to play an important role [6].

In contrast to spirometric lung function tests, regional biomarkers in COPD lungs are some-
times obtained from computed tomography (CT) [7] or single-photon emission computed
tomography (SPECT) [8]. The clinical benefits of CT and SPECT for diagnosis of COPD
clearly outweigh the potential harmful effects due to ionizing radiation. However for clinical
trials, particularly those including a placebo cohort, repeated exposure to ionizing radiation
needs to be considered carefully given that there may be no clinical benefit of the examination
to the subject. Therefore, non-ionizing radiation imaging techniques are preferred as alterna-
tives in longitudinal assessments in patients with COPD and in therapy monitoring.

Magnetic resonance imaging (MRI) provides attractive biomarkers for assessment of lung
disease in clinical trials as it is free from ionizing radiation, minimally invasive and provides
regional information [9–11]. Lung MRI has been hampered by the low density of the lung and
the fast signal decay due to susceptibility differences between tissue and air in lung paren-
chyma. Nevertheless, several lung MRI applications have been developed, and interest in MRI
of the lungs has recently increased [9–13]. Specifically, it was recently found that the MR spe-
cific parameter T1 relaxation time (subsequently called T1) was shortened in lung for COPD
patients [14]. T1 measurements of the lung can be used as a read-out to reflect lung function
with oxygen-enhanced MRI [12, 15] and to measure partial pressure of oxygen in the alveolar
airspaces using hyperpolarised gases [16].

Pulmonary diseases are previously known to influence lung T1 [17]. Oedema and inflamma-
tion lead to an increase in T1 compared to healthy lung tissue [18]. Shortening of T1 has been
related to fibrosis [19] and emphysema [20]. These factors will also contribute to the T1 found
in COPD patients. However, it is well established that tobacco smoking is a major factor for
development of COPD [21, 22], i.e. smokers will be present in COPD cohorts. Smoking results
in deposition of particles and coal tar in the lung that induces numerous biological mechanisms
responsible for chronic inflammation of the airways and the lung parenchyma and eventually
leads to degradation of the lung tissue [23]. Additionally, one could speculate that the presence
of tar or other substances [24] that enhance dipolar relaxation in the extracellular tissue water
and which accumulate in the lung as a direct consequence of smoking may shorten T1 directly
or the subsequent lung damage may result in a T1 reduction. However, at present there are no
specific data supporting this hypothesis. To our knowledge, the relationship between lung T1

and tobacco smoke (TS) exposure in healthy subjects has not been previously addressed.
The objective for the present study was to examine whether tobacco smoking influenced T1

of the lung parenchyma in individuals with no known lung disease. We performed lung T1 and
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pulmonary function test (PFT) measurements in asymptomatic current smokers with no diag-
nosis of lung disease and healthy age-matched never smokers. Healthy smokers were chosen in
order to isolate smoking from disease related factors.

Materials and Methods

Ethics statement
The study was approved from an institutional review board of the Centre for Imaging Sciences,
University of Manchester, UK and the ethical review board of Lund University, Lund, Sweden.
All subjects gave written informed consent for examination and data evaluation. The written
informed consent in the original study permitted future reanalysis of the data. The work was
carried out in accordance with The Code of Ethics of the World Medical Association (Declara-
tion of Helsinki).

Subjects
Lung T1 measurements from 35 volunteers, 23 never smokers and 12 current smokers were ret-
rospectively analyzed. Eleven of the never smokers and the smokers were extracted from an
existing study fromManchester, United Kingdom, center 1. The other never smokers were
from an existing study in Malmö, Sweden, center 2. All 35 subjects underwent lung T1 and PFT
measurements with a similar T1 measurement sequence. Each volunteer completed a question-
naire before recruitment to assess their suitability for the study. The enrolled subjects had no
previous diagnosis of emphysema, bronchitis, chronic asthma, alpha1-antitrypsin deficiency,
bronchiectasis or any other chronic lung disease. Any candidate who reported suffering from a
cough or chest infection within eight weeks prior to participation was excluded. On the same
questionnaire, volunteers recorded details of their smoking history including the smoking of
tobacco products other than cigarettes and whether they were regularly exposed to passive
smoke.

Pulmonary function test
Immediately prior, subsequent to or on the day following MRI scanning, standard PFT were
carried out to assess forced expiratory volume in 1 s (FEV1 (% predicted)) and forced vital
capacity (FVC (% predicted)). The measurements were carried out using a computerized spi-
rometer system (Jaeger Oxycon Pro, Hoechberg, Germany) by a trained test administrator
according to ATS/ERS standards [25].

MRI protocol center 1
Imaging was carried out on a 1.5 T-Philips Intera MR system (Philips Medical Systems, Best,
Netherlands). In all acquisitions, the q-body coil was used for RF transmission and reception.
Throughout the acquisition volunteers were breathing normally, and the imaging was carried
out without the use of respiratory or cardiac triggering. A single coronal image slice was posi-
tioned at the posterior mediastinum. This slice position gave information on a large area of
lung coverage, while avoiding the heart, and was also less likely to be affected by through-plane
breathing motion (chest breathing) than more anterior slices. A snapshot FLASH (Fast Low
Angle Shot) [26] was used with an initial non-selective inversion pulse. The imaging parame-
ters were: repetition time (TR) 2.2 ms, echo time (TE) 1.0 ms, field of view (FOV) 450 x 450
mm2, flip angle (FA) 5°, 64 x 256 matrix (zero filled to 256 x 256) and a slice thickness of 15
mm. In all, 25 inversion times (TI) were used, with an initial TI of 74 ms acquired at intervals
of 143 ms, and the measurement was repeated 10 times over a one minute period.
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MRI protocol center 2
Imaging was performed on a 1.5 T-Siemens Magnetom Avanto Fit (Siemens Healthcare,
Erlangen, Germany) with a similar approach, slice location and protocol to that used in center
1. Following a non-selective inversion pulse, 16 coronal TIs were acquired with the Snapshot
FLASH (21) (TR 3 ms, TE 0.7 ms, FOV 450 x 450 mm2, FA 7°, 128 x 64 matrix zero filled to
256 x 256 and a slice thickness of 15 mm) ranging from 107 ms at intervals of 192 ms, during
an light inspiration breath hold over 3 seconds.

Image analysis
Images were registered using techniques defined in [27] to remove respiratory motion in center
1, where free breathing was used, and T1 was obtained by fitting the Look-Locker equation [28]
pixel-by-pixel for the single slice. A region of interest was manually placed on the left and right
lungs and was used to calculate the median T1 value for each subject. The large pulmonary ves-
sels were manually excluded in the quantification. All data analysis was performed using soft-
ware written in Matlab (MATLAB, The MathWorks Inc., Natick, MA, USA).

Statistical analysis
First, a potential effect of center (Malmö/Manchester) on T1 was investigated using a multiple
regression analysis adjusted for age, weight, height, FEV1 and FVC among the never smokers.
The reason for including only the never smokers in this analysis was that never smokers were
examined at both centers while all smokers had been examined at a single center. Thereafter, in
order to select the most important variables in determining the value of T1, a backward linear
model approach was used. The starting model included FEV1, FVC, weight, height, age and
pack-years (number of years or equivalent years in which 20 cigarettes a day were smoked, PY)
as covariates. Stepwise exclusion of the least significant covariate and refitting of the model was
stopped when all remaining covariates showed a significance level of<0.1 with T1. A simpler
model containing only PY and age was also examined, to compare the individual influence of
PY and age on T1. When evaluating the two final models a p-value<0.05 was considered sig-
nificant. Due to limited sample size the approach taken is exploratory, i.e. no correction for
possible model over-fitting was applied. If not stated otherwise, the reported values are given as
the mean ± one standard deviation (SD). Analyses were performed using RStudio (version
0.98.507).

Results
The MRI examinations were completed in all subjects with diagnostic quality. Representative
lung T1 maps of two subjects with corresponding histograms are provided in Fig 1. The
means ± SD of demographic and PFT parameters for all participants are given in Table 1. The
current smokers had smoking histories ranging from 2 to 40 PY (mean 16 ± 12 PY) (Fig 2).
The never smoking group included an ex-smoker with a smoking history of 2.5 PY. No signifi-
cant difference on T1 was found between the centers among the never smokers from the multi-
ple regression analysis (p = 0.35).

Weight, FEV1 and FVC were stepwise excluded in the backward regression procedure for all
subjects. The resulting model included PY, age and height as covariates with negative slopes of
-3.2 ms/year (95% confidence interval [CI] [-5.8, -0.6], p = 0.02), -2.9 ms/year (95% CI [-5.3,
-0.5], p = 0.02) and -2.4 ms/cm (95% CI [-5.0, 0.2], p = 0.07), respectively (Table 2). Excluding
height in the simpler model, the slopes of T1 versus age and PY changed to -3.1 ms/year (95%
CI [-5.5, -0.6], p = 0.02) and -2.3 ms/year (95% CI [-4.9, 0.3], p = 0.08), respectively. The
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negative slope was -4.0 ms/year (95% CI [-6.3, -1.7], p = 0.001) when only age was included in
the model with r = -0.52, indicating that lung T1 shortens with ageing (Fig 2). Among the never
smokers, the slope of T1 as a function of age was found to be -3.7 ms/year (95% CI [-6.0, -1.3],
p = 0.003).

Fig 1. Lung T1 maps in a young and old never smoker.Representative coronal lung MRI T1 maps overlaid on a signal intensity image with corresponding
normalized T1 histograms for a 25 years old (a) and a 60 years old (b) never smoker.

doi:10.1371/journal.pone.0149760.g001

Table 1. Demographic and pulmonary function data.

Never smokers center 1 Never smokers center 2 Current smokers center 1

No. of subjects 11 12 12

No. of men 4 6 6

Age (y) 29 ± 4 (23–35) 44 ± 12 (26–61) 43 ±10 (29–60)

Weight (kg) 76 ± 14 (61–97) 76 ± 13 (53–104) 77 ± 21 (50–118)

Height (cm) 171 ± 12 (150–186) 175 ± 8 (167–188) 173 ± 11 (159–184)

Smoking index (pack-years) 0.2 ± 0.8 (0–1.2) 0 16 ± 12 (2–40)

Pulmonary function measurement

FEV1 (%pred) 99 ± 20 (69–124) 104 ± 13 (85–130) 102 ± 38 (39–197)

FVC (%pred) 112 ± 29 (68–177) 117 ± 13 (100–148) 127 ± 34 (81–187)

FEV1/FVC 0.77 ± 0.12 (0.55–0.88) 0.89 ± 0.09 (0.75–1.04) 0.67 ± 0.16 (0.37–0.91)

Data are means ± standard deviations, with ranges in parentheses. Center 1 –Manchester, center 2 –Malmö. ND = no data.

doi:10.1371/journal.pone.0149760.t001
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Discussion
Data from this study demonstrate that the association between PY and lung T1 changes from
being significant (p = 0.02) when adjusted for both age and height to being non-significant
when adjusted for age only, p = 0.08. There is a significant association between age and T1 in
both final models (adjusted for height and PY, or adjusted for PY only), as well as in the univar-
iate analysis in never smokers. When looking at the PY effect on T1, it is important to take into
account the age of the subjects. Since there is an inherent colinearity between age and PY, it is
more likely that subjects with more PY are older. Further investigations in larger cohorts will
increase the knowledge of the lung T1 relationship to PY.

There is evidence showing smoke effect in other imaging studies. Fain et al. [29] found that
mean ADC values and number of PY were significantly correlated and that relationship
remained after adjustment for age with hyperpolarized helium 3 (3He) imaging. Additionally,
Fain et al. also found a strong correlation between mean ADC values and age in both never
smokers and healthy smokers. The relationship between ADC, indicating structural changes,
and age was explained by microstructural changes in the lung related to the ageing process.
3He imaging is a highly sensitive lung imaging technique and the findings with ADC correla-
tions to both PY and age confirms that. Recently, Hamedani et al. [30] found functional

Fig 2. Lung T1 as a function of age and PY for all subjects. The example line shows the correlation
between median lung T1 and age for smokers (●) and never smokers (�), indicating that lung T1 shortens with
ageing (p<0.01, r = -0.52). The smoking history of the current smokers is visualized with increased size of the
dots (� = 1–10 PY, � = 11–20 PY, � = 21–30 PY and� = 31–40 PY).

doi:10.1371/journal.pone.0149760.g002

Table 2. Influence of covariates on T1 for all subjects (n = 35).

Model Covariates Slopes [ms/x] 95% CI p

1 Height (cm) -2.4 [-5.0, 0.2] 0.07

Age (y) -2.9 [-5.3, 0.5] 0.02

PY (y) -3.2 [-5.8, -0.6] 0.02

2 Age (y) -3.1 [-5.5, -0.6] 0.02

PY (y) -2.3 [-4.9, 0.3] 0.08

3 Age (y) -4.0 [-6.3, -1.7] 0.001

4a Age (y) -3.7 [-6.0, -1.3] 0.003

aAmong never smokers, n = 23.

doi:10.1371/journal.pone.0149760.t002
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differences between never smokers, asymptomatic smokers and symptomatic smokers with
heterogeneity metrics using 3He MR imaging. The smokers recruited in the above mentioned
3He imaging studies had similar smoking histories as the smokers in the present study. Taking
this knowledge into account, i.e. that structural changes are indeed present in asymptomatic
smokers; we might expect that a larger T1 study would increase the possibility to find a T1 rela-
tionship to PY. Moreover, literature to assist powering a lung MR T1 study is currently lacking.
The results from the present study may be of utility to power future prospective studies to vali-
date these biomarkers.

Recently, we found that lung T1 correlated to CT density and PFTs in an age-matched
COPD cohort study, indicating the potential role of T1 mapping as a marker of early detection
of COPD and emphysema [14]. The observed finding with shortened T1 in COPD patients was
explained by smoking-induced lung pathology, specifically emphysema which was supported
by the PFT and CT measurements. No link between lung T1 and PY was found in the COPD
subjects. In the present study, the observed indication with shortened T1 in the smokers
(p = 0.02, adjusted for age and height), therefore, most likely reflects early signs of smoking-
induced lung pathology that is not evident from the spirometric measurements.

There are several potential explanations for the lung T1 relationship to age. In the healthy
lung, the blood in the pulmonary circulation is the major source of the assessed lung T1 at con-
ventional echo times [31]. Blood has a long T1 (>1000 ms at 1.5 T) [32] and is relatively close
to lung T1 at TEs of the present study (0.7–1 ms). The pulmonary blood volume reduces with
age [33] and might therefore explain the shortened lung T1 with ageing of the lung. The lung
tissue of healthy subjects looses its supporting structure with age [34] causing emphysematous
changes, which had been shown to shorten lung T1 [20]. Furthermore, factors such as reduced
perfusion and increased macromolecular collagen content are causes that could shorten T1 in
the ageing process of the lung. More accurate models may be constructed with further research
incorporating parameters such as hematocrit, oxygenation and other relevant variables to
explain the biology behind the T1 relationship to age. Nevertheless, on the basis of our results,
age can be a significant confounding factor when T1 is used as a biomarker in lung MRI studies
that must be taken into account to detect underlying patterns of disease.

There were several limitations with the present study. The small sample size and the study
being performed at two centers with slightly different scanning protocols may have introduced
an increased uncertainty. However, our multiple regression analysis found that there were no
differences between the two centres and it should therefore not affect the analysis of the T1

measurements. Different breathing protocols were used with free breathing in center 1 and
breath hold in light inspiration in center 2. Stadler et al. [20] that found a 50 ms difference
between full inspiration and expiration, therefore these differences should not be significant for
the T1 measurement. Moreover, the two centers had different TE, 1 ms in center 1 and 0.7 ms
in center 2. Measured T1 depends on what TE is used in the assessment. According to the data
from Thriphan et al. [31] we should have a systematic 50 ms bias, between the two centers,
where center 1 would have longer T1. We do not believe these small changes affect the conclu-
sions in this study. Another limitation with this study was the two-dimensional MRI protocol
that was restricted to one slice and did not cover the whole lung. A multi-slice or three-dimen-
sional protocol would be preferred for improved regional analysis of the smoking-induced
effects. Moreover, with regards to the PY measure and the small cohort of smokers, PY is a
course measure, as some subjects with very different smoking habit might end up with similar
PY values. There was no information on the time between last smoke exposure and imaging.

Regarding these limitations, further prospective studies are desirable to further validate the
utility of T1 mapping in the assessment of healthy smokers. In conclusion, we were able to
show a significant relationship between lung T1 and PY when adjusted for both age and height.
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Additionally, lung T1 shortens with increasing age. Thus, PY and age can be significant con-
founding factors when T1 is used as a biomarker in lung MRI studies that must be taken into
account to detect underlying patterns of disease.
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