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Summary

DNA methylation was described almost a century ago. However, the rules governing its 

establishment and maintenance remain elusive. Here, we present data demonstrating that active 

transcription regulates levels of genomic methylation. We identified a novel RNA arising from the 

CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to 

DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated 
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with DNMT1 combined with genome-scale methylation and expression profiling extended the 

generality of this finding to numerous gene loci. Collectively, these results delineate the nature of 

DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic 

targets in disease.

Introduction

DNA methylation is a key epigenetic signature implicated in transcriptional regulation, 

genomic imprinting, and silencing of repetitive DNA elements1–2 and it occurs 

predominantly within CpG dinucleotides. CpG dinucleotides are underrepresented in the 

mammalian genome (~1%) and tend to cluster within CpG islands located in the vicinity of 

the transcription start sites (TSSs) of the majority (~70%) of human protein-coding genes3. 

While the bulk of genome is methylated at 70–80% of its CpGs, CpG islands are mostly 

unmethylated in somatic cells3–4. This modification is mediated by the members of the DNA 

methyltransferases (DNMTs) family conventionally classified as de novo (DNMT3a-b) and 

maintenance (DNMT1). In terms of epigenetic inheritance, DNMT1 has the unique ability 

to identify the hemimethylated portion of newly replicated DNA. This feature may explain 

how DNMT1-mediated methylation could be an epigenetic mechanism maintaining the 

status quo. However, it certainly does not explain how DNA methylation is altered, 

particularly in disease states.

To examine how transcription may regulate the levels of genomic methylation, we 

investigated methylation dynamics of the well-studied methylation-sensitive gene 

CEBPA5–7, including the potential involvement of noncoding (nc) RNAs originating within 

CEBPA locus. Recent discoveries of functional ncRNAs have provided new regulatory clues 

to the control of epigenetic marks. Particularly, long ncRNAs (lncRNAs) have been shown 

to regulate gene expression by interacting with chromatin modifiers, modulating 

transcription factor activity and competing for miRNA binding8–16. One unexplored aspect 

of regulation of gene locus DNA methylation was the possible involvement of transcripts 

encoded within the region.

We identified a functional RNA arising from the CEBPA locus (ecCEBPA) that regulates 

CEBPA methylation. This RNA interacts with DNMT1, resulting in prevention of CEBPA 

gene methylation and robust CEBPA mRNA production. We show that such functional 

DNMT1-RNA association occurs in numerous gene loci. We thus propose a novel 

regulatory mechanism of gene methylation governed by RNAs.

Results

Characterization of ecCEBPA

Noncoding transcripts arising from the promoter and the downstream regions of coding 

genes can affect expression of the corresponding genes17–19. We searched and identified 

transcripts upstream and downstream of the intronless CEBPA gene. Strand specific RT-

PCR (data not shown) and Northern blot analysis of RNAs from four leukemic cell lines, 

probing the region immediately after the CEBPA polyadenylation site, revealed the presence 
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of a major band of ~4.5 kb in HL-60 and U937 (where CEPBA is expressed), but not in 

K562 or Jurkat cell lines (where CEBPA is expressed at low or undetectable levels) (Fig. 1a, 

b). The identified transcript is distinct from the ~2.6 kb signal, detected with a CEBPA 

coding region probe, and correlates with CEBPA mRNA expression. Unlike polyadenylated 

CEBPA mRNA (Fig. 1c), this non-polyadenylated transcript is enriched in the nuclear 

fraction (Supplementary Fig. 1a, b) suggesting functional roles independent of protein 

coding potential.

We termed this nuclear non-polyadenylated CEBPA ncRNA “extra-coding (ec) CEBPA”, 

since it does encompass the entire mRNA sequence in the same-sense orientation (shown by 

primer extension and 5′3′RACE; Supplementary Information (SI); Supplementary Fig. 1c, 

d). qRT-PCR analysis confirmed concordant expression between extra-coding and coding 

transcripts, in both cellular and nuclear RNAs (Fig. 1d, e). Similar correlation was observed 

in all tested human tissues (Supplementary Fig. 1e). Importantly, ecCEBPA synthesis 

precedes the expression of its overlapping mRNA in the S phase (SI and Supplementary Fig. 

1f, g) and is regulated by both RNA polymerase II and III (RNAP II and III; SI and 

Supplementary Fig. h–p) as described for other loci20–22.

ecCEBPA inhibits DNA methylation and facilitates CEBPA expression

To examine the functional role of ecCEBPA in regulation of CEBPA transcription, we 

performed both loss and gain-of-function experiments. Knock-down of ecCEBPA in U937 

cell line (up to a 4-fold decrease) achieved by small hairpin (sh) RNAs targeting ecCEBPA 

(but not CEBPA mRNA) led to a decrease of CEBPA mRNA expression of similar 

magnitude (Fig. 2a, b), suggesting that ecCEBPA may regulate CEBPA expression. 

Silencing of the CEBPA gene can be associated with DNA methylation of the 

promoter6–7,23. To examine if there was a connection between ecCEBPA and methylation of 

the CEBPA locus, we analyzed methylation within the distal promoter (located at −0.8–0.6 

kb from the CEBPA TSS; Fig. 2a). Intriguingly, ecCEBPA knockdown led to a significant 

increase in DNA methylation compared to the non-targeting control (Fig. 2c; Supplementary 

Fig. 2a).

To investigate whether enforced expression of the ecCEBPA was sufficient to inhibit DNA 

methylation, the downstream region of the ecCEBPA (R1; Fig. 2a) was overexpressed in 

K562 cells expressing ecCEBPA and CEBPA mRNA at low to undetectable levels (Fig. 1b, 

d). Overexpression of only part of the ecCEBPA was dictated by the necessity to distinguish 

the methylation pattern of the endogenous CEBPA locus from that of the ectopically 

expressed construct.

Ectopic expression of the ecCEBPA (R1) resulted in greater than 3-fold increase in mRNA 

expression (Fig. 2d) whereas overexpression of an unrelated region (UR; located 45 kb 

downstream) and regions immediately outside the ecCEBPA boundaries did not affect 

mRNA levels (Supplementary Fig. 2b–d). Moreover, concomitant decrease of DNA 

methylation in three tested regions within the CEBPA gene, distal promoter, coding region, 

and 3′UTR, accompanied overexpression of ecCEBPA but not of the UR (Fig. 2e; 

Supplementary Fig. 2e, f). Interestingly, comparative analysis of DNA methylation changes 

imposed by ecCEBPA overexpression versus the hypomethylating agent 5′-Azacytidine (5-
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Aza-CR), together with genome-scale analysis (reduced representation bisulfite sequencing, 

RRBS24) of DNA methylation changes imposed by ecCEBPA versus UR overexpression, 

revealed that ecCEBPA-mediated demethylation was relatively selective to the CEBPA locus 

(Supplementary Fig. 2g–l). Indeed, increased mRNA expression and changes in methylation 

status within the loci of the neighboring CEBPG and distant TP73 (on chr1p36) genes were 

achieved after 5-Aza-CR treatment but not after ecCEBPA overexpression (Supplementary 

Fig. 2g–k). Furthermore, RRBS analysis of promoter and 1st exon regions revealed that only 

~3.3% of the interrogated loci (396 out of 11844) were hypomethylated at levels similar to 

the CEBPA locus (Supplementary Fig. 2l).

Furthermore, ecCEBPA downregulation by the universal RNAPs inhibitor Actynomicin D 

and RNAPIII-specific inhibitor ML-60218 (Supplementary Fig. 2m) led to a corresponding 

increase in methylation of the CEBPA locus, in synchronized and unsynchronized U937cells 

(Fig. 2f, g; Supplementary Fig. 2n). Despite comparable decreases in ecCEBPA levels in 

both synchronized and unsynchronized cells (Fig. 2f), DNA methylation increase was more 

prominent in synchronized cells (Fig. 2g), suggesting a cell cycle-specific action of the 

ecCEBPA. Similar effect was observed in ML-60218-treated HL-60 cells (Supplementary 

Fig. 1i; Supplementary Fig. 2o).

Consistently, we observed an inverse correlation between the CEBPA gene locus 

methylation and the levels of ecCEBPA in HL-60, U937 and K562 cell lines (Supplementary 

Fig. 2p).

Collectively, these data highlight the regulatory role of the ecCEBPA in CEBPA gene locus 

methylation, most prominently during the S phase.

DNMT1 binds to RNA with greater affinity than to DNA

The changes in CEBPA methylation mediated by ecCEBPA prompted us to try to unveil the 

mechanism through which it is achieved. Among DNMTs, DNMT1 is the one whose 

expression and enzymatic activity peaks during S phase25. Increased ecCEBPA expression 

occurs during the S phase (Supplementary Fig. 1g), whereas inhibition of ecCEBPA during 

S phase results in a substantial increase of CEBPA locus DNA methylation (Fig. 2f, g, 

Supplementary Fig. 2n). We therefore asked whether the presence of ecCEBPA during S 

phase led to RNA interference of DNMT1 activity.

To determine if DNMT1 physically associates with ecCEBPA we performed RNA 

Immunoprecipitation (RIP) with specific anti-DNMT1 antibody (Supplementary Fig. 3a). 

We observed ecCEBPA enrichment in DNMT1-RNA precipitates, demonstrating a physical 

interaction between ecCEBPA and DNMT1 (Fig. 3a, b; Supplementary Fig. 3a). Analysis of 

polyA(+)/(−) fractions in DNMT1-RNA precipitates revealed enrichment of CEBPA 

transcripts in the polyA(−) fraction (Supplementary Fig. 3b, c), suggesting that the major 

component of CEBPA transcripts in DNMT1-RNA precipitates was ecCEBPA.

To investigate the molecular properties of RNA-DNMT1 interaction in vitro, we performed 

RNA electrophoresis mobility shift assays (REMSA). RNA oligonucleotides corresponding 

to the 5′ and 3′ parts of the ecCEBPA were selected by: (i) ability (R2, R5 and R6) and 
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inability (R4) to fold into stem-loop structures26; (ii) presence (R2, R5 and R6) or absence 

(R4) of CpG dinucleotides (Fig. 3a). RNA-DNMT1 complex formation was observed with 

all RNA oligonucleotides able to fold into stem-loop structures (Fig. 3c–e). Unlike DNA27, 

CpG UpG substitutions, neutral with regard of secondary structures, did not affect binding 

(mutR2; Fig. 3c). In contrast, mutations abrogating RNA folding ability affected RNA-

DNMT1 binding (mut R5; Fig. 3e). Analyses extended to a number of RNA 

oligonucleotides not related to the ecCEBPA (single stranded [ss] R1 and R3; and double 

stranded [ds] R13; Supplementary Fig. 3d), confirmed DNMT1 binding to stem-loop 

structured RNAs (SI and Supplementary Fig. 3e–f). Importantly, REMSA performed in 

presence of increasing concentrations of spermine, a molecule with four positive charges at 

high density, excluded a case of charge-charge interactions (Supplementary Fig. 3g), 

supporting a strong element of structural recognition between DNMT1 and RNA

To determine the relative affinity of DNMT1 for ecCEBPA versus DNA, ssRNA 

oligonucleotides capable of forming secondary structures (R5) and corresponding 

unmethylated (umDNA; D5/D6), hemimethylated (hmDNA; D5/D6), and fully methylated 

(mDNA; D5/D6) dsDNA (Fig. 3a), at a constant molar concentration, were titrated with 

increasing range of DNMT1 enzyme concentrations using EMSA. RNA formed complexes 

beginning at <0.013 μM DNMT1, whereas DNA at >0.026 μM DNMT1 (Fig. 3f), with a 

mean dissociation constant (Kd) for RNA of 0.045μM and between 0.082 and 0.14μM for 

DNA, indicating that RNA has a stronger affinity for the enzyme than DNA (Fig. 3f). 

Consistently, RNA unable to fold into stem-loop structures (R4; Fig. 3g) did not display the 

same affinity for DNMT1 as “folded” RNA (R5; Fig. 3f, g), demonstrating that RNA 

secondary structure represents an essential feature of RNA-DNMT1 complex formation.

Finally, to assess DNMT1 domain required for the RNA binding, DNMT1-GST-purified 

domains (Fig. 3h) were incubated with RNA oligonucleotides able or unable to fold into 

stem-loop structures, R5 and R4, respectively (Fig. 3e, g). The catalytic domain, including 

the Target Recognition Domain (TRD)28, shared by both fragments F4 and F5, selectively 

bound the “folded” RNA oligonucleotide (Fig. 3h). Next, we deleted the DNMT1 region 

including the sequence overlapping F4 and F5. Unfortunately, even minimal removal of the 

TRD led to disruption of DNMT1 enzymatic activity (data not shown) making further 

refinement of the binding domain not feasible.

Collectively, these data indicate that RNA can associate with DNMT1. This interaction is 

not contingent upon the presence of CpG dinucleotides, is not a trivial ion pairing, and is 

dependent upon certain RNA secondary structures features. Importantly, DNMT1, via its 

catalytic domain, binds with higher affinity to folded RNA than to DNA.

Transcription interferes with DNMT1 methylation of DNA

To examine whether newly synthesized transcripts could interfere with the ability of 

DNMT1 to methylate hmDNA, we performed a combined in vitro transcription-DNA 

methylation assay. A hmDNA segment (bottom strand methylated) was engineered 

downstream of the T7 RNA polymerase promoter (Supplementary Fig. 4a–h), and DNMT1 

methylase activity was monitored in presence and absence of transcription (Fig. 4a–d). In 

the absence of polymerase, there was, as expected, increased DNA methylation of the upper 
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strand (Fig. 4d–f; Supplementary Fig. 4i–j). In contrast, no changes in DNA methylation 

were observed in the presence of both polymerases and DNMT1 (Fig. 4c–f and 

Supplementary Fig. 4i–j). Standard in vitro DNA methylation assays confirmed the 

enzymatic impairment of DNMT1 mediated by ribooligonucleotides (Fig. 4g). Similarly, T7 

RNA polymerase29-induced transcription in living cells led to a pronounced decrease in 

DNA methylation (SI and Supplementary Fig. 4k–p).

Thus, RNA can complex with and impact DNMT enzymatic activity in vitro30–32 and in 

living cells. These findings suggest that RNAs arising from methylation-sensitive genes and 

their promoters can regulate expression of the corresponding genes by interfering with DNA 

methylation.

RNA inhibition of DNA methylation is a global effect

Our observations suggested an inverse correlation between RNA-DNMT1 complexes and 

methylation of the CEBPA locus. Therefore, we sought to explore the extent of DNMT1-

RNA association in other genomic loci with respect to DNA methylation and gene 

expression profiles. cDNA libraries made of RNAs co-immunoprecipitated with anti-

DNMT1 antibody (DNMT1 library) and IgG (control library) were tested for ecCEBPA 

enrichment (“quality control”; Supplementary Fig. 5a) and subsequently analyzed by 

massively parallel sequencing11. Using 76-base paired-end sequencing, we produced a total 

of 30.25 and 26.95 million pair reads for DNMT1 and control libraries, respectively 

(detailed analysis described in Methods). All significant DNMT1 peaks (a total of 16,186; 

P<0.0001; false discovery rate of 7.5%) were annotated with CEAS33 build on RefSeq hg19 

(Supplementary Fig. 5b). All DNMT1 peaks were also annotated using the known RNAs 

databases provided by HOMER34 (Supplementary Fig. 5c). We focused on genomic regions 

encompassing the 3 kb upstream to the TSS and downstream to the transcription ending site 

(TES) of the annotated genes, referred to as “gene loci”. We identified 6,042 gene loci 

containing one or more peaks from the DNMT1 library (Methods: Data integration).

To confirm that DNMT1 RIP-Seq peaks were associated with actual transcribed elements, 

RNA-Seq was conducted on polyA (−) HL-60 RNA. 375 million 76-bp paired-end reads 

were aligned to hg19 using TopHat235 and assembled using cufflinks36. 14,077 (87.02%) of 

specific DNMT1 peaks overlapped with a transcribed element from the RNA-Seq assembly 

of the polyA (−) HL-60 RNA fraction. Thus, a vast majority of DNMT1-interacting-RNAs 

(DiRs) were not polyadenylated.

Additionally, we performed a similar analysis with total HL-60 RNA (300 million 76-bp 

paired-end reads). 14,497 specific DNMT1 peaks (89.61%) were found to overlap with 

transcripts from the total HL-60 RNA-Seq assembly. A merged assembly of the two RNA 

libraries validated a total of 15,238 (94.20%) DNMT1 RIP-Seq peaks (Fig. 5a). These 

findings confirmed the existence of DiRs on a genome-wide level. Next, we assessed the 

linkage between genomic loci giving rise to DiRs, levels of genomic methylation by 

RRBS24 and expression of the corresponding nearby genes by microarray analysis, 

performed on HL-60 cells. Within all 15,806 RRBS-covered loci, 10,973 loci were not 

covered by DNMT1 specific peaks (DNMT1-unbound group) and 4,833 loci were covered 
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by DNMT1 specific peaks (DNMT1-bound group). These 4,833 loci represent the majority 

(79.99%) of all 6,042 gene loci identified by DNMT1 RIP-Seq (Supplementary Fig. 5d).

Within DNMT1-bound and unbound groups, genes were stratified according to expression 

and methylation levels (the latter computed as the mean of all CpG β-scores from -2 kb from 

the TSS to the end of the first intron). A negative correlation between DNMT1-RNA 

association with gene locus methylation status was observed (Supplementary Fig. 5e).

Next, we clustered genes within both groups according to levels of expression and 

methylation. We defined genes as: “expressed” or “low or not expressed” if the log2 score 

was above or below 4, respectively; and “hypomethylated” or “methylated” if the mean of 

all CpG scores was below or above 50%, respectively (Methods: RRBS-Data integration). 

This approach allowed us to identify four clusters within DNMT1-unbound, DNMT1-

bound, and all RRBS-covered groups (Fig. 5b). Hypomethylated and expressed genes 

appeared to be predominant in the DNMT1-bound group (cluster C), accounting for 56.64%; 

whereas hypermethylated and low or unexpressed genes represented the 51.45% in the 

DNMT1-unbound group (cluster B). Moreover, the numbers of genes in clusters B (5646 

genes) and C (2737) were significantly higher than numbers of genes in clusters A, F, E 

(2528, 1653, 1146) and G, H, D (584, 930, 582), respectively (P-value <0.0001). Examples 

of genes from clusters B and C are presented in Fig. 5c and Supplementary Fig. 5f–h). 

Further, genes from cluster C belonged to a multiplicity of biological processes, indicating 

the diversity of DiRs (Supplementary Fig. 6a). Interestingly, ~60% of these biological 

process gene ontology (BP-GO) terms (pvalue <= 0.01) were shared with pyknons-related 

BP-GO37. This overlap is 71 fold higher than expected. Moreover, among all DNMT1 RIP-

seq peaks, 46% carry at least one pyknon (Supplementary Fig. 6b) suggesting a potential 

relation between DiRs and pyknons.

Grouping of genes in clusters A, F, E, G, H, and D could result from technical limitations of 

RRBS, contingent upon the genomic location of the restriction sites and the DNA library 

size-selection38, or these genes may be governed by yet another mechanism of 

transcriptional control.

In conclusion, we have generated the first comprehensive map cross-referencing DiRs to 

DNA methylation and gene expression. These data demonstrate that RNA-

DNMT1association is widespread and might modulate genomic DNA methylation (Fig. 5d).

Discussion

This study explores the role of a new class of RNAs: DNMT1-interacting RNAs. Using the 

CEBPA gene as a model, we show that mRNA transcription is accompanied by the 

production of an additional RNA species, ecCEBPA. In every instance studied, DNA 

methylation levels are inversely correlated with ecCEBPA levels, and the extent of DNA 

methylation is determined by the absence or presence of ecCEBPA (Fig. 2).

We demonstrate that ecCEBPA associates with DNMT1 and establish a functional link 

between ecCEBPA and CEBPA expression as through RNA-DNMT1 association.
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We show that RNAs capable of adopting stem-loop structures exhibit the potential to 

associate with DNMT1, suggesting that the basis of this preferential interaction is 

recognition of RNA secondary structure (Fig. 3).

Importantly, we demonstrate that this type of RNA-DNMT1 association is not restricted to 

the CEBPA gene locus. We have globally identified RNA species associated with DNMT1 

and their relationship to DNA methylation and gene expression. These alignments defined a 

large set of expressed unmethylated genes and a complementary set of silent methylated 

genes that could possibly be induced following expression of the DiR.

Our findings suggest a model of site specific DNMT1 sequestration in which RNAs act as a 

shield, halting DNMT1 and thus modulating DNA genomic methylation at their site of 

transcription (Fig. 5d). Indeed, the loss of CEBPA locus methylation following 

overexpression of the ecCEBPA does not support a model of trivial titration (‘squelching’39) 

of DNMT1 but suggests a cis regulatory role of the DiR. We propose a model wherein 

RNAs contain a locus-selective triplex/quadruplex40 forming part, the ‘anchor’, mooring the 

DNMT1-RNA complex to the locus, and a DNMT1-interacting part, the ‘bait’, stem loop-

like forming sequence serving to lure the DNMT1 into association. DNMT1 sequestration 

by RNA does resemble a competing mechanism described for other regulatory RNAs, e.g., 

competing endogenous RNAs (ceRNAs)15–16,41. However, unlike ceRNAs, the ecCEBPA 

model also introduces the requirements for both functional and physical co-

compartmentalization of the RNA, its parental locus, and DNMT1. Given the DiR’s ability 

to bind DNMT1, it is tempting to hypothesize that DiRs represent a novel class of RNA 

regulons42.

Taken together, these data support the hypothesis that RNA participates in the establishment 

of genomic methylation patterns by interacting with DNMT1 and pave the way for the site-

specific adjustments of aberrant DNA methylation.

METHODS

Cell Culture

All cell lines were obtained from ATCC and grown according to the manufacturer’s 

instructions in the absence of antibiotics. The DNMT1 hypomorphic cell line HCT116 hypo 

and wild type counterpart HCT116 were grown in McCoy’s 5A modified medium 

supplemented with 10% FCS.

RNA isolation and Northern Blot Analysis

Total RNA isolation, electrophoresis, transfer, and hybridization were carried out as 

described49. Cytoplasmic RNA was isolated with the Paris kit (Ambion) according to the 

manufacturer’s recommendations. Preparation of nuclear RNAs: we used a method derived 

from protocols of nuclei isolation50, with minor modifications. Briefly, equal amounts of 

viable cells (~50 million) were washed with ice-cold PBS supplemented with 5 mM vanadyl 

complex, 1 mM PMSF and resuspended in the ice-cold lysis buffer: 1x Buffer A (10 mM 

HEPES-NaOH pH 7.6; 25 mM KCl; 0.15 mM spermine; 0.5 mM spermidine; 1 mM EDTA; 

2 mM Na butyrate); 1.25 M sucrose; 10% glycerol; 5 mg/mL BSA; 0.5% NP-40; freshly 
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supplemented with protease inhibitors (2 mM leupeptin, add as x400; 2 mM pepstatin, add 

as x400; 100 mM benzamidine, add as x400; a protease inhibitor cocktail (Roche Applied 

Science, Cat. No. 1836153), 1 tablet/375 μL H2O, add as x100; 100 mM PMSF, add as 

x100); 2 mM vanadyl complex (New England Biolabs); and 20 units/mL RNase inhibitor 

(RNAguard; Amersham Biosciences). Samples were incubated at 0°C for ~10 minutes and 

passed through numerous 40 up and down strokes in a Dounce homogenizer (10 with pestle 

A and 30 with pestle B). The pelleted nuclei were resuspended in 0.5 ml lysis buffer and 

diluted with 2.25 mL Dilution Buffer (2.13 mL “Cushion” buffer plus 0.12 mL 0.1 g/mL 

BSA), freshly supplemented with protease inhibitors and overlaid onto 2 mL “cushions” 

(200 mL “Cushion” buffer consists of 15 mL ddH2O; 15 mL 20x Buffer A; 30 mL glycerol; 

240 mL 2.5 M sucrose; freshly supplemented with protease inhibitors) into one SW 55 Ti 

tube and centrifuged at 24,400 rpm, 60 minutes, 4°C. The pelleted nuclei were resuspended 

in 1 mL Storage buffer (1.75 mL ddH2O; 2 mL glycerol; 0.2 mL 20x Buffer A), freshly 

supplemented with protease inhibitors. Nuclear RNAs were extracted as described50. All 

total, cytoplasmic and nuclear RNA samples used in this study were treated with DNase I 

(10 U of DNase I per 3 μg of total RNA; 37°C for one hour; in the presence of RNase 

inhibitor). After DNase I treatment, RNA samples were extracted with acidic phenol (pH 

4.3) to eliminate any remaining traces of DNA. Polyadenylated and non-polyadenylated 

RNA fractions were selected with the MicroPoly(A)Purist™ purification kit (Ambion). 

cDNA syntheses were performed with Random Primers (Invitrogen) with Transcriptor 

Reverse Transcriptase (Roche Applied Science) according to the manufacturer’s 

recommendation. cDNA was purified with a High Pure PCR Product Purification Kit 

(Roche Applied Science).

qRT-PCR

SYBR green reactions were performed using iQ Sybr Green supermix (Biorad; Hercules, 

CA); PCR conditions: 95°C (10 min), followed by 40 cycles of 95°C (15s) and 60°C (1min) 

72°C (1min). TaqMan analysis was performed using Hotstart Probe One-step qRT-PCR 

master mix (USB); PCR conditions: 50°C (10 min.), 95°C (2 min.), followed by 40 cycles of 

95°C (15 sec.) and 60°C (60 sec.). Primers and probes are presented in Supplementary Data 

1 (SI). qRT-PCR primer set for the CEBPA mRNA is located in the coding region (black 

double-headed arrow Fig. 1a) and after the polyA signal for the ecCEBPA (white double-

headed arrow Fig. 1a).

Primer extension and 5′/3′ RACE

cDNA from the HL-60 cell line was synthesized as described above and run in alkaline 

conditions51. Southern blot transfer and hybridization with oligonucleotide AL16 were 

performed as previously reported51. Oligonucleotide sequences are shown in Supplementary 

Data 1 (SI). 5′/3′ RACE was performed on two myeloid cell lines HL-60 and U937 using 

the Exact START™ Eukaryotic mRNA 5′- & 3′-RACE Kit (Epicentre) according to the 

manufacturer’s instructions. See Supplementary Data 1 (SI) for primer sequences.
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Double Thymidine block (early S-phase block)

HL-60 cells were grown to 70–80% confluence, washed twice with 1xPBS and cultured in 

DMEM (10% FCS) + 2.5 mM Thymidine for 18 h (first block). Thymidine was washed out 

with 1xPBS and cells were grown in DMEM (10% FCS). After 8 hours cells were cultured 

in presence of thymidine for 18 h (second block) and then released as described. Synchrony 

was monitored by flow cytometry analysis (propidium iodide staining) using a LSRII flow 

cytometer (BD Biosciences) at the Harvard Stem Cell Institute/Beth Israel Deaconess 

Medical Center flow cytometry facility.

DRB, ML-60218, α-Amanitin and Actinomycin D treatment

After release from double thymidine block, HL-60 cells were treated with 100 μM 5,6-

Dichlorobenzimidazole 1-β–D-ribofuranoside52 (DRB) (Sigma Aldrich) for 1, 2, and 3 

hours. HL-60 cells were treated with 12.5, 25, 50, or 100 μM ML-6021853–54 

(Calbiochem®) for 24 hours. HL-60 cells were treated with 5, 23, 50, 75, 100, or 150 μg/mL 

α-Amanitin (Sigma-Aldrich) for 14 hours. Synchronized and unsynchronized U937 cells 

were treated with ML-60218 at 100 μM and Actinomycin D (Sigma-Aldrich) at 150 μM for 

7 hours. Total RNA was harvested as described above and expression levels of CEBPA, 

ecCEBPA, and 5S were measured by TaqMan qRT-PCR.

Nuclear Chromatin (ChIP) and RNA immunoprecipitation (RIP)

ChIP was performed as previously described19. Fold enrichment was calculated using the 

formula 2 (−ΔΔCt [ChIP/NIS]). Antibodies used for ChIP are listed in Supplementary Table 1 

(SI).

RIP was performed as described by Ebralidze et al.14. Day I: Cross-linked nuclei were 

collected as following: 60×106 HL-60 cells were cross-linked with 1% formaldehyde 

(formaldehyde solution, freshly made: 50 mM HEPES-KOH; 100 mM NaCl; 1 mM EDTA; 

0.5 mM EGTA; 11% formaldehyde) for 10 minutes at room temperature. Crosslinking was 

stopped by adding 1/10th volume of 2.66 M Glycine, kept for 5 minutes at room temperature 

and 10 minutes on ice. Cell pellets were washed twice with ice-cold PBS (freshly 

supplemented with 1 mM PMSF). Cell pellets were resuspended in cell lysis buffer (volume 

= 4 mL): 1x Buffer (10 mM Tris pH 7.4; 10 mM NaCl; 0.5% NP-40, freshly supplemented 

with protease inhibitors (protease inhibitors cocktail: Roche Applied Science, Cat. No. 

1836153, 1 tablet/375 μL H2O; add as x100), 1 mM PMSF, and 2 mM vanadyl complex 

(NEB). Cells were incubated at 0°C for 10–15 minutes and homogenized by Dounce (10 

strokes pestle A and 40 strokes pestle B). Nuclei were recovered by centrifugation at 2,000 

rpm for 10 minutes at 4°C. Nuclei were resuspended in 3 ml 1x Resuspension Buffer (50 

mM HEPES-NaOH, pH 7.4; 10 mM MgCl2) supplemented with 1 mM PMSF and 2 mM 

vanadyl complex. DNase treatment (250 U/ml) was performed for 30 minutes at 37°C, and 

EDTA (final concentration 20 mM) was added to stop the reaction. Resuspended nuclei 

were sonicated once for 20s (1 pulse every 3 seconds) at 30% amplitude (Branson Digital 

Sonifer, Danbury, CT). Immunoprecipitation for RIP was performed as follows: Before 

preclearing, the sample was adjusted to 1% Triton X-100; 0.1% sodium deoxycholate; 

0.01% SDS; 140 mM NaCl; Protease inhibitors; 2 mM vanadyl complex; and 1 mM PMSF 

to facilitate solubilization. Preclearing step: ~ 50 μL magnetic beads (Protein A or G 
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Magnetic Beads; #S1425S or #S1430S NEB) were added to the sample and incubation was 

carried out for 1 h on a rocking platform at 4°C. Beads were removed in a magnetic field. 

The sample was divided into three aliquots: (i) antibody of interest: either DNMT1 antibody 

(Abcam, cat# ab87656) or anti-cap antibody (Anti-m3G-/m7G-cap; Synaptic Systems); (ii) 

preimmune serum: IgG (Sigma-Aldrich); (iii) no antibody, no serum (input). 5 μg antibody 

or preimmune serum was added to the respective aliquot and incubation performed on a 

rocking platform overnight at 4°C. Input was stored at −20°C after addition of SDS to 2% 

final concentration. Day II. 200 μL of Protein A coated super-paramagnetic beads (enough 

to bind 8 μg IgG) were added to the samples and incubated on a rocking platform for 1 h at 

4°C. Six washes were performed with immunoprecipitation buffer (150 mM NaCl; 10 mM 

Tris-HCl, pH 7.4; 1 mM EDTA; 1 mM EGTA pH 8.0; 1% Triton X-100; 0.5% NP-40 

freshly supplemented with 0. 2 mM vanadyl complex and 0.2 mM PMSF) in a magnetic 

field. Proteinase K treatment to release DNA/RNA into solution and to reverse HCHO 

crosslinking was performed in 200 μL of: 100 mM Tris-HCl, pH 7.4; 0.5% SDS for the 

immunoprecipitated samples and in parallel for the input; Proteinase K, 500 μg/ml at 56°C 

overnight. Day III. Beads were removed in magnetic field. Phenol (pH 4.3) extraction was 

performed after addition of NaCl (0.2 M final concentration). EtOH precipitation (in the 

presence of glycogen); 3 hours at −20°C. The pellet was dissolved in 180 μL H2O, heated at 

75 °C for 3 minutes, and immediately chilled on ice. Samples were treated with DNase I 

(250 U/ml) in the presence of RNase inhibitor 300 U/ml in x1 buffer # 2 (NEB) at 37°C for 

30 minutes. Phenol (pH 4.3) extraction and EtOH precipitation were repeated. 15. The RNA 

pellet was dissolved in 50 μL H2O.

Tobacco Acid Pyrophosphatase (TAP), 5′-Phosphate-Dependent- Exonuclease 
(Terminator) treatment

Equal amounts of RNA harvested from HL-60 cells (as described above) were digested with 

TAP (Epicentre, Cat. # T81050), Terminator (Epicentre, Cat. # TER51020), or no enzyme 

according to the manufacturer’s instructions. RNA was re-extracted in presence of Glycogen 

(Ambion) with acidic phenol (pH 4.3), precipitated with Ethanol and resuspended in ddH2O. 

ecCEBPA, CEBPA, and 18S expression levels were measured by qRT-PCR using the 

TaqMan primer sets indicated in Supplementary Data 1 (SI).

Down-regulation of ecCEBPA

Three different short hairpin RNAs targeting human ecCEBPA and scrambled control were 

designed according to Dharmacon software and cloned into the lentiviral vector pLKO.1 

(Sigma Aldrich), which has a puromycin selection marker. shRNA sequences are shown in 

Supplementary Data 1. Lentiviral particles were produced as previously described55. 

HEK293T cells were co-transfected with either empty vector or the pLKO-shRNA vector 

and Gag-Pol and Env constructs using Lipofectamine TM 2000 (Invitrogen) according to the 

manufacturer’s recommendation. Virus containing supernatants were collected 48 and 72 

hours after transfection and concentrated using a Centricon Plus-70 100000 MWCO column 

(Millipore). Lentiviral transduction was performed in the presence of Hexadimethrine 

bromide (final concentration 8 μg/ml) in the human myeloid cell line U937. Puromycin 

(2μg/ml) was added to the cultures two days after infection. Resistant clones were selected 

and screened for down-regulation of ecCEBPA by qRT-PCR.
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Up-regulation of ecCEBPA

The 3′ ecCEBPA region (R1), the upstream (upR) and downstream (dwR) ecCEBPA 

regions, and the unrelated genomic region (UR, see Supplementary Data 1) were cloned into 

the pBabe retrovirus vector harboring a puromycin selection marker (Addgene; plasmid 

1764). Oligonucleotide sequences used to amplify both regions are shown in Supplementary 

Data 1. K562 cells were transfected with the Amaxa Cell Line Nucleofector® Kit V, 

Program T-003. Puromycin (2 μg/ml) was added to the cultures 2 days after transfection. 

Resistant clones were selected and screened for upregulation of ecCEBPA and the unrelated 

region (UR) by Northern Blot Analysis.

Bisulfite Treatment, Combined Bisulfite Restriction Analysis Assay (COBRA) and Bisulfite 
Sequencing

The methylation profile of the CEBPA gene locus was performed by bisulfite sequencing as 

previously described56. Briefly, 1μg of genomic DNA was bisulfite converted by using the 

EZ DNA Methylation kit (Zymo Research; Orange, CA). Primers and PCR conditions for 

bisulfite sequencing and combined bisulfite restriction analysis assay (COBRA) are 

summarized in Supplementary Data 1. For COBRA, PCR products were gel-purified and 

incubated with BstUI at 60°C for 3 h. The digested DNA was then separated on a 3.5% 

agarose gel and stained with ethidium bromide. For bisulfite sequencing, PCR products were 

gel-purified (Qiagen) and cloned into the pGEM®-T Easy Vector System (Promega). 

Sequencing results were analyzed using BiQ analyzer software57. Samples with conversion 

rate <90% and sequences identity <70% as well as clonal variants were excluded from our 

analysis55. The minimum number of clones for each sequenced condition was ≥ 6. Primer 

sequences are shown in Supplementary Data 1 (SI).

5′ Azacytidine (5Aza-CR) treatment58

K562 cells were treated with 5Aza-CR (Sigma Aldrich) according to the manufacturer’s 

instructions. Medium was refreshed every 48 hours. RNA (for RT-PCR) and genomic DNA 

(for bisulfite sequencing) were isolated after 7 days of treatment.

MassARRAY

Quantitative DNA methylation analysis using the MassARRAY technique was performed 

by Sequenom, Inc., as previously described43. Briefly, 1 μg of genomic DNA was converted 

with sodium bisulfite using the EZ DNA methylation kit (Zymo Research, Orange, 

California), PCR amplified, in vitro transcribed, and then cleaved by RNase A. The samples 

were then quantitatively tested for their DNA methylation status using matrix-assisted laser 

desorption ionization-time of flight mass spectrometry. The samples were desalted and 

spotted on a 384-pad SpectroCHIP (Sequenom) using a MassARRAY nanodispenser 

(Samsung), followed by spectral acquisition on a MassARRAY Analyzer Compact MALDI-

TOF MS (Sequenom). The resulting methylation calls were obtained using the EpiTyper 

software v1.0 (Sequenom) to generate quantitative results for each CpG site or an aggregate 

of multiple CpG sites. The methylation levels of aggregated multiple CpGs were calculated 

as the mean of each CpGs methylation value and presented as percentage. Primer sequences 

are provided in Supplementary Excel File 1.
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Transfection of human DNMT1-HA tag construct and western blot analysis

The human DNMT1-HA tagged cloned into the expression vector pCDNA3.1 was a kind 

gift from Prof. Steven Baylin. HEK293T cells were transfected using Lipofectamine 2000, 

and 2 days later harvested for western blot analysis. Single cell suspensions were lysed with 

modified RIPA buffer, and whole cell lysates separated on 6 % SDS-PAGE gels. 

Immunoblots were stained with the following primary antibodies: DNMT1 (1:5000; Abcam, 

cat# ab87656) and HSP90 (1:2000, BD Bioscience). All secondary antibodies were 

horseradish peroxidase (HRP) conjugated (Santa Cruz) and diluted 1:5000 for rabbit-HRP, 

and 1:3000 for mouse-HRP. Western Blot analysis for the HCT116 hypo and wild type cell 

line was similarly performed.

T7 polymerase-induced transcription

The T7 expression system is based on technology developed at Brookhaven National 

Laboratory under contract with the U.S. Department of Energy and is the subject of patents 

and pending applications. Full information may be obtained from the Office of Intellectual 

Property and Sponsored Research, Brookhaven National Laboratory, Upton, New York 

11973, telephone 631-344-7134. Maps of T7 polymerase constructs are presented in Dunn et 

al.,59. Briefly, the murine RAW 264.7 cell line was stably transfected with a construct 

carrying the human genomic segment under T7 promoter control (derived from pBlueScript 

plasmid; Agilent, USA). After selection in G418, individual clones were transfected with T7 

polymerase-expressing mammalian constructs and were tested by COBRA for genomic 

methylation.

Electrophoretic gel mobility shift assays (EMSAs) and Kd determination

DNA and RNA oligonucleotides (15 pmol) were end-labeled with [γ-32P] ATP (Perkin 

Elmer) and T4 polynucleotide kinase (New England Biolabs). Reactions were incubated at 

37°C for 1h and then passed through G-25 spin columns (GE Healthcare) according to the 

manufacturer’s instructions to remove unincorporated radioactivity. Labeled samples were 

gel-purified on 10% polyacrylamide gels. Binding reactions were carried out in 10 μL 

volumes in the following buffer: 5 mM Tris pH 7.4, 5 mM MgCl2, 1 mM DTT, 3% v/v 

glycerol, 100 mM NaCl. Various amounts (0.021–0.156 μM) of purified DNMT1 protein 

(BPS Bioscience Inc.) were incubated with 1.1 nM of 32P-labeled dsDNA and ss/ds RNAs. 

In the competitive assay, a fixed amount of protein and increasing amounts of competitors 

(dsDNA or poly [dI-dC]) were used. All reactions were assembled on ice and incubated at 

room temperature. Samples were separated on 6% native polyacrylamide gels (0.5xTBE; 4 

°C; ~3h at 140 V). Gels were dried and exposed to X-ray film and/or PhosphoroImager 

screens. Quantitation was done with ImageQuant software. For affinity assays, the percent 

shifted species was determined as follows: the migration of the labeled DNA in this reaction 

was defined as zero percent shifted and the ratio of the PhosphoroImager counts in the area 

of the lane above this band to the total counts in the lane was defined as background and 

subtracted from all other lanes. This band represented total input. Subsequent lanes 

containing DNMT1-nucleic acid complexes were treated identically, and the percentage 

complex formation was calculated as follows: [% bound complex = (1 − ((unbound − 

background)/(Input − background))]. All experiments contained a control reaction lacking 
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DNMT1. The percentage complex formation was plotted as a function of DNMT1 

concentration using non-linear regression analysis performed with Prism 4.0a software. 

RNA and DNA oligonucleotides used in EMSA are shown in Figure 3a and Supplementary 

Figure 3d and listed in Supplementary Data 1.

ecCEBPA binding to GST-DNMT1 fragments

GST and GST-DNMT1 fragments were expressed and purified by glutathione sepharose 

affinity beads (GE Healthcare Life Sciences) as previously described60. Protein 

concentrations for the recombinant GST and GST-DNMT1 fragments were determined by 

gel electrophoresis and subsequent Coomassie staining and densitometry. 32P end-labeling 

of ecCEBPA oligonucleotides was carried out at 37°C for 30 min in a total volume of 50 μl. 

The reaction contained 50 pmoles of ecCEBPA, adenosine 5′-Triphosphate, [γ-32P] (specific 

activity 3000 Ci/mmol, Perkin Elmer), and 20 units of T4 kinase (New England Biolabs) 

mixed in assay buffer (70 mM Tris-HCl, 10 mM MgCl2, 5 mM Dithiothreitol, pH 7.6). The 

labeled ecCEBPA-32P was purified with illustraMicroSpin G-25 Columns (GE Healthcare 

Life Sciences) according to manufacturer’s specifications. Equal amounts of the GST and 

GST-DNMT1 fragments were mixed with 5μl ecCEBPA-32P, in duplicate, and incubated at 

37°C for 10 min in a total volume of 25 μL of reaction buffer (50 mM Tris-HCl, 1 mM 

Dithiothreitol, 1 mM EDTA, 5 % Glycerol, pH 7.8). The sepharose beads were then washed 

4 times in phosphate buffered solution and placed in 3 ml of scintillation fluid and 

bound 32P was measured for 1 minute. All measurements were normalized to 32P readings 

for the corresponding input 32P-ecCEBPA.

in vitro Transcription-Methylation Assay in vitro

transcription-methylation assays were performed on hemimethylated DNA (hmDNA; 

described in Supplementary Information, legend to Supplementary Figure 4) in the presence 

or absence of 5 U of human DNMT1 enzyme (New England Biolabs) and 5 U of T7 RNA 

polymerase (Promega) or 5 U of E. coli RNA polymerase sigma-saturated holoenzyme 

(Epicentre). Reactions were performed in DNMT1 buffer according to the manufacturer’s 

recommendations supplemented with rNTPs and 1.25 mM MgCl2, including the “DNMT1 

only” reaction. This pre-determined concentration of Mg2+ cations is high enough to sustain 

activity of RNA polymerases and low enough not to inhibit DNMT1 activity.

DNMT1 in vitro methylation assay

DNMT1 enzymatic assays were carried out in duplicate at 37°C, for 30 min in a total 

volume of 25 μL. The reaction contained S-adenosyl-L-[methyl-32H]methionine (AdoMet) 

(specific activity 18 Ci/mmol, Perkin Elmer), 200ng of substrate DNA, recombinant 

DNMT1 enzyme (25 pmoles), and ecCEBPA (25 pmoles) mixed in assay buffer (50 mM 

Tris-HCl, 1 mM Dithiothreitol, 1 mM EDTA, 5 % Glycerol, pH 7.8). Methyltransferase 

reactions were snap frozen in an ethanol-dry ice bath. The entire reaction volume (25 μl) 

was spotted on 2.5 cm DE81 membranes (GE Healthcare, catalog no. 3658–325). These 

membranes were processed by washes in 3×1 ml of 0.2 M ammonium bicarbonate, 3×1 ml 

of water, and 3×1 ml of ethanol. Processed membranes were air-dried, placed in 3ml of 
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scintillation fluid and tritium incorporation was measured for 1 min. Background subtraction 

(no DNA substrate) was performed for all experimental sample counts.

RNA Immunoprecipitation Sequencing (RIPseq)

Total RNA immunoprecipitated with DNMT1 antibody (Abcam, Cat. # ab87656) or IgG 

(Sigma Aldrich) was processed for sequencing as described by Mortazavi et al61 with some 

modifications. Double stranded cDNA was synthesized using the Just cDNA Double-

Stranded cDNA Synthesis Kit (Agilent Technology, Santa Clara, CA) according to the 

manufacturer’s instructions. Illumina sequencing libraries were constructed from these 

cDNA using a ChIP-Seq sample preparation kit (cat# IP-102-1001, Illumina, San Diego, 

CA) with minor modifications. Illumina paired-end adaptor and PCR primers were used to 

replace the single read adaptor and primers in the kit. Constructed libraries were subjected to 

a final size-selection step on 10% Novex TBE gels (Invitrogen, Carlsbad). DNA fragments 

of 175 – 200 bp were excised from a SYBR-green-stained gel. DNA was recovered from the 

gel and quantified following Illumina’s qPCR quantification protocol. Paired end 

sequencing of these libraries was then performed on an Illumina GA IIx to achieve 2×76 bp 

reads. Paired-End reads were trimmed to 50 bp and aligned to the reference genome hg19 

using BWA62 with the following parameters: bwa aln -o 1 -l 25 -k 2; bwa sampe -o 200. To 

estimate a normalization factor (alpha) between the immunoprecipitations, the genome was 

divided into course bins (10 Kb) and reads were counted for DNMT1 RIP and IgG control in 

each bin. A linear regression was fitted across all non-zero bins and the slope of the 

regression was used as a scaling factor (alpha) to normalize the RIP and control libraries. To 

identify distinct regions specifically bound by DNMT1, all downstream analyses were 

conducted on a set of regions derived by aggregating overlapping DNMT1 RIP reads into 

contiguous intervals. Each DNMT1 interval was tested for significance by comparing the 

number of reads within the interval the number of reads in the same region of the IgG 

control, multiplied by the previously estimated scaling factor, alpha (exact binomial test, 

P=0.5). Multiple tests were corrected by Benjamini-Hochberg. 16,186 intervals 

(representing the start and end boundaries of contiguous, overlapping reads) were 

determined to be significantly enriched in the DNMT1 RIP as compared to the IgG control 

(P<0.0001; q<0.0001). A false discovery rate of 7.5% was determined by determining the 

number of significantly enriched intervals in the IgG immunoprecipitate using DNMT1 as a 

control. Significantly enriched DNMT1 intervals have a mean length of 347 bp and a 

median of 67 reads per interval. Every peak represents an interval with a ‘height’ value: the 

sum of all reads within an interval. All peaks were annotated with CEAS33 build on RefSeq 

hg19. All DNMT1 RIP-Seq peaks were also annotated using the HOMER pipeline (version 

4.2)34 which provide a comprehensive RNAs database (coding and non-coding, including 

miRNA, snoRNA, rRNA, snRNA, tRNA, etc.).

A peak was considered belonging to a gene if located in the gene body or 3 kb up- or 

downstream the gene (gene loci). Altogether, 6042 gene loci were covered by a least 1 

significant RIPseq peak.
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RNA Sequencing (RNAseq)

Total RNA was extracted with TRI Reagent® (MRC). RNA samples were treated with 10 U 

of DNase I (Roche Applied Science) per 3 μg of total RNA at 37°C for one hour in the 

presence of RNaseA inhibitor. Non-polyadenylated RNA fractions were selected with the 

MicroPoly(A) Purist™ purification kit (Ambion). Total and non-polyadenylated RNA were 

depleted of ribosomal RNA with Ribo-ZeroTM Magnetic Gold Kit (Epicentre). Double 

stranded cDNA libraries were constructed using ScriptSeq™ v2 RNA-Seq Library 

Preparation Kit (Epicentre) followed by Duplex Specific Nuclease (DSN) normalization 

(Evrogen). DSN treated libraries were subjected to final size-selection in 3% agarose gel. 

250–500 bp fragments were excised and recovered using the Qiaquick Gel Extraction Kit 

(Qiagen). Libraries were sequenced (1/lane) on a Hi-Seq-2000 Illumina instrument. Raw 

read sequences were deposited in GEO (Accession Number GSE32153). 2.96×108 reads 

from the HL-60 and 3.75×108 76-bp paired end reads from the HL-60 polyA(+)-depleted 

RNA were aligned to the human genome (hg) 19 (UCSC release) using Tophat263. Aligned 

reads were assembled into individual full-length transcripts using Cufflinks v2.0.263 and a 

merged assembly was created from the two assemblies and additionally, all level 1 and 2 

transcripts from the gencode v11 catalog64 using cuffmerge36. To confirm the transcription 

of the significant DNMT1 RIP-Seq peaks, we overlapped the peak intervals with the RIP-

Seq assemblies using the bedtools60 intersect Bed utility.

Reduced Representation Bisulfite Sequencing (RRBS)

RRBS was performed as described44. Briefly, high quality genomic DNA was isolated from 

the myeloid cell line HL-60. DNA was digested with MspI (NEB), a methylation-insensitive 

enzyme that cuts C’CGG. Digested DNA was size selected on a 4% NuSieve 3:1 Agarose 

gel (Lonza). For each sample, two slices containing DNA fragments of 40–120 bp and 120–

220 bp, respectively, were excised from the unstained preparative portion of the gel. These 

two size fractions were kept apart throughout the procedure and mixed 1:2 for the final 

sequencing. Pre-annealed Illumina adaptors containing 5′-methyl-cytosine instead of 

cytosine were ligated to size-selected MspI fragments. Adapter-ligated fragments were 

bisulfite-treated using the EZ DNA Methylation kit (Zymo Research, Orange, CA). The 

products were PCR amplified, size selected, and sequenced on the Illumina GAIIx at a 

reading length of 36 bp. Sequencing reads were mapped to the reference genome hg19 using 

RRBSmap45 allowing 2 mismatches. Reads from replicates were merged and processed as 

previously described 46. We considered only CpG located in regions with a depth of 

coverage greater than 3 reads. The β-score of CpG methylation in a given position is the 

ratio of methylated CpGs within the total number of CpGs through all reads. The level of 

gene methylation is the mean of all CpG β-scores within −2 kb from the TSS to the end of 

first intron; for intronless genes, the entire gene body was considered. Genes with less than 3 

sequenced CpG in the promoter or less than 3 sequenced CpG in the first exon-intron were 

excluded.

For RRBS in R1 and UR overexpressing cells bisulfite sequenced UR -R1 genomes were 

binned at 100 bp intervals using the R-Bioconductor/methylKit “tileMethylCounts” function 

(http://code.google.com/p/methylkit)47. The level of differential methylation was computed 

by comparing all sequenced CpG sites within the overlapping bins between the two samples 
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(R1 and UR). The significant differentially methylated bins were obtained using the Fisher 

test from the R-Bioconductor/methylKit “calculateDiffMeth” function (qvalue < 0.01 and 

methylation difference ≥50%). A gene was considered differentially methylated if the region 

including the promoter (−2kb from the TSS) and 1st exon was overlapped by at least one 

significant differentially methylated bins. In total, 11844 promoter/1st exon regions were 

analyzed.

RNA Expression profiling

RNA isolated from HL-60 cells was employed for sample amplification and labeling using 

the Whole Transcriptome assay reagent kits from Affymetrix. 10 μg of labeled RNA was 

hybridized on Affymetrix GeneChip Human Gene 1.0 ST array. Hybridization, washing, 

staining, and scanning were carried out as recommended by the manufacturer. Each 

hybridization was performed in triplicate. Washes and staining were performed through the 

Fluidics Station 400 and the GeneChip® Scanner 3000 (Affymetrix, Santa Clara, CA, USA) 

was used to measure the fluorescence intensity emitted by the labeled target. Raw data 

processing was performed using the Affymetrix GeneChip® Operating Software (GCOS). 

Microarrays were RMA normalized using ‘affy’, an R-Bioconductor library65. CEBPA 

expression was used as a threshold to define expressing (log2 score above 4) and not 

expressing (log2 score below 4) genes for further analysis.

Gene Ontology and Pyknons comparison

GO analysis was performed with DAVID66. We focused our analysis on biological process 

annotations. GO enrichment was scored using the Benjamini-Hochberg corrected p-value. 

DNMT1 RIP-seq specific peaks were compared to the human pyknons database released in 

January 2013 (https://cm.jefferson.edu/tools_and_downloads/pyknons.html).

Data integration

We used the RefSeq transcripts database built on hg19 (UCSC release) as a genome 

annotation reference for Rip-Seq, RRBS, and microarray expression experiments. We 

selected only the longest transcripts. Accordingly, the number of 40857 RefSeq Ids was 

reduced to 23250 transcript Ids. Then, we annotated all RIP-Seq peaks against the gene loci 

which include exonic, intronic, and UTR regions plus 3 kb upstream of the TSS and 3 kb 

downstream of the Transcription End Site (TES) regions. We identified 6042 gene loci with 

DNMT1-RIPseq peaks and 17208 gene loci without DNMT1-RIPseq peaks. Finally, we 

focused our study on gene loci covered by the RRBS. We identified 4833 gene loci with 

DNMT1-RIPseq peaks and covered by RRBS and 10973 gene loci without DNMT1-RIPseq 

peaks and covered by RRBS. We plotted genes within each group against expression and 

methylation profile. Using CEBPA levels of expression as a cut-off threshold, we defined 

genes as “expressed” or “low or not expressed” if the log2 score was above or below 4, 

respectively, and as “hypomethylated” and “methylated” genes with mean of all CpG scores 

below and above 50%, respectively. We identified by this approach four clusters in each 

group. In DNMT1 unbound group clusters: A (expressed, hypomethylated genes; 23.04%), 

B (low or not expressed, methylated genes; 51.45%), E (expressed, methylated genes; 

10.45%) and F (low or not expressed, hypomethylated genes; 15.06%). In DNMT1 bound 
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group clusters: C (expressed, hypomethylated genes; 56.64%), D (low or not expressed, 

methylated genes; 12.04%), G (expressed, methylated genes; 12.08%), H (low or not 

expressed, hypomethylated genes; 19.24%). In all RRBS covered group clusters: I 

(expressed, hypomethylated genes; 33.32%), J (low or not expressed, methylated genes; 

39.40%), K (expressed, methylated genes; 10.95%) and L (not or low expressed, 

hypomethylated genes; 16.34%).

Statistical Analysis

Methylation changes of clones analyzed by bisulfite sequencing were calculated using the 

Fisher’s exact test (GraphPad Prism Software Inc.). Methylation changes assessed by 

MassARRAY were calculated using a student t-test (GraphPad Prism Software Inc.). The 

statistical evaluation of DNMT1-RNA interaction versus expression and methylation was 

estimated using the student t-test (box-plots; Supplementary Fig. 5d). The 

overrepresentation of genes in clusters B and C following our hypothesis against those 

which did not, was assessed using a 2-sample proportion test (Fig. 5b). P-values for t-test 

and 2-sample proportion test, “t.test” and “prop.test”, respectively, were calculated by the R 

functions (http://www.r-project.org). Values of P≤0.05 were considered statistically 

significant. The mean ± s.d. of two or more replicates is reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of the ecCEBPA
a, Diagram of CEBPA transcripts; b, Assessment of transcripts by Northern blot 

hybridization. c–e, Relative levels of the transcripts in cellular fractions. In panel d, 

ecCEBPA levels are shown on different scales. qRT-PCR, bars indicate mean ± s.d. (n=3).
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Figure 2. Loss- and gain-of-function studies demonstrate that ecCEBPA maintains CEBPA 
expression by regulating methylation of the CEBPA locus
a, Diagram indicates: position of target sequences for shRNA constructs (sh1–3); the 

fragment derived from the ecCEBPA employed for overexpression (R1) regions analyzed for 

changes in DNA methylation (distal promoter; coding sequence, CDS; and 3′UTR); b–c, 

The results of ecCEBPA loss-of-function in CEBPA-expressing U937 cells. Effect of 

ecCEBPA-targeting shRNAs on CEBPA mRNA levels. qRT-PCR, bars indicate mean ± s.d. 

(b) and methylation of the CEBPA promoter (c). DNA methylation changes are shown as the 

ratios of methylated to unmethylated CpGs in all clones analyzed per each construct (n=14); 

d–e, The results of ecCEBPA gain-of-function studies in K562 cells, in which CEBPA is 

methylated and silenced. d, Effect of ecCEBPA upregulation on CEBPA mRNA levels. UR 

= unrelated region. qRT-PCR, bars indicate mean ± s.d. (n=4); e, Effect of ecCEBPA 

upregulation on methylation of the CEBPA locus (DNA methylation changes were assessed 

as described in c; (n=14, for distal promoter; and n=6, for CDS, 3′UTR); f–g, The results of 

transcription inhibition in U937 cells. f, ecCEBPA expression levels after treatment with 

Actinomycin D and ML-60218 in synchronized and unsynchronized cells. qRT-PCR, bars 

indicate mean ± s.d.; g, DNA methylation changes after treatment with Actinomycin D and 

ML-60218 in synchronized (n=12) and unsynchronized (n=10) cells (assessed as described 

in c). All bisulfite sequenced clones were analyzed by Fisher’s exact test. *P<0.05; 

**P<0.01; ***P<0.001.
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Figure 3. ecCEBPA–DNMT1 interactions; DNMT1 binds to RNA with greater affinity than to 
DNA
a, Diagram showing position of qRT-PCR primers used in RIP, double-headed arrow; RNA 

and DNA oligonucleotides used in EMSA and REMSA. Asterisks indicate position of 

methylated cytosines; umDNA, hmDNA, and mDNA refer to unmethylated, 

hemimethylated, and methylated DNA probes, respectively; b, ecCEBPA is 

immunoprecipitated with anti-DNMT1 antibody. qRT-PCR, bars indicate mean ± s.d.; c, 

RNA- DNMT1 binding is not affected by the absence of CpG dinucleotides (right panel). 

Left and middle panels: RNA oligonucleotide R2 and its mutated form mut R2 (asterisks 

indicate cytosines substituted into uridines), both able to form stem-loop-structures; d, RNA 

oligonucleotide able to form stem-loop structure bind DNMT1 (R6); e, R5 RNA 

oligonucleotide forming stem-loop structure (R5) has a greater DNMT1 affinity compared to 

mut R5, unable to fold into stem-loop, (taken in equimolar amounts), at the same DNMT1 

concentration; f, Left four panels: REMSA and EMSA performed with the fixed 
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concentration of ssRNA and dsDNA oligonucleotides (1 nM) and increasing concentrations 

of DNMT1 protein; Right panel: Nonlinear regression analysis of bound RNA/DNA versus 

DNMT1 concentrations. Error bars indicate s.d. from two independent experiments; g, 

REMSA showing that RNA oligonucleotide R4, which is unable to form stem-loop 

structure, displays lower DNMT1 affinity as compared to R5 (Fig. 3f left panel) at the same 

DNMT1 concentrations; h, Left panel: Schematic diagram showing the DNMT1 domains 

and the GST-DNMT1 isolated fragments (F1–F5); Right panel: GST-DNMT1 pull down 

assay demonstrating binding of the folded RNA oligonucleotide R5 to the catalytic domain 

of DNMT1.
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Figure 4. Transcription impedes DNA methylation
a–d, Diagram showing the parallel in vitro transcription-methylation assays performed on a 

hemimethylated template containing the T7 promoter (Supplementary Fig. 4) with and 

without combinations of RNA polymerase, DNMT1, or both; e, DNMT1 exerts enzymatic 

activity only in the absence of transcription. COBRA analysis of methylation patterns 

acquired in reactions shown in b–d; f, DNA methylation changes as are shown as the ratios 

of methylated to unmethylated CpGs in all clones analyzed per each construct (n=5). The 

same effect was observed with two different RNA polymerases: T7 and Sigma-Saturated 

(σ70)-Holoenzyme (E. coli RNA Polymerase). DNA methylation changes were analyzed by 

Fisher’s exact test (*P<0.05; **P<0.01; ***P<0.001); g, in vitro DNMT1 assay 

demonstrating DNMT1 enzymatic impairment by RNA oligonucleotides. The assay was 

performed using ecCEBPA-related and unrelated RNA oligonucleotides. Sequences and 

position of the ribooligonucleotides are shown on Fig. 3a and Supplementary Fig. 3. Error 

bars indicate mean ± s.d. (n=2).
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Figure 5. Genome-wide alignment of DNMT1 bound and unbound transcripts, DNA 
methylation, and gene expression
a, Two-way Venn diagram showing DNMT1 specific peaks overlapping with transcribed 

elements identified in HL-60 total and poly(A+)-depleted RNA-Seq libraries. b, Cloud plots 

representing genes within DNMT1 unbound, bound and all RRBS-covered groups stratified 

by DNA methylation and expression levels. All genes are presented in Supplementary Excel 

File 2. c, Examples of genes from the C (CEBPA) and B (USP29) clusters. Peaks are 

visualized using the SSIRs48. d, Model of DNMT1 sequestration. Upper panel: DNMT1 can 

access transcriptionally inactive hemimethylated genomic regions. Lower panel: DNMT1 

cannot access transcriptionally active hemimethylated genomic regions.
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