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ABSTRACT. Myocardial ischemia-reperfusion injury (IRI) is one of the most leading concerns for 
public health globally. Diazepam, a local anesthetic, has been reported for its cardioprotective 
potential. The present investigation aimed to evaluate the possible mechanism of action of 
diazepam against left anterior descending ligation-induced myocardial IRI in experimental rats. IRI 
was induced in healthy male rats by ligating coronary artery for 30 min and then reperfused for 
60 min. The animals were pre-treated with either vehicle or diltiazem (10 mg/kg) or diazepam (1, 
2.5, and 5 mg/kg) for 14 days. Compared to the IRI group, diazepam (2.5 and 5 mg/kg) markedly 
(P<0.05) attenuated IRI-induced alterations in cardiac function and oxido-nitrosative stress. In 
addition, diazepam prominently (P<0.05) improved cardiac Na+K+ATPase, Ca2+ATPase levels 
and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expression. It also significantly (P<0.05) 
down-regulated cardiac mRNA expressions of cardiac troponin I (cTn-I), C-C chemokine receptor 
type 2 (CCR2), tumor necrosis factor-alpha (TNF-α), interleukins (IL)-1β, and IL-6. In western blot 
analysis, IRI-induced myocardial apoptosis was reduced by diazepam treatment reflected by a 
marked (P<0.05) decreased in Bcl-2-associated X protein (Bax) and Caspase-3 protein expression. 
Diazepam also efficiently (P<0.05) improved IRI-induced histological aberration in cardiac tissue. 
In conclusion, diazepam exerts cardioprotective effect by inhibiting inflammatory release (CCR2, 
TNF-α, and ILs), oxido-nitrosative stress, and apoptosis (Bax and Caspase-3) pathway during 
myocardial IRI in experimental rats.
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Acute myocardial infarction (AMI) is one of the leading causes of morbidity and mortality, affecting approximately 17.6 million 
people worldwide [5]. According to the Chinese disease report (2020), the rate of cardiovascular diseases associated mortality was 
approximately 45%, and it has been expected that almost 23 million people will suffer from AMI by 2030 [62]. AMI accounts for 
a heavy economic burden, and the report suggested that the annual healthcare costs for its treatment are $7,790, which is expected 
to grow continuously [23]. Cumulative evidence documented that myocardium ischemic-reperfusion through a timely restoration 
of coronary blood flow is recommended to prevent the risk of AMI and improve clinical outcomes [20]. Paradoxically, sudden 
myocardial reperfusion may result in additional damage to myocardial cells thus, this myocardial ischemia-reperfusion injury (IRI) 
is an unavoidable phenomenon during the management of AMI.

Experimental and clinical studies have suggested that to compensate the demand of oxygen supply to cardiomyocytes during 
AMI, a sudden blood flow to myocardium caused massive production of reactive oxygen species (ROS), including hydrogen 
peroxide (H2O2), superoxide (O2

−), and hydroxyl radical (OH) in response to hyperoxia situation [10, 19, 47, 48, 52]. These 
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species initiate a vicious cycle of lipoperoxidation via interaction with lipids present in cardiomyocytes which further leak the 
cellular content to the cytoplasm via the formation of pores on the cell membrane that further contribute to cell death [19, 35, 47]. 
Myocardial IRI is characterized by systolic and diastolic dysfunction, alterations in myocardial energy metabolism, myocardial 
arrhythmia, and decreased flow in blood vessels [49]. Thus, numerous researchers have made efforts to restore these cardiac 
functions via the attenuation of one or more pathways responsible for IRI.

Current treatment strategies mainly focus on IRI prevention which includes intermittent reperfusion, remote ischemic 
conditioning (RIC), ischaemic preconditioning (IPC), ischaemic post-conditioning (IPo), and volatile anesthetic conditioning 
(APC) [16, 19]. Furthermore, other pharmacologic agents who protected mitochondrial function during IRI include sodium nitrite 
and cyclosporin A, whereas atorvastatin, erythropoietin, atrial natriuretic peptide, delcasertib, and exenatide modulates IRI-induced 
salvage kinase prosurvival pathway [19, 48]. However, patient outcomes during their clinical investigation have been mixed. 
Therefore, despite various advances in pharmaceutical industries, the development of a satisfactory therapeutic strategy for the 
management of myocardial IRI is still challenging. However, several anesthetics, including isoflurane, desflurane, sevoflurane, 
and propofol, have reduced myocardial infarctions during pre- or post-conditioning in various clinical settings [34, 36, 39, 43, 63]. 
This facilitates significant attention for various anesthetics by an array of researchers to increase their interest in developing safe 
and effective pharmacological strategies to protect myocardial IRI. Thus, to enhance the development of a potential therapeutic 
intervention for myocardial IRI, an experimental animal model of left anterior descending (LAD) transient ligation has been 
extensively used [10, 15, 27, 40]. LAD ligation-induced myocardial IRI is a reliable and reproducible experimental model which 
mimics LV diastolic and systolic dysfunctions [10, 40].

Studies have demonstrated that a number of anesthetics such as propofol, halothane, isoflurane, sevoflurane, lignocaine, 
procainamide, and bupivacaine protect against myocardial injury improved the outcome via various mechanisms [63, 64]. 
Diazepam is another benzodiazepine-derived local anesthetic that has been widely used as a sedative, muscle relaxant, 
anticonvulsant, amnesic, and tranquilizer in clinical settings. Clinically diazepam showed rapid tissue distribution in the adrenal 
gland, liver, heart, kidney, lungs, and brain [22]. Furthermore, diazepam showed greater partition (Kp: 1.5) coefficients between 
pericardial fluid and blood [56]. Diazepam binds to gamma-aminobutyric acid (GABA)A receptors present in various regions of 
the spinal cord and brain, which are involved in the induction of sleep, anxiety, control of hypnosis, and memory [11]. Diazepam 
binding to GABAA receptors increases its inhibitory potential, enhancing the frequency of chloride channel opening leading to 
membrane hyperpolarization and a decrease in neuronal excitability [18]. A researcher reported that diazepam exerts its anxiolytic 
action via α2-GABAA receptors whereas sedative action via α1-GABAA receptors [11].

It has been suggested that diazepam improves the delivery of oxygen to myocardial tissue with an oxygen-conserving action that 
might be helpful during coronary heart disease [13]. Furthermore, the administration of diazepam in patients with coronary artery 
disease was reported to achieve a balance between blood pressure and heart rate [46]. Recently, Al-Abbasi et al., (2020) reported 
the cardioprotective potential of diazepam via attenuation of troponin I (TnI) and High sensitivity C-reactive protein (hs-CRP) 
in an experimental model of stress-induced cardiac dysfunctions [3]. Moreover, diazepam treatment reduced the incidence of 
malignant arrhythmias and inhibited the further spreading of myocardial injury in patients with AMI [44]. In addition, numerous 
researchers also documented the cardioprotective potential of diazepam during IRI in isolated rat hearts [47, 53]. However, despite 
the availability of significant evidence for the cardioprotective potential of diazepam, its putative mechanism of myocardial 
protection during IRI is not yet completely elucidated. Thus, we have undertaken this study to investigate the possible mechanism 
of action of diazepam against LAD ligation-induced myocardial IRI in experimental rats.

MATERIALS AND METHODS

Animals
Adult male Sprague-Dawley rats (200–220 g) were obtained from the 3201 hospital, Hanzhong, China. They were maintained 

at 24 ± 1°C, with a 45–55% relative humidity and a 12:12 hr dark/light cycle. The animals had free access to standard pellet chow 
and water throughout the experimental protocol. All experiments were carried out between 09:00 and 17:00 hr. The 3201 Hospital 
animal ethical committee approved all the experimental protocols (approval number: HZ3201-0722). All the experimental protocols 
involved in this experiment were carried out in accordance with the Guide for the Care and Use of Laboratory Animals of the 
National Institutes of Health and the ARRIVE (Animal Research: Reporting of In-vivo Experiments) guidelines (http://www.nc3rs.
org/ARRIVE).

Drugs and chemicals
Total ribonucleic acid (RNA) Extraction kit and quantitative Real Time-polymerase chain reaction (qRT-PCR) kit were 

purchased from MP Biomedicals India Private Limited, India. In addition, the primary antibodies of B-cell lymphoma 2 (Bcl-2, 
EPR17509, ab182858]), Bcl-2-associated X protein (Bax, [EPR18283, ab182733]), caspase-3 (ab2302), and Glyceraldehyde 
3-phosphate dehydrogenase (GAPDH), [EPR6256, ab128915] were purchased from Abcam, Cambridge, MA, USA.

Experimental design
The ischemia-reperfusion model was established as previously described [10]. Briefly, SD rats were anesthetized with urethane 

(1.25 g/kg, i.p.) and restrained in the supine position. Since urethane anesthesia has minimal effects on the cardiovascular and 
respiratory systems and long-lasting anesthesia with rapid onset following i.p. administration. The animals had an intratracheal 
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cannula inserted and mechanically ventilated using a rodent ventilator (respiration rate 70 min−1, respiration-to-expiration ratio 1:2, 
and tidal volume 50 ml/kg) procedures. A left parasternal incision was performed through the third and fourth intercostal space, and 
the pericardium was then opened to expose the heart. Myocardial ischemia was induced by placing a 5–0 silk suture with a slipknot 
around the left anterior descending coronary artery. After 30 min of ischemia, the slipknot was released, and rats received 60 min 
of reperfusion. Fifty rats were randomly assigned to five experiment groups (n=15) as follows:
Group I: Sham: Rats received normal saline (5 ml/kg) for 14 days. They were subjected to thoracotomy and encircling of the LAD 

artery with a suture but no ligation.
Group II: IRI Control: Rats received normal saline (5 ml/kg) for 14 days. They were subjected to thoracotomy and encircling the 

LAD artery for 30 min and reperfusion for 60 min.
Group III: IRI + Dil (10): Rats received diltiazem (10 mg/kg) for 14 days. They were subjected to thoracotomy and encircling the 

LAD artery for 30 min and reperfusion for 60 min.
Group IV: IRI + Dia (1): Rats received diazepam (1 mg/kg) for 14 days. They were subjected to thoracotomy and encircling the 

LAD artery for 30 min and reperfusion for 60 min.
Group V: IRI + Dia (2.5): Rats received diazepam (2.5 mg/kg) for 14 days. They were subjected to thoracotomy and encircling the 

LAD artery for 30 min and reperfusion for 60 min.
Group VI: IRI + Dia (5): Rats received diazepam (5 mg/kg) for 14 days. They were subjected to thoracotomy and encircling the 

LAD artery for 30 min and reperfusion for 60 min.
Group VII: Dia (5) or Perse: Rats received diazepam (5 mg/kg) for 14 days. They were subjected to thoracotomy and encircling 

of the LAD artery for 30 min and reperfusion for 60 min. Then, they were subjected to thoracotomy and encircling of the LAD 
artery with a suture but no ligation.
The diazepam was freshly prepared in three different dosages (1, 2.5, and 5 mg/kg) and administered orally to all groups at a 

pre-fixed time once daily for 14 days. Diltiazem was used as a positive control (standard) to compare the possible mechanism of 
action of diazepam. At the end of the experiment, rats were anesthetized by intraperitoneal injection of 10% chloral hydrate at 3 
ml/kg. and intubated before being artificially ventilated with room air at a frequency of 80 inflations/min on a tidal volume of 1 
ml/100 g. Lead II of electrocardiogram (ECG) was recorded via cutaneous needle electrodes. Then, a polyethylene catheter filled 
with heparinized saline was passed through the right carotid arteries into the left ventricle (LV). The LV pressure was processed 
via a transducer. The LV function, including the left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure 
(LVEDP), maximal rates of the rise and decline of LV pressure (± dp/dtmax) was determined using PowerLab Data Acquisition and 
Analysis System (ADInstruments, Australia).

Then, blood samples from each rat were collected into separate vials by a retro-orbital puncture method to determine 
serum parameters. Then, animals were sacrificed by cervical dislocation, the heart was rapidly removed and stored at 80°C 
for biochemical (n=4) and qRT-PCR analysis (n=4). Finally, the heart of three rats from each group was isolated and fixed for 
histopathological evaluation.

Serum biochemistry
Serum was separated by centrifugation using Eppendorf Cryocentrifuge (model No. 5810, Germany), maintained at 4°C, 

and run at a speed of 7,000 rpm for 15 min. Serum lactate dehydrogenase (LDH), Creatine Kinase -MB (CK-MB), and alanine 
aminotransferase (AST) were measured by (UV/VIS spectrophotometer, Jasco V-530, Jasco, Tokyo, Japan) using reagent kits 
according to the procedure provided by the manufacturer (Accurex Biomedical Pvt. Ltd., Mumbai, India).

Measurement of electrocardiographic, hemodynamic, and left ventricular function
Blood pressure was measured using a polyethylene cannula (PE 50) filled with heparinized saline (100 IU/ml) and connected 

to a pressure transducer. The cannula was connected to a transducer, and the signal was amplified by a bio-amplifier. Further, 
left ventricular systolic pressure was measured using a Millar mikro-tip transducer catheter (Model SRP-320, Millar instrument, 
INC 320-7051, Houston, TX, USA) inserted into the left ventricle via the right carotid artery and connected to a bio-amplifier. 
Electrocardiographic, hemodynamic changes and left ventricular (LV) contractile function were recorded by an eight-channel 
recorder Power lab with LABCHART-6 pro software using a data acquisition system (AD Instruments with software LABCHART 
7.3 pro software, AD Instruments Pty Ltd., New South Wales, Australia).

Biochemical estimation
Tissue homogenate preparation: All animals were sacrificed at the end of the study, and the heart was immediately isolated. 

Tissue homogenates were prepared with 0.1 M tris-HCl buffer (pH 7.4), and supernatant of homogenates was employed to 
estimate superoxide dismutase (SOD), reduced glutathione (GSH), lipid peroxidation (MDA content), nitric oxide (NO content), 
Na+K+ATPase and Ca2+ATPase as described previously [25, 59].

Determination of cardiac cTnI, HIF-1α, TNF-α, IL-1β, IL-6 and CCR2 mRNA expression by qRT-PCR: The levels of cardiac 
troponin I (cTnI), Hypoxia-Inducible Factor-1 alpha (HIF-1α), tumor necrosis factor-alpha (TNF-α), interleukins (ILs), and C-C 
chemokine receptor type 2 (CCR2) messenger ribonucleic acid (mRNA) were analyzed using quantitative RT-PCR as described 
previously [57]. The primer sequence for a respective gene is cTnI (Forward: 5′-ACTTCGCAGAGGCAGCAATCA-3′, Reverse: 
5′-GGTTGCCTTGTTCTTCCTTCAG-3′, base pair (bp): 267), HIF-1α (Forward: 5′-TGCTTGGTGCTGATTTGTGA-3′, 
Reverse: 5′-GGTCAGATGATCAGAGTCCA-3′, bp: 209), TNF-α (Forward: 5′-AAGCCTGTAGCCCATGTTGT-3′, 
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Reverse: 5′-CAGATAGATGGGCTCATACC-3′, bp: 295), IL-1β (Forward: 5′-TGATGTTCCCATTAGACAGC-3′, Reverse: 
5′-GAGGTGCTGATGTACCAGTT-3′, bp: 290), IL-6 (Forward: 5′-TAGCCGCCCCACACAGACAG-3′, Reverse: 
5′-GGCTGGCATTTGTGGTTGGG-3′, bp: 479), CCR2 (Forward: 5′-CAGGGCTTTATCACATTGGG-3′, Reverse: 
5′-AGATGACCATGACAAGTAGCG-3′, bp: 388) and (Forward: 5′-GTCACCCACACTGTGCCCATCT-3′, Reverse: 
5′-ACAGAGTACTTGCGCTCAGGAG-3′, bp: 764).

Determination of cardiac Bax, Bcl-2, and Caspase-3 by western blot assay: Cardiac tissue was sonicated in Tissue Protein 
Extraction Reagent (Thermo Fisher Scientific, Inc., Mumbai, Maharashtra, India). The lysates were centrifuged at 10,000 × g for 
10 min at 4°C. Protein concentration was determined using a Bicinchoninic Acid (BCA) assay kit (Beyotime, Shanghai, China) on 
ice for 30 min. Equal amounts of extracted protein samples (50 μg) were separated by 10% SDS-PAGE (sodium dodecyl sulfate-
polyacrylamide gel electrophoresis) and transferred onto polyvinylidene difluoride membranes. The membranes were blocked 
with 5% non-fat dry milk at 37°C for 1 hr and incubated overnight at 4°C with the primary antibodies recognized Bcl-2, Bax, 
and caspase-3. In addition, an anti-rabbit horseradish-linked secondary antibody was used, which was incubated at 37°C for 2 hr. 
Protein bands were visualized using the Chemiluminescent kit (Bio-Rad Laboratories, Inc., Mumbai, India), GAPDH served as the 
loading control.

DNA fragmentation
DNA isolation from cardiac tissue was performed according to the standard phenol chloroform cetyl trimethyl ammonium 

bromide (CTAB) method mentioned elsewhere [50]. Ten µl of the DNA, isolated from the nerve homogenate, was added to 3 
µl of loading buffer (20 ml of glycerol 50%, 25 mg of bromophenol blue, and three drops of 1 N NaOH) and subjected to 2D 
gel electrophoresis in 2% agarose gel. The gel was examined in a gel documentation instrument (Alpha Innotech, Kasendorf, 
Germany), and a gel image was captured.

Histopathological evaluation
The isolated tissue was trimmed into small pieces and preserved in 10% formalin for 24 hr. Specimens were cut in sections of 

3–5 µm in thickness by microtome and stained by hematoxylin-eosin. The samples were mounted by disterene phthalate xylene. 
The photomicrographs of each tissue section were observed using Cell Imaging software for Life Science microscopy (Olympus 
Soft Imaging Solution GmbH, Munster, Germany).

Statistical analysis
Data were expressed as mean ± standard error means (SEM). Data analysis was performed using Graph Pad Prism 5.0 software 

(Graph Pad, San Diego, CA, USA). Data were analyzed by one-way analysis of variance (ANOVA), and Tukey’s multiple range 
tests were applied for post hoc analysis. A value of P<0.05 was considered to be statistically significant.

RESULTS

Effect of diazepam on relative and absolute heart weight, serum CK-MB, LDH, and AST levels of rats
The relative and absolute heart weight, serum CK-MB, LDH, and AST of IRI control group increased significantly (P<0.05) 

compared to the sham control group. However, administration of diltiazem effectively (P<0.05) attenuated IRI-induced elevated 
relative and absolute heart weight, serum CK-MB, LDH, and AST as compared to IRI control group. Administration of diazepam 
(2.5 and 5 mg/kg) noticeably (P<0.05) reduced relative and absolute heart weight, serum CK-MB, LDH, and AST as compared to 
IRI control group. Notably, diltiazem more effectively (P<0.05) attenuated IRI-induced elevated relative and absolute heart weight, 
serum CK-MB, LDH, and AST as compared to diazepam. (Table 1 and Supplementary Fig. 1)

Effect of diazepam on electrocardiographic, hemodynamic, and left ventricular function tests in rats
When compared with sham control group (Fig. 1a) and per se treated (Fig. 1f), ischemia-reperfusion resulted in marked (P<0.05) 

alterations in electrocardiographic, hemodynamic, and left ventricular function tests of IRI control group (Fig. 1b). Diltiazem 
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Table 1. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced alterations in relative and absolute heart weight, serum creatine 
kinase-MB, lactate dehydrogenase, alanine aminotransferase in rats

Parameters Sham IRI Control IRI + Dil (10) IRI + Dia (1) IRI + Dia (2.5) IRI + Dia (5) Dia (5)

Heart weight (g) 0.40 ± 0.01 0.81 ± 0.03# 0.48 ± 0.03*,$ 0.75 ± 0.07 0.63 ± 0.07*,$ 0.54 ± 0.02*,$ 0.50 ± 0.03
Heart weigh/ 

Body weight (×10−3)
1.71 ± 0.04 3.52 ± 0.15# 2.14 ± 0.11*,$ 3.25 ± 0.28 2.76 ± 0.30*,$ 2.30 ± 0.09*,$ 2.17 ± 0.13

Serum CK-MB (IU/I) 1,073.00 ± 44.11 2,062.00 ± 56.63# 1,185.00 ± 39.01*,$ 2,048.00 ± 64.43 1,632.00 ± 51.22*,$ 1,435.00 ± 55.70*,$ 1,033.00 ± 56.47
Serum LDH (IU/I) 1,212.00 ± 73.23 2,634.00 ± 107.50# 1,627.00 ± 92.86*,$ 2,685.00 ± 111.10 2,014.00 ± 95.56*,$ 1,638.00 ± 87.84*,$ 1,222.00 ± 68.46
AST (mg %) 110.90 ± 11.89 358.70 ± 11.35# 139.00 ± 9.26*,$ 334.80 ± 10.70 249.50 ± 8.68*,$ 139.60 ± 11.77*,$ 121.00 ± 8.98

Data are expressed as mean ± S.E.M (n=6) and analyzed by one-way ANOVA followed by Tukey’s multiple range tests. *P<0.05 as compared to the IRI-control 
group, #P<0.05 as compared to the sham, $P<0.05 as compared to one another. IRI: Ischemia-reperfusion Injury control rats; Dil (10): diltiazem (10 mg/kg, 
p.o.) treated rats; Dia (1): diazepam (1 mg/kg, p.o.); Dia (2.5): diazepam (2.5 mg/kg, p.o.) and Dia (5): diazepam (5 mg/kg, p.o.) treated rats. AST: alanine 
aminotransferase; CK-MB: creatine kinase-MB; LDH: lactate dehydrogenase.
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administration noticeably (P<0.05) inhibited IRI-induced alterations in electrocardiographic, hemodynamic, and left ventricular 
function tests (Fig. 1c) as compared to IRI control group. Diazepam (2.5 and 5 mg/kg) treatment effectively (P <0.05) attenuated 
IRI-induced alterations in electrocardiographic, hemodynamic, and left ventricular function tests (Fig. 1d and 1e) as compared to 
IRI control group (Table 2).

Effect of diazepam on cardiac oxido-nitrosative stress in rats
The IRI control group exhibited markedly (P<0.05) elevated cardiac oxido-nitrosative stress levels compared to the sham control 

group. Treatment with diltiazem significantly (P<0.05) inhibited IRI-induced elevated malondialdehyde and nitric oxide levels and 
replenished superoxide dismutase and glutathione levels compared to IRI control group. Administration of diazepam (2.5 and 5 mg/
kg) also prominently (P<0.05) lessened elevated cardiac oxido-nitrosative stress when compared with IRI control group. Diltiazem 
more prominently (P<0.05) attenuated IRI-induced elevated cardiac oxido-nitrosative stress as compared to diazepam. The cardiac 
superoxide dismutase, glutathione, malondialdehyde, and nitric oxide levels did not differ significantly in the per se treated group, 
i.e., diazepam (5 mg/kg) and sham control group. (Table 3)
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Fig. 1. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced altered in electrocardiographic parameters. Representative images of 
electrocardiographic recording from sham (a), IRI control (b), IRI + diltiazem (10 mg/kg) (c), IRI + diazepam (2.5 gm/kg) (d), IRI + diazepam 
(5 gm/kg) (e) and diazepam (5 gm/kg) (f) treated rats.

Table 2. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced alterations electrocardiographic, hemodynamic, and left ventricular 
function tests changes in rats

Parameters Sham IRI Control IRI + Dil (10) IRI + Dia (1) IRI + Dia (2.5) IRI + Dia (5) Dia (5)

Heart Rate (BPM) 369.20 ± 10.94 271.00 ± 10.89# 349.80 ± 11.42*,$ 287.20 ± 7.51 319.00 ± 9.01*,$ 343.00 ± 11.04*,$ 351.00 ± 8.80
QRS interval (msec) 12.80 ± 0.58 32.40 ± 0.68# 17.40 ± 0.68*,$ 28.80 ± 0.37 22.60 ± 0.75*,$ 20.60 ± 0.93*,$ 13.60 ± 0.51
QT Interval (msec) 48.17 ± 2.59 88.50 ± 1.57# 57.50 ± 2.01*,$ 86.00 ± 3.14 72.83 ± 2.55*,$ 64.17 ± 2.06*,$ 57.50 ± 2.34
QTc Interval (msec) 125.30 ± 5.30 175.70 ± 5.89# 146.80 ± 3.34*,$ 169.80 ± 4.55 154.20 ± 6.69*,$ 144.20 ± 6.81*,$ 135.50 ± 5.92
RR interval (msec) 144.30 ± 6.09 204.50 ± 4.64# 161.80 ± 3.44*,$ 198.80 ± 3.37 183.70 ± 5.59*,$ 170.80 ± 5.16*,$ 152.50 ± 3.73
SBP (mmHg) 106.70 ± 1.87 161.30 ± 4.72# 124.00 ± 4.48*,$ 151.80 ± 4.09 137.30 ± 5.06*,$ 119.30 ± 1.82*,$ 108.70 ± 2.89
DBP (mmHg) 83.50 ± 3.72 117.50 ± 2.51# 89.33 ± 3.70*,$ 110.50 ± 2.79 98.50 ± 3.22*,$ 96.83 ± 4.11*,$ 91.00 ± 4.05
LVEDP (mmHg) 5.33 ± 0.21 11.67 ± 0.56# 7.50 ± 0.43*,$ 11.17 ± 0.75 8.67 ± 0.67*,$ 7.50 ± 0.56*,$ 5.83 ± 0.70
Maxdp/dt 4,011.00 ± 151.70 1,995.00 ± 134.50# 3,656.00 ± 117.60*,$ 2,518.00 ± 124.10 2,858.00 ± 126.40*,$ 3,499.00 ± 116.90*,$ 3,880.00 ± 167.80
Mindp/dt −2,708.00 ± 88.37 −1,970.00 ± 74.60# −2,382.00 ± 69.35*,$ −1,886.00 ± 36.34 −2,245.00 ± 58.68*,$ −2,547.00 ± 35.78*,$ −2,530.00 ± 85.90
Pressure time index 17.33 ± 0.33 24.33 ± 0.33# 20.17 ± 0.75*,$ 23.67 ± 0.95 21.33 ± 0.67*,$ 21.83 ± 0.40*,$ 18.83 ± 0.87
Contractility index 56.33 ± 1.50 33.83 ± 1.17 47.17 ± 1.70*,$ 35.00 ± 1.93 42.17 ± 1.40*,$ 44.17 ± 1.78*,$ 56.50 ± 1.09
Tau (msec) 3.50 ± 0.56 10.83 ± 0.65 5.83 ± 0.54 10.17 ± 0.48 9.17 ± 0.31*,$ 6.50 ± 0.67*,$ 5.00 ± 0.73

Data are expressed as mean ± S.E.M (n=6) and analyzed by one-way ANOVA followed by Tukey’s multiple range tests. *P<0.05 as compared to the IRI-control 
group, #P<0.05 as compared to the sham, $P<0.05 as compared to one another. IRI: ischemia-reperfusion injury control rats; Dil (10): diltiazem (10 mg/kg, p.o.) 
treated rats; Dia (1): diazepam (1 mg/kg, p.o.); Dia (2.5): diazepam (2.5 mg/kg, p.o.) and Dia (5): diazepam (5 mg/kg, p.o.) treated rats. SBP: systolic blood 
pressure; DBP: diastolic blood pressure; LVEDP: left ventricular end-diastolic pressure.
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Effect of diazepam on cardiac ATPase enzymes level in rats
The activity of cardiac ATPase enzymes (Na+K+ATPase and Ca2+ATPase) markedly (P<0.05) decreased in IRI control group 

as compared to sham control group. However, administration of diltiazem noticeably (P<0.05) improved the levels of cardiac 
ATPase enzymes as compared to IRI control group. Diazepam (2.5 and 5 mg/kg) administration also noticeably (P<0.05) increased 
Na+K+ATPase and Ca2+ATPase activity when compared with IRI control group (Table 3).

Effect of diazepam on the cardiac cTn-I, HIF-1α, CCR2, TNF-α, IL-1β, and IL-6 mRNA expressions in rats
The cardiac mRNA expressions of cTn-I, CCR2, TNF-α, IL-1β, and IL-6 were up-regulated significantly (P<0.05), whereas 

cardiac HIF-1α mRNA expression was down-regulated effectively (P<0.05) in IRI control group as compared to sham control 
group. Diltiazem noticeably (P<0.05) attenuated IRI-induced alterations in cardiac cTn-I, HIF-1α, CCR2, TNF-α, IL-1β, and IL-6 
mRNA expressions compared with IRI control group. Additionally, diazepam (2.5 and 5 mg/kg) also markedly (P<0.05) down-
regulated cardiac mRNA expressions of cTn-I, CCR2, TNF-α, IL-1β, and IL-6 as well as up-regulated cardiac HIF-1α mRNA 
expression as compared to IRI control group. There was no significant difference in cardiac cTn-I, HIF-1α, CCR2, TNF-α, IL-1β, 
and IL-6 mRNA expressions in per se treated group, i.e., diazepam (5 mg/kg) and sham control group (Fig. 2).
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Table 3. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced alterations cardiac oxido-nitrosative stress and ATPase enzymes in 
rats

Parameters Sham IRI Control IRI + Dil (10) IRI + Dia (1) IRI + Dia (2.5) IRI + Dia (5) Dia (5)
SOD (U/mg of protein) 10.53 ± 0.27 3.73 ± 0.44# 9.23 ± 0.48*,$ 4.13 ± 0.17 6.61 ± 0.35*,$ 8.71 ± 0.46*,$ 10.48 ± 0.65
GSH (µg/mg protein) 32.94 ± 1.01 17.78 ± 1.27# 29.13 ± 0.98*,$ 18.85 ± 1.26 22.26 ± 0.85*,$ 25.80 ± 1.03*,$ 30.61 ± 1.10
MDA  
(nmol/l/mg of protein)

2.52 ± 0.21 5.69 ± 0.29# 3.33 ± 0.30*,$ 5.04 ± 0.23 4.81 ± 0.27*,$ 3.97 ± 0.23*,$ 3.11 ± 0.19

NO (µg/mg of protein) 216.40 ± 30.70 704.00 ± 28.39# 317.40 ± 37.31*,$ 635.20 ± 27.03 516.00 ± 29.32*,$ 377.40 ± 37.64*,$ 247.40 ± 24.21
Na+K+ATPase 
(µmol/mg of protein)

5.78 ± 0.31 2.86 ± 0.37# 4.99 ± 0.38*,$ 3.09 ± 0.18 4.54 ± 0.18*,$ 5.01 ± 0.39*,$ 5.17 ± 0.33

Ca2+ATPase 
(µmol/mg of protein)

3.44 ± 0.33 1.61 ± 0.31# 3.14 ± 0.21*,$ 1.61 ± 0.25 2.33 ± 0.27*,$ 2.86 ± 0.36*,$ 3.01 ± 0.25

Data are expressed as mean ± S.E.M (n=6) and analyzed by one-way ANOVA followed by Tukey’s multiple range tests. *P<0.05 as compared to the IRI-control 
group, #P<0.05 as compared to the sham, $P<0.05 as compared to one another. IRI: ischemia-reperfusion Injury control rats; Dil (10): diltiazem (10 mg/kg, 
p.o.) treated rats; Dia (1): diazepam (1 mg/kg, p.o.); Dia (2.5): diazepam (2.5 mg/kg, p.o.) and Dia (5): diazepam (5 mg/kg, p.o.) treated rats. SOD: superoxide 
dismutase; GSH: glutathione peroxidase; MDA: malondialdehyde; NO: nitric oxide.

Fig. 2. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced alterations in cardiac cardiac troponin I (a), hypoxia-inducible factor-1 
alpha (b), C-C chemokine receptor type 2 (c), tumor necrosis factor-alpha (d), interleukins (IL)-1β (e) and IL-6 (f) mRNA expressions in rats. 
Data are expressed as mean ± S.E.M (n=4) and analyzed by one-way ANOVA followed by Tukey’s multiple range tests. *P<0.05 as compared 
to the IRI-control group, #P<0.05 as compared to the sham, $P<0.05 as compared to one another. IRI: ischemia-reperfusion injury control rats; 
Dil (10): diltiazem (10 mg/kg, p.o.) treated rats; Dia (1): diazepam (1 mg/kg, p.o.); Dia (2.5): diazepam (2.5 mg/kg, p.o.) and Dia (5): diazepam 
(5 mg/kg, p.o.) treated rats. cTnI: cardiac troponin I; CCR2: C-C chemokine receptor type 2; HIF-1α: hypoxia-inducible factor-1 alpha; TNF-α: 
tumor necrosis factor-alpha.
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Effect of diazepam on the cardiac Bax, Bcl-2, and Caspase-3 protein levels in rats
The cardiac Bax and Caspase-3 protein levels were increased significantly (P<0.05), whereas cardiac Bcl-2 protein level was 

decreased markedly (P<0.05) in the IRI control group as compared to sham control group. IRI-induced variations in cardiac Bax, 
Bcl-2, and Caspase-3 protein levels were effectively (P<0.05) inhibited by diltiazem treatment as compared to IRI control group. 
Diazepam (2.5 and 5 mg/kg) administration also noticeably (P<0.05) decreased cardiac Bax and Caspase-3 protein levels as well as 
significantly (P<0.05) increased cardiac Bcl-2 protein level as compared to IRI control group. Diltiazem treatment more effectively 
(P<0.05) attenuated IRI-induced variations in cardiac Bax, Bcl-2, and Caspase-3 protein levels as compared to diazepam. However, 
cardiac Bax, Bcl-2, and Caspase-3 protein levels did not differ significantly in per se treated group, i.e., diazepam (5 mg/kg) and 
sham control group (Fig. 3a–d).

Effect of diazepam on the cardiac DNA fragmentation
Ischemia-reperfusion injury caused a higher degree of apoptosis reflected by maximum fragmentation of DNA compared to 

the sham control group. Administration of diltiazem and diazepam (5 mg/kg) showed a lower degree of DNA fragmentation, 
suggesting amelioration of IRI-induced apoptosis as compared IRI control group. There was minimal DNA fragmentation in the 
normal and per se group (Fig. 3e).

Effect of diazepam on IRI-induced cardiac histopathological alteration in rats
Cardiac tissue from sham control group and per se treated group, i.e., diazepam (5 mg/kg), showed the normal architecture 

of myocardiocytes and myocardial muscles with mild interstitial inflammation (Fig. 4a and 4f). However, ischemia-reperfusion 
caused significant (P<0.05) damage to cardiac tissue reflected by myocardial degeneration, interstitial inflammation, necrosis and 
hemorrhage in IRI control group (Fig. 4b) as compared to sham control group. Diltiazem treatment effectively (P<0.05) attenuated 
IRI-induced alteration in the cardiac architecture reflected by decreased myocardial degeneration, interstitial inflammation, 
necrosis, and hemorrhage (Fig. 4c) compared to IRI control group. Diazepam (2.5 and 5 mg/kg) administration also noticeably 
(P<0.05) reduced IRI-induced myocardial degeneration, interstitial inflammation, necrosis and hemorrhage as compared to IRI 
control group (Fig. 4d, 4e and 4g).
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Fig. 3. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced alterations in cardiac BCL2 associated X (Bax), B-cell lymphoma 2 (Bcl-
2), and caspase-3 protein expressions in rats (a). Quantitative representation of protein expression of Bax (b), Bcl-2 (c), and caspase-3 (d) in rats. 
Effect of diazepam on cardiac DNA fragmentation (e). Data are expressed as mean ± S.E.M (n=4). *P<0.05 as compared to the IRI-control group, 
#P<0.05 as compared to the sham, $P<0.05 as compared to one another.  Lane 1: protein expression of sham rats; Lane 2: protein expression of 
IRI-control rats; Lane 3: protein expression of IRI + diazepam (1 mg/kg) treated rats; Lane 4: protein expression of IRI + diazepam (1.0 mg/kg) 
treated rats; Lane 5: protein expression of IRI + diazepam (2.5 mg/kg) treated rats; Lane 6: protein expression of IRI + diazepam (5.0 mg/kg) 
treated rats; and Lane 7: protein expression of diazepam (5.0 mg/kg) treated rats. IRI: ischemia-reperfusion injury control rats; Dil (10): diltiazem 
(10 mg/kg, p.o.) treated rats; Dia (1): diazepam (1 mg/kg, p.o.); Dia (2.5): diazepam (2.5 mg/kg, p.o.) and Dia (5): diazepam (5 mg/kg, p.o.) 
treated rats. Bax: BCL2 associated X; Bcl-2: B-cell lymphoma 2.
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DISCUSSION

Myocardial ischemia-reperfusion injury (IRI) is an unavoidable vicious consequence of several cardiac surgeries leading to 
cardiomyocyte death. Due to the scarcity of effective therapeutic intervention for the management of myocardial IRI, it has become 
an important subject of investigation in cardiovascular diseases [19, 20]. Numerous anesthetic agents such as desflurane, isoflurane, 
propofol, and sevoflurane have been shown to exert their cardioprotective efficacy against myocardial infarctions clinically [34, 36, 
39, 43, 63]. In the present investigation, we have also evaluated the potential of diazepam against LAD ligation-induced myocardial 
IRI in experimental rats. The current study found that diazepam attenuated myocardial injury by inhibiting inflammatory release 
(CCR2, TNF-α, and ILs), oxido-nitrosative stress, and apoptosis (Bax and caspase-3), thus improves myocardial function 
(Supplementary Fig. 2).

Cumulative evidence suggested that clinically cardiac ischemia is characterized by various findings ranging from diffuse chest 
pain to alteration in ECG outcomes such as heart rate, ST segment, QRS interval, QTc Interval, Q wave, and T wave [20, 33, 37, 
58]. The narrow QRS complex depicted ventricular depolarization or quicker cardiac ejection. However, prolongation in QRS 
interval represents delayed ventricular depolarization, suggesting the inability of cardiac tissue towards the ejection, which may 
be due to tissue ischemia or infarction [64]. Thus, ECG findings have been suggested as an important prognostic and non-invasive 
tool for quicker diagnosing ischemic heart disease [52]. Injury to myocardial tissue results in loss of reliability of the left ventricle 
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Fig. 4. Effect of diazepam on ischemia-reperfusion injury (IRI)-induced alterations in cardiac histopathology in rats. Photomicrograph of sections 
of the heart of from sham (a), IRI control (b), IRI + diltiazem (10 mg/kg) (c), IRI + diazepam (2.5 gm/kg) (d), IRI + diazepam (5 gm/kg) (e) and 
diazepam (5 gm/kg) (f) treated rats. Images at 40×. The quantitative representation of histological score (g). Data are expressed as mean ± SEM 
(n=3), and one-way ANOVA followed by the Mann-Whitney U test was applied for post hoc analysis. *P<0.05 as compared to the IRI-control 
group, #P<0.05 as compared to the sham, $P<0.05 as compared to one another.
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after its contraction, which causes a decrease in the volume of the left ventricle chamber, which increases LVEDP [17, 41]. Thus, 
LVEDP is documented as a reliable indicator of cardiac damage post-IRI. Additionally, the rate of rising and fall in LVEDP 
as well as a performance of ventricular determined by dP/dtmax and dP/dtmin. IRI caused alteration in the electrocardiographic, 
hemodynamic, and left ventricular functions in the present study, suggesting the overall cardiac dysfunction. Conversely, 
administration of diazepam inhibited IRI-induced alterations in heart functions revealing its anti-arrhythmic potential. The putative 
mechanism behind the anti-arrhythmic potential of diazepam may be due to its profound effects on cardiac regulation via positive 
allosteric modulators of GABAA receptors [6]. The previous researcher documented elevated heart rate post diazepam (6 mg/kg) 
administration [42].

Inflammation is an important mediator of cell necrosis during myocardial ischemia [33, 36]. The myocardial infarction can cause 
an influx of inflammatory cytokines, including TNF-α and ILs (IL-1β and IL-6), into the infarcted cardiac tissue [47, 61]. CCR2 
chemokine has been suggested to recruit TNFα-producing monocytes at myocardial infarcted area via the formation of the CCL2 
concentration gradient [65, 66]. This excessive recruitment of monocytes resulted in left ventricular remodeling, thus contribute to 
myocardial dysfunction. Furthermore, monocytes secrete TNF-α, which aggravates the inflammatory reaction and boosts neutrophil 
and other pro-inflammatory cytokines [7, 14, 21]. IL-1β has been suggested to initiate neutrophil cell adhesion to endothelial 
cells [29]. IL-6 is another critical pro-inflammatory cytokine closely associated with myocardial injury [55]. In the present study, 
myocardial ischemia-reperfusion induces the expression of CCR2 chemokine and aggravates the myocardial injury via the 
release of pro-inflammatory cytokines (TNF-α and ILs). Nevertheless, administrations of diazepam attenuated elevated levels 
of chemokine and cytokines, which is consistent with the observation of previous researchers [24, 67]. Furthermore, the present 
investigation evident the presence of cardiac hypertrophy reflected by a significant increase in heart weight which is in line with 
findings of previous researchers [60]. Thus, the hypertrophy of cardiomyocytes may attribute to the release of inflammatory and 
apoptotic mediators post IRI. However, diazepam pre-treatment inhibited inflammatory influx, which plays a vital role in halting 
cardiac hypertrophy. This notion was further supported by the histological findings of cardiac tissue from diazepam-treated rats, 
showing inhibition of inflammatory infiltration.

Cellular apoptosis is a critical pathophysiological pathway during IRI-induced cardiac failure [31, 33]. Bcl-2 (B-cell lymphoma 
2) is a regulatory protein that plays a vital role in regulating mitochondrial-dependent cellular apoptosis [2]. On the other hand, 
Bax (Bcl-2 associated X) is a pro-apoptotic protein responsible for mitochondrial apoptosis via the release of cytochrome C and 
formation of its apoptosome complex with apoptotic protease-activating factor-1 (APAF-1) [12, 26, 38]. Further, this apoptosome 
causes DNA fragmentation through activation of caspase-3 and promoting activity of caspase-3-activated DNase (CAD) enzyme 
[1, 51]. As mitochondria are the important site for apoptosis, a balance between these pro-apoptotic and anti-apoptotic proteins 
plays a vital role in mitochondrial apoptosis [30]. Additionally, researchers have established the link between IRI-induced elevated 
oxidative stress and activation of caspase-3 through the release of mitochondrial cytochrome C [28]. Clinically, an autopsy of 
cardiac tissue from the ischemic patient showed elevated apoptotic protein expressions in cardiomyocytes [33]. The findings of the 
present study also suggested that ischemia-reperfusion caused induction of apoptosis in myocardiocytes reflected by elevated Bax 
and caspase-3 protein expressions along with increased DNA fragmentation. Interestingly, administration of diazepam attenuated 
IRI-induced apoptosis via down-regulation of Bax, caspase-3, and DNA fragmentation levels depicting its anti-apoptotic property.

It is well established that hypoxia plays a vital role during myocardial ischemia [16, 52, 53]. HIF-1α, a transcriptional regulator 
highly sensitive to hypoxia and during normal physiological conditions, remains stable via inhibiting proline hydroxylase (PHD) 
activity [9]. However, during hypoxia, elevated oxidative stress induces transactivation of PHD, which further degraded the 
expressions of HIF-1α [8, 9]. Furthermore, hypoxia also leads to degradation of intracellular ATP levels, which further causes 
failure of ATP-dependent transport systems, including Na+K+ATPase and Ca2+ATPase [4, 45, 68]. Abnormalities in these transport 
systems eventually increase the extracellular concentration of K+, which further contributed to reducing conduction velocity 
and myocardial contractility [4, 45]. In the present study, LAD transient ligation causes initiation of hypoxia where the levels of 
HIF-1α, Na+K+ATPase, and Ca2+ATPase decrease; however, administration of diazepam significantly restored these alterations 
suggesting its cardioprotective property.

At present, diltiazem has been used as a first-category therapeutic regimen for managing myocardial ischemia [52]. Diltiazem, 
a calcium channel blocker, has been reported to inhibit the influx of calcium ions in myocardial smooth muscle cells at the time of 
depolarisation [32]. It also decreases intracellular calcium levels, thus increases smooth muscle relaxation. The FDA has approved 
diltiazem to manage hypertension, atrial arrhythmia, and chronic stable angina [54]. However, it is associated with several side 
effects, including bradycardia, edema, headache, fatigue, and dizziness. Sometimes chronic administration of diltiazem may cause 
myocardial infarction, congestive heart failure, and hepatotoxicity [54]. In a randomized clinical study, administration of diazepam 
(15 mg, p.o.) showed a reduction in the incidence of arrhythmias and preventing further spreading of myocardial injury [44]. Thus, 
diazepam may provide a beneficial effect in the management of myocardial injury induced by ischemic-reperfusion. However, 
validation is needed in the larger group of cardiac surgery patients susceptible to myocardial ischemic-reperfusion.

In conclusion, our results of the present study demonstrate that diazepam exerts cardioprotective effect against LAD ligation-
induced myocardial IRI in experimental rats. Furthermore, the cardioprotective potential of diazepam on ischemia injury was 
mediated by inhibiting inflammatory release (CCR2, TNF-α, and ILs), oxido-nitrosative stress, and apoptosis (Bax and caspase-3) 
pathway thus, it can be considered as a potential candidate for the treatment of the myocardial ischemia-reperfusion injury.
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