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Introduction

Heat stress negatively affects animal agriculture by reducing 
productivity and jeopardizing animal welfare. For the global 
swine industry, the effects of HS on growth, carcass quality, 
health and reproduction undermine efforts to improve efficiency 
and sustainability.1 Further, the deleterious effects of HS will be 
aggravated if climate continues to warm as predicted.2 In addi-
tion, genetic selection for rapid skeletal muscle growth might 
increase pigs’ susceptibility to HS, as enhanced lean tissue accre-
tion is accompanied by increased metabolic heat production.3 
Therefore, developing nutritional strategies to alleviate the effects 
of HS would be a key tool to maximize efficient animal protein 
production during the warm summer months.4

Heat stress compromises intestinal barrier function in a 
variety of species,5 and this might partially explain its effect on 
animal production. In agreement, we have repeatedly demon-
strated that heat-stressed growing pigs have reduced intestinal 

integrity and function.6-8 This is caused by the re-distribution of 
blood flow to the periphery for increased heat dissipation, which 
reduces oxygen and nutrient supply to intestinal tissues, resulting 
in enterocyte damage and increased permeability to luminal con-
tent and pathogens.9 The increased passage of bacterial compo-
nents (e.g., LPS) and bacteria into portal and ultimately systemic 
circulation are partially responsible for the pathophysiology of 
heat related illnesses, as reducing intestinal bacterial load10 or 
neutralizing plasma LPS11 increase heat stroke survival. Hence, 
approaches attempting to preserve and restore intestinal barrier 
function might improve animal production and wellbeing during 
environmentally-induced hyperthermia.

Dietary dairy products have been demonstrated to improve 
gut health. For instance, milk, colostrum, and whey protein 
supplementation are beneficial in models of induced intestinal 
damage in both mice and humans,12,13 as an ulcerative colitis 
treatment,14 and in vitro in response to a tight junction disrup-
tor.15 Interestingly, dietary dairy products ameliorated the effects 
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heat stress compromises intestinal integrity which may partially explain its negative effects on animal health and 
productivity. research suggests that challenged intestinal barrier function improves with dietary dairy products in vari-
ous models. Thus, the study objective was to evaluate the effects of bovine milk whey protein (WP) and colostral whey 
protein (cWP) on intestinal integrity in heat-stressed pigs. crossbred gilts (39 ± 3 kg body weight) were fed 1 of 4 diets 
(n = 8 pigs/diet): control (ct), control diet containing an 80% WP and 20% cWP product (WP80), control diet containing a 
98% WP and 2% cWP product (WP98), and control diet containing a 100% WP product (WP100). After 7d on experimen-
tal diets, pigs were exposed to constant heat stress conditions (32 °c) for 24h. There were no treatment differences in 
growth or body temperature indices prior to heat stress. During heat exposure, both rectal temperature and respiration 
rate increased (+0.85 °c and 3-fold, respectively; P < 0.01), and feed intake and body weight decreased (44% and -0.5kg, 
respectively; P < 0.01), but neither variable was affected by dietary treatments. Plasma L-lactate and D-lactate concen-
trations increased (36%; P < 0.01) and tended to increase (19%; P = 0.09) with heat stress. After 24h of heat exposure, 
WP100-fed pigs had lower plasma D-lactate relative to ct-fed pigs. ileal transepithelial electrical resistance was decreased 
(37%; P = 0.02) in WP80 pigs, compared with controls. no differences were detected in other intestinal integrity ex vivo 
measurements. These data demonstrate that dietary WP and cWP did not mitigate intestinal integrity dysfunction dur-
ing severe heat stress.
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of HS on intestinal barrier function in both mice15 and a human 
colonic cell line.16

Thus, current study objectives were to determine the effects of 
dietary bovine WP concentrate and CWP concentrate on intes-
tinal integrity parameters and blood biomarkers of ‘leaky gut’ in 
heat-stressed pigs. We hypothesized that feeding dairy products 
would prevent or at least ameliorate the deleterious effects of HS 
on gut permeability.

Materials and Methods

Animals and Experimental Design
Colostrum whey protein concentrate was obtained from 

Sterling Technologies and was blended with conventional WP 
concentrate (Main Street Ingredients). Iowa State University 
Institutional Animal Care and Use Committee approved all pro-
cedures involving animals. Thirty two crossbred gilts (39 ± 3 kg 
body weight) were stratified by body weight and then randomly 
assigned to 1 of 4 diets: 1) control (Ct), 2) the control diet con-
taining an 80% WP and 20% CWP test product (WP80); 3) the 
control diet containing a 98% WP and 2% CWP test product 
(WP98); and 4) the control diet containing a 100% WP test 
product (WP100). Test dairy products were similar in nutrient 
composition (Table 1) and constituted 7% of the respective diets 
in order to provide 100 g/d of protein. Other than the added test 
dairy products, all diets were similar in ingredient and nutrient 
composition and were formulated to meet or exceed the estimated 
requirements17 for essential amino acids, protein, minerals, and 
vitamins (Table 2). Pigs were ad libitum fed their respective diets 
and had free access to water throughout the entire experiment.

The study began after 3 d of acclimation to individual crates 
and was divided into two experimental periods. During period 
1, pigs remained in constant thermoneutral conditions (19 °C; 
~46% humidity; temperature-humidity index ≈63)18 for 7 d. 
During period 2, pigs were exposed to constant HS conditions 
(32 °C; ~26% humidity; temperature-humidity index ≈76) for 
24 h. At the end of period 2, pigs were sacrificed using the cap-
tive bolt technique followed by exsanguination. Throughout the 
experiment, ambient temperature was controlled but humidity 
was not governed, and both parameters were monitored and 
recorded every 30 min by data loggers (EL-USB-2-LCD, Lascar). 
Temperature-humidity index ranged between 58–65 and 75–79 
during period 1 and 2, respectively.

During period 1, body temperature indices (respiration rate 
and rectal temperature) were obtained four times a day (0800, 
1200, 1600 and 2000 h) and condensed into daily averages 
and period average. During period 2, temperature indices were 
obtained at 0, 4, 8, 12 and 24 h relative to the initiation of HS. 
Respiration rate was determined by counting flank movements 
and rectal temperature was measured using a digital thermom-
eter (V901H, Vicks®). Individual feed intake was recorded daily 
as-fed throughout the experiment. Body weights were collected at 
the beginning of each period and immediately prior to sacrifice.

Blood was obtained (K
2
EDTA blood tubes, BD vacutainers®, 

cat# 367861) on day 6 of period 1 (24 h prior to initiation of 
HS) and at sacrifice and kept in ice until processing. Plasma was 

Table 1. Test dairy products nutrient composition

Test dairy products

WP80 WP98 WP100

Protein, % 78.44 79.70 79.85

Fat, % 5.76 6.27 6.33

Lactose, % 7.53 6.70 6.58

Ash, % 2.93 2.88 2.88

Moisture, % 4.32 4.36 4.36

WP80, test product containing 80% milk whey protein (WP) + 20% colos-
tral whey protein (cWP); WP98, test product containing 98% WP + 2% cWP; 
WP100, test product containing 100% WP.

Table 2. ingredients and formulated dietary nutrients

Diet

Parameter Ct WP80 WP98 WP100

Ingredients (%)

corn 73.51 84.27 84.27 84.27

Soybean meal (46.5) 22.30 5.75 5.75 5.75

Soybean oil 1.04 - - -

l-lysine hcl 0.3 0.2 0.2 0.2

DL-methionine 0.06 0.02 0.02 0.02

l-threonine 0.09 - - -

Monocalcium phosphate 1.14 1.16 1.16 1.16

Limestone 0.94 0.98 0.98 0.98

Salt 0.35 0.35 0.35 0.35

Vitamin Premix1 0.15 0.15 0.15 0.15

Trace Mineral Premix2 0.12 0.12 0.12 0.12

80% WP,3 20% cWP4 - 7 - -

98% WP, 2% cWP - - 7 -

100% WP - - - 7

Nutrients

Me – kcal/kg 1530 1533 1533 1533

crude Protein % 16.9 15.3 15.3 15.3

SiD5 Lys % 0.97 0.97 0.97 0.97

SiD Met + cys % 0.56 0.56 0.56 0.56

SiD Thr % 0.61 0.61 0.61 0.61

SiD Trp % 0.16 0.20 0.20 0.20

calcium % 0.65 0.66 0.66 0.66

Phos. % - total 0.60 0.55 0.55 0.55

Phos. % - avilable 0.30 0.31 0.31 0.31

Sodium % 0.16 0.16 0.16 0.16

chlorine % 0.25 0.25 0.25 0.25

1Provided the following per kg of diet: vitamin A, 7,656 iU; vitamin D, 875 
iU; vitamin e, 62.5 iU; vitamin K, 3.75 mg; riboflavin, 13.75 mg; niacin, 70 mg; 
pantothenic acid, 33.75 mg; vitamin B12, 62.5 μg. 2Provided the following 
per kg of diet: Fe, 121 mg as ferrous sulfate; Zn, 121 mg as zinc sulfate; Mn, 
28.6 mg as manganese sulfate; cu, 12.1 mg as copper sulfate; i, 0.22 mg as 
calcium iodate; Se, 0.22 mg as sodium. 3Milk whey protein. 4colostral whey 
protein. 5Standard ileal digestible.
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harvested by centrifugation at 1300 x g 
and stored at -80 °C for later analysis. 
Whole sections from both the proximal 
ileum (1.5 m proximal to the ileocecal 
junction) and distal colon (0.5 m proxi-
mal to the rectum) were harvested imme-
diately following euthanasia. Intestinal 
segments were processed as previously 
described.8 Due to logistical constraints 
in sample collection and analysis, groups 
of 4 pigs (1 pig per treatment) were sac-
rificed twice a day (8 pig/d) for 4 con-
secutive days. Each group of 4 pigs was 
considered a “set” for statistical purposes. 
The timing of each measured variable was 
similar among sets.

Ex vivo measures of intestinal 
integrity

Ileal and colonic segments of each ani-
mal were mounted into modified Ussing 
chambers (Physiological Instruments) for 
determination of intestinal integrity. The 
TER and FITC-Dextran APP (4.4 kDa; 
Sigma®, cat# FD4) were measured and 
calculated as previously described by 
Pearce et al.7 Chamber slides had a sur-
face area of 0.7 cm2 and all readings were 
corrected to a 1 cm2 surface.

Blood parameters analyses
Plasma L-lactate and D-lactate con-

centrations were measured enzymati-
cally using commercially available kits 
(Biomedical Research Service Center). Plasma LBP concentra-
tions were determined using an ELISA kit (Hycult® biotech, 
cat# HK503). The intra- and inter-assay coefficients of variation 
were 6.6 and 5.1% for L-lactate, 1.5 and 2.3% for D-lactate, and 
8.7 and 22.2% for LBP.

Statistical analyses
Data are reported as LSmeans and considered significant 

if P ≤ 0.05 and a tendency if 0.05 < P ≤ 0.10. Variables with 
single measurements were statistically analyzed using the PROC 
GLM procedure of SAS version 9.2 (SAS Inst. Inc.). The model 
included treatment and set as fixed effects. For a given variable, 
when an initial measurement (at the beginning of the period or 
during period 1) was available it was used as a covariate.

Variables with multiple measurements were analyzed using 
the PROC MIXED procedure of SAS. Each animal’s respective 
parameter was analyzed using repeated measures with an auto 
regressive covariance structure. The repeated effect was hour 
after initiation of HS (rectal temperature and respiration rate) or 
period (blood parameters). The model included treatment, the 
repeated effect, set, and treatment by the repeated effect inter-
action as fixed effects; and covariate when available. For both 
procedures, set and the covariate were only kept in the model if 
their P ≤ 0.20. Contrasts were performed to estimate differences 
between each dietary treatment and the Ct-fed pigs. For each 

variable, residuals distribution was tested for normality and loga-
rithmic transformation was performed when necessary.

Results

During period 1, there were no differences in body tempera-
ture indices (Fig. 1) among diets. As expected during period 2, 
rectal temperature and respiration rate markedly increased by 
0.85 °C and ~3-fold, respectively (P < 0.01; Fig. 1). There was a 
time effect (P ≤ 0.05; Fig. 1) for both indices as rectal tempera-
ture and respiration rate peaked at 12 and 4 h post-HS initiation, 
respectively; however, no dietary treatment differences in these 
variables were detected. Both rectal temperature and respiration 
rate remained markedly increased (0.6 °C and 3-fold, respec-
tively) compared with period 1 (Fig. 1A and B).

During period 1, feed intake (2.1 kg/d), average daily gain 
(0.74 kg/d) and gain to feed ratio (0.35) were not different 
between diets (Table 3). During period 2 (after 24 h of HS), 
pigs in all treatments similarly reduced their intake and lost body 
weight (44% and -0.5 kg, respectively; Table 3).

There was a diet effect on ileal TER, as it was decreased 
(P ≤ 0.05) and tended to be decreased (P ≤ 0.10) in WP80 and 
WP100-fed pigs (37 and 27%, respectively; Table 4), compared 
with controls. Ileal TER did not differ between WP98 and Ct-fed 

Figure 1. effects of feeding diets containing no test product (ct), or 80% milk whey protein (WP) + 
20% colostral whey protein (cWP; WP80), 98% WP + 2% cWP (WP98), 100% WP (WP100) test prod-
ucts on (A) rectal temperature and (B) respiratory rate of pigs exposed to constant heat stress condi-
tions (32 °c) for 24 h. a,b,c represent differences between hours of heat stress (P ≤ 0.05). *represents 
the average values during period 1.
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pigs. There were no dietary treatment differences on ileal FITC-
Dextran APP or any measure of colonic integrity (Table 4).

Both plasma L-lactate and D-lactate concentration increased 
(P < 0.01; 36%) and tended to increase (P = 0.09; 19%), respec-
tively from period 1 to period 2, but the magnitude of the response 
was similar among dietary treatments (Fig. 2A and B). During 
period 2 and using period 1 as a covariate, plasma D-lactate was 
decreased in WP100-fed pigs (P ≤ 0.05; 29%; Fig. 2C), when 
compared with Ct-fed pigs. Neither dietary treatment nor period 
had an effect on plasma LBP concentration (Fig. 2C).

Discussion

Heat stress negatively affects animal agriculture by reduc-
ing growth and reproductive performance and jeopardizing 
animal welfare. Heat-stressed animals redistribute blood to the 
periphery in an attempt to maximize radiant heat dissipation.5 
Subsequent visceral vasoconstriction leads to intestinal hypoxia 
in addition to hyperthermia.6,9 As demonstrated by the early 
upregulation of heat shock proteins during hyperthermia,19 
enterocytes are extremely sensitive to oxygen and nutrient restric-
tion,20 resulting in ATP depletion, and increased oxidative and 
nitrosative stress.21 Ultimately, HS causes marked morphological 
changes, tight junction disruption, and reduced intestinal barrier 

function.5 Increased intestinal permeability during HS, elevates 
portal and systemic blood LPS concentration,7,21 which might 
mediate some of the negative effects of HS on animal produc-
tion.22 Interestingly, dairy products have improved intestinal bar-
rier function in a variety of models. Further, we have recently 
demonstrated that dietary supplementation with zinc partially 
ameliorated the effects of HS on intestinal permeability in pigs,8 
demonstrating that nutritional management is a feasible mitiga-
tion strategy for environmental hyperthermia. Thus, we hypoth-
esized that dietary bovine WP and CWP would alleviate the 
decrease in intestinal integrity observed in pigs during HS.

Contrary to our hypothesis and in disagreement with the lit-
erature, feeding WP/CWP did not improve direct measures (i.e., 
TER and FITC-Dextran APP) of ileal or colonic permeability. 
Playford et al. demonstrated that dairy product supplementation 
ameliorates the effects of non-steroidal anti-inflammatory drugs 
on the gastro-intestinal tract in rodents (i.e., WP and CWP) 
and humans (i.e., bovine colostrum and milk).12,13 In addition, 
local treatment with CWP improved symptoms and histologi-
cal scores of ulcerative colitis patients.14 In vitro studies have 
also shown the beneficial effects of bovine colostrum and goat 
milk on TER in response to a tight junction disruptor.15 Finally, 
dairy products improved intestinal integrity in heat-stressed rats15 
and in an in vitro model of hyperthermia.16 The mechanism by 

Table 3. effects of dietary dairy products and environmental conditions on production parameters in pigs

Trt P Contrast vs Ct

Parameter Ct WP80 WP98 WP100 SEM Trt WP80 WP98 WP100

Period 11

ADg,2 kg/d 0.76 0.73 0.71 0.74 0.04 0.73 0.48 0.29 0.69

Fi,3 kg/d 2.15 2.06 2.11 2.10 0.07 0.80 0.33 0.71 0.61

g:F4 0.36 0.35 0.34 0.35 0.02 0.73 0.61 0.27 0.51

Period 25

ΔBW,6 kg -0.64 -0.43 -0.52 -0.41 0.33 0.96 0.66 0.80 0.63

ΔFi,7 kg -0.90 -0.98 -0.93 -0.98 0.11 0.95 0.63 0.83 0.62

ct, diet containing no test product; WP80, diet containing 80% milk whey protein (WP) + 20% colostral whey protein (cWP) test product; WP98, diet con-
taining 98% WP + 2% cWP test product; WP100, diet containing 100% WP test product. 1Thermoneutral conditions: 19 °c; ~46% humidity. 2Average daily 
gain. 3Feed intake. 4gain to feed ratio. 5heat stress conditions for 24 h: 32 °c; ~26% humidity. 6change in body weight (period 2 – period 1). 7change in feed 
intake (period 2 – period 1).

Table 4. effects of dietary dairy products on intestinal permeability parameters in 24 h heat-stressed pigs

Trt P Contrast vs Ct

Parameter Ct WP80 WP98 WP100 SEM Trt WP80 WP98 WP100

Ileum

Ter1 142bc 90a 157c 104ab 16 0.02 0.03 0.51 0.10

FiTc-Dextran APP2 17.2 20.5 15.2 23.2 8.5 0.91 0.77 0.84 0.63

Colon

Ter 90 89 89 100 7 0.66 0.87 0.94 0.34

FiTc-Dextran APP 10.1 9.8 11.0 6.0 4.2 0.76 0.97 0.90 0.40

ct, diet containing no test product; WP80, diet containing 80% milk whey protein (WP) + 20% colostral whey protein (cWP) test product; WP98, diet con-
taining 98% WP + 2% cWP test product; WP100, diet containing 100% WP test product.1 Transepithelial electrical resistance, Ω∙cm2.2 Fluorescein isothio-
cyanate labeled dextran apparent permeability coefficient, µg/ml/min/cm2.
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which dairy products may protect intestinal health is not fully 
elucidated. Both bovine WP and CWP are rich in antimicrobial 
proteins (e.g., glucomacropeptides, lactoferrin), immunoglobu-
lins, growth factors (transforming growth factor-β), and specific 
amino acids (glutamine, cysteine, and threonine).23 However, the 
composition of these products is highly variable depending on the 
origin (e.g., breed, alimentation and health status), the time of 
collection, and the post-collection processing; making difficult 
to identify the bioactive constituents responsible for their positive 
effects.24 With regard to intestinal health, several mechanisms of 
action have been attributed to dairy products, including upregu-
lation of heat-shock proteins16 and tight junction proteins,25 or 
the increase in mucin production.26 Consequently, there appear 
to be a variety of mechanisms by which dietary dairy products 
can reduce gut “leakiness.”

Reasons for the lack of a protective response to our dietary 
treatments are not clear. In the present study, pigs were severely 
heat-stressed (constant 32 °C without a thermal recovery period 
during the night), as demonstrated by a marked increase in all the 
body temperature indices (rectal temperature = +0.85 °C, respi-
ration rate = +76 breath/min) and sharp decrease in feed intake 
(44%). We hypothesize that the severe HS may have blunted the 
potential beneficial effects of WP and CWP on intestinal health. 
Whether or not mild and/or cyclical HS conditions (more simi-
lar to natural heat stress events), would allow for dairy products 
to express their improvement on intestinal permeability variables 
remains of interest. Not only were the products in the current 
study ineffective, feeding WP80 (the diet with the highest con-
tent in CWP: 20%) actually increased ileal permeability. This 
is not unprecedented as it agrees with a human report, where 
subjects supplemented with bovine colostrum had increased in 
intestinal permeability after a standardized exercise program 
compared with controls and individuals receiving WP.27

We recognize that our experimental design (with no thermo-
neutral control treatment) makes it difficult to directly demon-
strate that the gut was actually compromised by HS. However, 
utilizing a similar heat load and type of pigs (i.e., genetics, body 
weight, gender) we have repeatedly reported that direct intestinal 
measurements of gut integrity deteriorated after 24 h of thermal 
exposure,6,7 and circulating LPS increased.28 In addition, in a sim-
ilar experimental design we have reported an increase in oxidative 
stress parameters in skeletal muscle, ostensibly the consequence 
of heat-stressed induced endotoxemia.29 In the current experi-
ment we measured blood biomarkers of leaky gut (i.e., D- and 
L-lactate and LBP) in both period 1 and 2. D-lactate is a product 
of microbial metabolism, so its presence in blood likely indicates 
an increase in gut leakiness.30,31 As expected, D-lactate increased 
from period 1 to period 2, confirming that the intestinal barrier 
function was compromised after 24 h of HS. Lipopolysaccharide 
binding protein is an acute phase protein that binds LPS and 
mediates its interaction with toll-like receptor 4,32 resulting in 
the activation of the innate immune response. Interestingly, high 
circulating concentrations of LBP inhibit LPS-induced inflam-
mation.33 We have previously reported that plasma LBP decreases 
as HS progresses (1–12 h) and intestinal integrity deteriorates.28 
Reasons why we did not observe a period effect on plasma LBP 

concentrations remain unknown. Noteworthy, at the end of 
period 2, WP100-fed pigs had lower plasma D-lactate concen-
tration compared with Ct-fed pigs and a numerical increase in 
plasma LBP from period 1 to period 2, which has been previ-
ously associated with decreased circulating LPS.28 In agreement, 
WP100-fed pigs had a numerical improvement in intestinal 
integrity (increased TER and decreased FITC-dextran APP) at 
the colon level, where most of the microflora is located, which 
might explain the aforementioned changes in plasma parameters.

L-lactate is the product of anaerobic glycolysis. The rationale 
to utilize this parameter as a biomarker of intestinal integrity is 
based on the release of intracellular L-lactate by damaged intesti-
nal cells.31 However, a similar phenomenon occurs in non-intes-
tinal cells, which makes L-lactate a nonspecific measurement 
of cellular damage. Our baseline (period 1) L-lactate levels are 
higher than those previously reported,31,34 however, our blood 

Figure  2. effects of feeding diets containing no test product (ct), or 
80% milk whey protein (WP) + 20% colostral whey protein (cWP; WP80), 
98% WP + 2% cWP (WP98), 100% WP (WP100) test products on plasma  
(A) L-lactate, (B) D-lactate, and (C) lipopolysaccharide binding protein 
(LBP) concentrations of pigs during period 1 (P1; thermoneutral condi-
tions: 19 °c; ~46% humidity) and at the end of period 2 (P2; heat stress 
conditions for 24 h: 32 °c; ~26% humidity). *represents differences 
between treatments during period 2 with period 1 as a covariate.
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collection method (jugular venipuncture), which requires physi-
cal constraint, could have triggered a stress response which is 
known to increase L-lactate levels.35 Nevertheless, this procedure 
was consistently performed in both periods. Notably, the increase 
in plasma L-lactate has been repeatedly observed during HS.22 
Our recent data suggests that complete glucose oxidation in skel-
etal muscle is decreased during HS, thus L-lactate is produced 
via aerobic glycolysis.22 Therefore, increased circulating L-lactate 
might be the result of metabolic adaptations to HS, resembling 
the Warburg effect employed by cancerous cells.36 Whether 
the increase in circulating L-lactate from period 1 to period 2 
is a result of cellular damage (presumably intestinal damage) or 
altered systemic glucose metabolism remains to be elucidated.

Heat stress is one of the largest impediments to efficient ani-
mal production. A hallmark of heat-stressed animals is a compro-
mised intestinal integrity, and the subsequent endotoxemia might 
contribute to reduced animal productivity. We have herein dem-
onstrated that feeding a combination of bovine WP and CWP in 
the tested proportions failed to ameliorate the effects of severe and 
constant HS on intestinal integrity of pigs. Whether milder and 
cyclical HS conditions (resembling those in commercial settings) 

and different levels of inclusion of the test dairy products would 
allow for improvement on intestinal health remains of interest.
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