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Abstract

Background: The reconstruction of context-specific metabolic models from easily and reliably measurable features
such as transcriptomics data will be increasingly important in research and medicine. Current reconstruction
methods suffer from high computational effort and arbitrary threshold setting. Moreover, understanding the
underlying epigenetic regulation might allow the identification of putative intervention points within metabolic
networks. Genes under high regulatory load from multiple enhancers or super-enhancers are known key genes for
disease and cell identity. However, their role in regulation of metabolism and their placement within the metabolic
networks has not been studied.

Methods: Here we present FASTCORMICS, a fast and robust workflow for the creation of high-quality metabolic
models from transcriptomics data. FASTCORMICS is devoid of arbitrary parameter settings and due to its low
computational demand allows cross-validation assays. Applying FASTCORMICS, we have generated models for 63
primary human cell types from microarray data, revealing significant differences in their metabolic networks.

Results: To understand the cell type-specific regulation of the alternative metabolic pathways we built multiple
models during differentiation of primary human monocytes to macrophages and performed ChIP-Seq experiments
for histone H3 K27 acetylation (H3K27ac) to map the active enhancers in macrophages. Focusing on the metabolic
genes under high regulatory load from multiple enhancers or super-enhancers, we found these genes to show the
most cell type-restricted and abundant expression profiles within their respective pathways. Importantly, the high
regulatory load genes are associated to reactions enriched for transport reactions and other pathway entry points,
suggesting that they are critical regulatory control points for cell type-specific metabolism.

Conclusions: By integrating metabolic modelling and epigenomic analysis we have identified high regulatory load
as a common feature of metabolic genes at pathway entry points such as transporters within the macrophage
metabolic network. Analysis of these control points through further integration of metabolic and gene regulatory
networks in various contexts could be beneficial in multiple fields from identification of disease intervention
strategies to cellular reprogramming.
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metabolism
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Background
Metabolism is a highly regulated dynamic process that
involves transport and chemical reactions of thousands
of metabolites to fulfill hundreds of metabolic functions.
Metabolic dysfunction is a major contributor to many
diseases which have become prevalent in human popula-
tion in the last decades, e.g. cardiovascular diseases [1],
neurodegenerative diseases [2] and cancer [3] amongst
many others. Alternative pathways and branches are
continuously activated or shut down to maximize meta-
bolic efficiency in a specific context [4], resulting in dis-
ease and patient-specific alterations.
Metabolism is regulated at multiple-levels with abun-

dance and expression of the metabolic enzymes being
one of the most decisive mechanisms. Gene expression
control has to integrate multiple signals both at tran-
scriptional and post-transcriptional levels. At the epigen-
etic level the availability of various transcription factor
(TF) binding sites through chromatin decondensation at
context-specific enhancers is regulated by the interplay
of TFs and post-translational histone modifications
deposited by the recruited co-activators [5]. Enhancers
adhere to unique chromatin states defined by features
such as deposition of histone variants, presence of co-
activators and monomethylation of histone H3 at lysine
4 (H3K4me1) [6]. More recently, acetylation of histone
H3 at lysine 27 (H3K27ac) was described to specifically
mark active enhancers engaged in regulation of RNA
polymerase activity through chromatin looping [7, 8].
Recent work on genome-wide analysis of active en-
hancers has revealed that important genes determining
cellular identity, such as TFs, are often controlled by
large and strong clusters of multiple enhancers called
super-enhancers or stretch-enhancers that are active in a
cell type-specific manner [9–11]. Moreover, these enhan-
cer clusters usually reside in insulated chromatin loops
or domains and often overlap with so called TF hot-
spots, suggesting that their target genes are under high
regulatory load from multiple TFs and enhancers, inte-
grating numerous different signals to promote proper
cellular phenotype, including the appropriate metabolic
network [12, 13]. However, the role of high regulatory
load genes in the metabolic networks has not been stud-
ied previously.
Metabolic networks are highly complex and can hardly

be understood without using mathematical representa-
tions. The most comprehensive descriptions of metab-
olism are genome-scale reconstructions (GENREs).
There are several human reconstructions available,
like Recon 1 and Recon 2 [14, 15] or the Edinburgh
Human Metabolic Network [16]. Alongside with these
reconstructions extensive reaction databases were de-
veloped, like HMR [17, 18] or HumanCyc [19, 20],
which collect additional information to refine the

available models. Mathematical models derived from
GENREs were successfully used to understand how
perturbations in the metabolism lead to severe path-
ologies [18, 21, 22].
GENREs are usually generic representations of a cell

or organism comprising all reactions that can poten-
tially become active regardless of the specific environ-
ment and cell type. Therefore they do not cover the
fact that the set of expressed genes and thereby the set
of active reactions vary significantly in function of the
cellular context. The generation of context-specific
models that include only pathways predicted to be ac-
tive in the given context is highly desirable and has
lead to the development of various algorithms like
GIMME [23], IMAT [24], MADE [25], mCADRE [26],
INIT [17] or MBA [27], that use omics data for build-
ing of context-specific model. While allowing the gen-
eration of models with higher predictive power than
the GENREs from which they were derived from [23,
27], these algorithms suffer from high computational
demands due to the application of mixed integer linear
programming, and/or the required setting of one or
several expression thresholds.
Recently we proposed an LP-based algorithm for

the fast reconstruction of compact context-specific
metabolic networks (FASTCORE) that allowed de-
creasing the reconstruction time of context-specific
networks to the order of seconds, using as input a
GENRE and a set of core reactions being active in
the context of interest [28]. FASTCORE identifies a
close to minimal set of non-core reactions from the
input model, to be added to the core set in order to
obtain a consistent model.
To adapt FASTCORE for the direct integration of

microarray data, we propose here a new workflow:
FASTCORMICS pre-processes microarray data with
the discretization tool Barcode [29, 30], is devoid of
arbitrary parameter settings and has a low computa-
tional demand with overall context-specific model
building times in the order of a few minutes. We use
FASTCORMICS to generate multiple metabolic models
across tens of primary cell types and analyze the cell type-
specific usage of the alternative branches in metabolic net-
works. To address the question of epigenetic regulation of
metabolism in different cell types we performed genome-
wide mapping of active enhancers in primary human
macrophages and integrated these data with metabolic
models of monocyte-to-macrophage differentiation to
expose the metabolic genes under high regulatory
load by multiple enhancers. We show that high regu-
latory load genes have a cell type-selective expression
profile within any metabolic pathway and a specific
positioning of many of these genes at transport or
entry point reactions of pathways.
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Results
Analysis of cell type-specific metabolic networks of primary
human cells
In order to adapt FASTCORE for the integration of tran-
scriptomics data from microarrays, we developed a new
workflow named FASTCORMICS (Additional file 1:
Figure S1), requiring as inputs microarray data, which
are first pre-processed with the discretization tool
Barcode [30], and a GENRE of the organism of interest.
Like FASTCORE, FASTCORMICS is devoid of arbitrary
parameter settings and has a low computational de-
mand with overall building times in the order of a
few minutes.
To validate FASTCORMICS, we first performed an es-

sentiality assay on two generic cancer models based on
Recon 1 and Recon 2 and existing microarray expression
data from 59 cancer cell lines [31, 32] (for full descrip-
tion, please see Additional file 1). Comparison to a
ranked gene list based on an shRNA essentiality screen
in several different cancer cell lines [33] shows the sig-
nificant predictive power of the FASTCORMICS models
(Additional file 1: Table S1). Benchmarking against simi-
lar algorithms shows that FASTCORMICS clearly out-
performs competitors in speed, while predicting the
highest number of essential genes and achieving best
significance levels among other algorithms (for results
and medium composition, see Additional file 1: Table S1
and Additional file 2: Table S2, respectively). A hyper-
geometric test also showed that the neoplasia-associ-
ated genes retrieved from the DisGeNet database [34] are
over-represented in the essential genes of both FAS-
TCORMICS models (Additional file 1: Table S3). Finally,
predicted lactate secretion rates based on cancer cell line
specific reconstructions showed a good correlation with
measured rates indicating the capability of FASTCOR-
MICS to also generate context specific reconstructions
(Additional file 1: Figure S2).
In order to identify cell type-specific differences in the

usage of the human metabolic network and to further
validate the FASTCORMICS workflow, we generated
context-specific metabolic models based on Recon 2 for
different cell types across most human lineages. From an
existing collection of 745 microarrays [35], we selected a
subset of 156 microarrays (Additional file 3: Table S4),
corresponding to 63 primary human cell types at their
resting states, and took advantage of the low computa-
tional demands of FASTCORMICS to generate a model
for each microarray. All reconstructed models are avail-
able in SBML format (Additional file 4). Interestingly,
clustering the different models according to their active
reactions allowed clear separation between the cell types
largely along their developmental origin or cellular func-
tion, suggesting significant differences in the metabolism
across cell types (Fig. 1a). The most unique metabolism

was predicted for the gametocytes, oocytes and sper-
matocytes, which at lowest showed only around 30 %
similarity to other cell types. Some of the largest clusters
were formed by the different blood cells that clustered
together with their progenitors as well as CD34+

hematopoietic stem cells, suggesting many shared fea-
tures in their metabolism.
To investigate how much the different pathways con-

tribute to the differential metabolism between the cell
types, and what are the most unique pathways in differ-
ent cell types, we looked into the activity state of all re-
actions according to the pathways they belong to.
Figure 1b lists all the Recon 2 pathways consisting of
more than one reaction, ordered by their combined me-
dian activity in all analyzed cell types with the first path-
ways (from left to right) showing no activity in almost
none of the analyzed cell types and the last pathways be-
ing fully active in almost all cell types. The distribution
of these values indicates the variation in the number of
active reactions for each pathway between cell types and,
for example, the usage of additional or alternative
branches of the pathways. By focusing on the most devi-
ant values of any pathway one can identify the cell types
that show very high or very low number of active reac-
tions for that pathway compared to other cell types, and
can thereby identify the cell type-specific branches of
those pathways.
Altogether, as expected, the different cell types exhibit

differential usage of their metabolic pathways, ranging
from ubiquitous to cell-type specific. This variation can
be captured by FASTCORMICS and allows clustering of
the cell types according to their functions and develop-
mental origins.

Metabolic modelling of primary human monocyte-to-
macrophage differentiation
One of the cell types with particularly high proportion
of active reactions compared to other cell types across
many metabolic pathways are macrophages. This is true
when comparing to the median of all cell types as well
as when comparing to the immediate precursor cells,
the monocytes (Fig. 1b, Additional file 1: Figure S3). To
gain more detailed understanding of the differential
usage and regulation of the metabolic pathways in mac-
rophages, we chose to generate our own expression data
with sampling at multiple time points during differenti-
ation of primary human monocytes to macrophages as
well as regulatory data from macrophages by mapping
active enhancer regions (Fig. 2a). This was done in mul-
tiple biological replicates to stringently focus on regula-
tory regions that are active in most healthy individuals
(please see next chapter for details).
For the expression profiling we chose to isolate pri-

mary human monocytes from blood samples of four
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Fig. 1 (See legend on next page.)
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healthy donors and to differentiate those to adherent
mature macrophages over a time course of 11 days
(Fig. 2a). Total RNA was collected at four time points, 2,
4, 7 and 11 days after isolation, and used for gene ex-
pression profiling by microarrays (Fig. 2b). Time points
before 2 days were not considered as the cells at these
early stages are affected by the stress from the collection
and isolation. During the differentiation (comparing day
11 to day 2), a total of 882 genes were significantly up-
regulated (FDR < 0.05, log2 fold change ≥ 1) while 519
were down-regulated (Fig. 2c, Additional file 5: Table S5).
Most expression changes occurred already early in the dif-
ferentiation and were not too dynamic, as most genes that
changed significantly during the differentiation (day 4 or
day 7), also remained differentially expressed in day 11
macrophages (Fig. 2c). Gene Ontology (GO) and KEGG
Pathway analysis of the differentially expressed genes
revealed enrichment for many categories and pathways
related to macrophage function, suggesting the differ-
entiation had been successful (Fig. 2d). The differen-
tially expressed genes included also 57 TFs. Among
the highest expressed TFs in macrophages we found
CEBP-family factors (CEBPB, CEBPA, CEBPD and
CEBPG), EGR2, SPI1 (also known as PU.1), SREBF2,
and FLI1, most of which are known regulators of
macrophage differentiation and phenotype [36–39].
RREB1 was the only factor among the 20 highest
expressed TFs for which we did not find any previously
described role in macrophages. Finally, 164 metabolic
genes became differentially expressed with a log2 fold
change ≥1 (FDR < 0.05) during the differentiation, most of
which were up-regulated (Fig. 2e).
The microarray data was used as an input for

FASTCORMICS to generate four metabolic models that
correspond to each tested time point of macrophage
differentiation (Fig. 3). All reconstructed models are
available in SBML format (Additional file 4). Out of
5317 reactions in the consistent Recon 2 (version 3), 660
reactions were predicted to be active in each time point
of macrophage differentiation (Additional file 1: Table
S6). The complete size of the day 2 monocyte model
was 978 active reactions (corresponding to 64 pathways),
which increased to 1149 active reactions (67 pathways)
in day 11 macrophages, suggesting that many inactive

alternative branches become active during differenti-
ation. Many of the newly activated reactions were turned
on already early on day 4 of differentiation with most of
the remaining reactions becoming active by day 7. The
number of reactions that became inactive in macro-
phages is smaller with only one pathway decreasing its
overall number of active reactions.
Among the pathways with highest relative number of

active reactions in macrophages were several fairly
ubiquitously active pathways such as hyaluronan metab-
olism, chondroitin sulfate degradation, and N-glycan
degradation (Figs. 1 and 3). However, most of these, as
well as many other pathways with steady overall number
of active reactions (such as triacylglycerol synthesis and
cholesterol metabolism) still showed a significant in-
crease in the expression of the genes corresponding to
their active reactions, suggesting a further increased flux
for these pathways in macrophages (Fig. 3). The total of
42 subsystems that showed an increase in the expression
of genes controlling them, are listed in Fig. 3, together
with the 2 subsystems showing decreased activity.
Cross-validation based determination of confidence
levels of the included model reactions (Additional file 1:
Table S7) show high or moderate confidence for approx.
80 % of the reactions, indicating that only approx. 20 % of
the reactions did not have expression based support, i.e.
were added by FASTCORMICS to generate a consistent
network model. And approx. 88 % of the excluded reac-
tions had multiple evidences (reactions with low expres-
sion) for not being included.
Next we aimed to find out which subsystems are par-

ticularly active in macrophages when compared to other
cell types, including monocytes, and therefore possibly
under macrophage-specific regulation. Since our own
data were generated with more recent Affymetrix arrays
(Human Gene 1.0 ST platform) where limited possibil-
ities for comparisons to public data exist, we focused
here also on the macrophage samples from the Primary
Cell Atlas [35]. Results are depicted in Fig. 1b and
Additional file 1: Figure S3. Among the interesting
subsystems, for example, more than 60 % of reactions
in tryptophan metabolism are predicted active in
macrophages while the median value across cell types
is 30 %. This is consistent with the models of

(See figure on previous page.)
Fig. 1 Identification of cell type-specific metabolic pathways in primary human cells. a 156 metabolic models based on an equal number of
microarrays and corresponding to 63 primary human cell types were built using the FASTCORMICS workflow and microarray collection from
Primary Cell Atlas (GSE49910). The level of similarity between the different model pairs was determined via the Jaccard index. The Jaccard
index matrix was then clustered in function of the similarity level. b For each pathway, the level of activity, given as percentage of reactions
of the consistent version of Recon 2 (5317 reactions) that are present in each context-specific model was computed. The distribution of the
activity levels of each pathway across the 156 models are shown as box plots and sorted according to the median value across the pathways.
Pathways that contain less than 4 reactions were not included. Mean percentage of active reactions across macrophage and monocyte samples
are depicted by black asterisk (*) and green cross (x), respectively
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monocyte-to-macrophage differentiation from our own
data, which suggest over 3-fold increase in active trypto-
phan metabolism reactions over the time course (Fig. 3).
Similarly, approximately 80 % of reactions in cholesterol
metabolism are predicted active in macrophages, com-
pared to a median of 45 %. Also here there is a compar-
able 2-fold increase in active reactions from day 2
monocytes to day 11 macrophages in the models based on
our own microarrays. Consistently with increased choles-
terol metabolism, also bile acid synthesis, a major choles-
terol catabolism pathway, is predicted to have more active
reaction in macrophages (>50 %) than the median across
other cell types (29 %), Other interesting pathways with
particularly high numbers of reactions in macrophages
include triacylglycerol synthesis and valine, leucine and
isoleucine metabolism, both of which show further in-
crease in expression during differentiation from mono-
cytes to macrophages. Overall these results suggest
that some alternative branches of the above-mentioned
pathways could be under cell type-specific regulation
in macrophages.
Taken together, time course analysis of metabolic

models during macrophage differentiation predicts chan-
ged activities for hundreds of reactions, many of which
occur already at early time points and, in contrast to
what could be assumed from transcriptome-wide expres-
sion level changes, consist largely of increased reaction
activities, especially in alternative branches of already ac-
tive pathways.

Identification of metabolic genes under high regulatory
load in macrophages
Recent work has shown that active enhancers directly
involved in transcriptional activation via chromatin
looping are marked by specific chromatin modifica-
tions such as acetylation of lysine 27 of histone H3
(H3K27ac) [7, 8]. Moreover, we and others have shown
that genes under high regulatory load from multiple TFs
are often disease-associated and acting as cell type-specific
key regulators of cellular identity [11, 40, 41]. Importantly,
these genes are marked by a high number of strong

enhancers, collectively also called super-enhancers or
stretch-enhancers [9, 10], allowing their identification
using epigenomic mapping of active enhancers.
In order to identify metabolic genes under high regula-

tory load in macrophages, we performed chromatin
immunoprecipitation coupled to high throughput se-
quencing (ChIP-Seq) with an antibody against H3K27ac
in primary human macrophages derived from additional
three donors different on top of the donors used for the
microarray analysis. Analysis of the obtained sequencing
data identified approximately 27,000-28,000 active en-
hancer regions in macrophages, depending on the sam-
ple, with 16,290 regions detected in all three samples
(Fig. 4a). The reproducibly identified enhancers in prox-
imity of induced genes correspond to binding sites of
known macrophage TFs such as SREBF2, FLI1, CEBP-
family and SPI1, as suggested by the de novo motif
analysis of the underlying sequences for enriched mo-
tifs (Fig. 4b, see Additional file 1: Figure S4 for the
complete list).
When assigning the enhancer regions to their putative

target genes (see Materials and Methods; Generation of
enhancer-to-gene associations), we observed that almost
8000 genes were associated with at least one active en-
hancer in macrophages, despite our stringent selection
(Fig. 4c). Ranking the genes according to their regulatory
load (number of associated enhancers) revealed that the
number of enhancers per gene ranged from 1 up to 59
with only the top 10 % of the associated genes having 7
or more enhancers. Among these top genes were numer-
ous TFs, many of which were already identified as highly
expressed and enriched for their binding site motifs, in-
cluding CEBP-family members, SPI1, and FLI1. As an
example of a high regulatory load gene, the genomic
locus of SPI1 – the well-known pioneering factor and
key regulator of macrophage differentiation – with two
large clusters of multiple enhancers, is depicted in
Fig. 4c. In contrast another abundantly expressed macro-
phage gene, CD4, is using only one intragenic enhancer
region. Interestingly, RREB1, which we had previously
noticed among highly expressed TFs in our microarray

(See figure on previous page.)
Fig. 2 Transcriptomic profiling of primary human monocyte-to-macrophage differentiation. a-b Primary human monocytes isolated from donated
blood samples were differentiated into monocyte-derived macrophages in vitro, and microarrays were performed with total RNA extracted on
time points day 2, day 4, day 7 and day 11. In addition chromatin was isolated for Chip-seq experiments from day 11 macrophages. c Relative
expression levels of differentially expressed genes during monocyte-to-macrophage differentiation selected with a FDR cut-off of 0.05 and
absolute fold change greater or equal to 2 were clustered and represented as a heatmap. Genes with a positive Z-score are represented in
red and negative in green. On the right of the heatmap, the time points where the differentially expressed genes show significant changes
are indicated for a comparison between D2 and the remaining time points in different shades of the blue, between D4 and D7 or D11 in
yellow or green and between D7 and D11 in red, indicating that most significant expression changes occur already at early time points. d. A
Gene ontology analysis for enriched biological processes and KEGG pathways was performed on the differentially expressed genes using DAVID
[73]. The top ten gene ontology terms for the biological processes and the top five KEGG pathways are listed. e Relative expression levels of
Recon 2 genes with differential expression (absolute fold change greater or equal to 2 and FDR < 0.05) during monocyte-to-macrophage
differentiation are represented as a heatmap as in panel c
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data, but for which no role in macrophages has been de-
scribed, was the gene with third highest enhancer load
of all genes in our experiments, suggesting that RREB1
might play an important role in macrophages or their
differentiation. Finally, analysis of the expression levels
of the top genes with ≥ 7 associated enhancers con-
firmed them to be on average significantly higher
expressed than the genes with fewer enhancers (KS-test,
p-value = 4.63e-38; Fig. 4d).
Next we focused on the identification of the metabolic

genes under high regulatory load. In total there are 689
metabolic genes expressed in the macrophages that are

consistent with our metabolic model and 55 of them be-
long to genes under high regulatory load of 7 or more en-
hancers in our data set (based on manual curation of the
enhancer to gene association, see Materials and Methods).
Importantly, the expression of the metabolic genes under
high regulatory load is even more shifted towards high ex-
pression levels when compared with other expressed
metabolic genes (KS-test, p-value = 1.8537e-11; Fig. 4e).
In summary, we reproducibly identified over 16,000

active enhancers in primary human macrophages, a large
proportion of which could be associated to the top 10 %
of genes with high regulatory load. These genes are

Fig. 3 Monocyte-to-macrophage differentiation is accompanied by activation of alternative metabolic branches and increased activity of already
active pathways. For each pathway, the level of activity (percentage of reactions in the input model that are present in the context-specific
model) was computed for each time point (left panel). Each column represents the model built by the FASTCORMICS workflow for the given time
point whereas each line stands for a different pathway. The fraction of active reactions ranges from 0 to 1 and is represented in shades of gray
for low, yellow for intermediate and red for high number of active reactions per pathway. Additionally, (right panel) the significantly differentially
expressed genes (FDR <0.05 and absolute log2 fold change > 1) were mapped to the models via the GPR rules. The percentage of up-regulated
reactions in a pathway was computed after summing up the significantly up-regulated reactions. The number of significantly down-regulated
reactions was then removed from this sum and the total was then normalized by the number of reactions in the pathway. The fraction of reactions
associated with differentially expressed genes ranges between −0.7 for down-regulated pathways in blue and 0.9 for unregulated pathways in red.
Only pathways that show a differential expression over time are represented
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expressed at high levels and include many of the known
key regulators of macrophage phenotype as well as 55
metabolic genes.

Genes under high regulatory load control macrophage-
specific control points of metabolic pathways
Given that genes with high regulatory load are important
for the cell identity and often expressed in a cell type-
specific manner, we decided to analyze the expression
levels of the macrophage metabolic model genes across
numerous different cell types. To this end, we again used
the microarray data collection from Mabbott et al. [35],
this time taking advantage of all 756 arrays correspond-
ing to a total of 188 different cell types and conditions,
and analyzed the expression level of each metabolic gene
across the 188 conditions and ranked it according to its
average level in the monocyte-derived-macrophage sam-
ples contained in the data set. Figure 5 depicts these
ranks for all genes of the macrophage-specific metabolic
model that belong to a subsystem containing at least one
high regulatory load gene. Analysis of the distribution of
the expression ranks along the cell types and subsystems
reveals that; 1) the genes under high regulatory load
(marked in orange) show an overall shift towards the
upper ranks of macrophage metabolic genes, arguing they
are generally expressed in a macrophage-specific manner,
and 2) they are the more selectively expressed genes
within each metabolic subsystem (Fig. 5). At the same
time the other genes contained in the macrophage model
show an even distribution across the ranks, suggesting a
more ubiquitous expression between cell types.
Since most of the metabolic genes with high regulatory

load in macrophages are preferentially expressed in mac-
rophages, and are usually the most abundantly expressed
genes within their respective pathway, we asked in
addition whether the positioning of the reactions they
control within the macrophage metabolic network is also

different from other reactions. Indeed, we could observe
clear differences when focusing on the genes associated
to transporters or entry points of the pathways predicted
active in the macrophage model (Fig. 6). While 53.1 % of
all gene-associated reactions in our macrophage meta-
bolic model are transport or entry point reactions, this
fraction increases significantly to 67.1 % when focusing
on reactions associated to high regulatory load genes
(KS-test, p-value = 9.0e-5). Furthermore, when looking
only on transport reactions that constitute 17.4 % of all
macrophage reactions, we observe an even more signifi-
cant enrichment (KS-test, p-value = 1.8e-7) to 32.9 % of
the reactions associated with high regulatory load. Fi-
nally, when excluding the transport reactions and focus-
ing on the reactions corresponding to the remaining
entry points of the different pathways (44.7 % of all
macrophage reactions) we also see an enrichment for
the high regulatory load genes (51.6 % of high regulatory
load reactions), although with clearly higher p-value
(KS-test, p-value = 0.0839). Importantly, similar results
could not be obtained using a generic metabolic recon-
struction such as Recon2 (data not shown), further
highlighting the importance of using context-specific
models and cell type-specific epigenomic data.
Taken together, genes associated to reactions at im-

portant control points of the macrophage metabolic net-
work such as transporters or other pathway entry points
are particularly enriched for high regulatory load, and
exhibit abundant and cell type-specific expression pat-
terns, possible enabling cell type-specific control of the
downstream pathways.

Entry to alternative bile acid synthesis pathway via
CYP27A1 is under high regulatory load and depends on
multiple transcription factors
An interesting example among pathways with differen-
tial activity in macrophages is the bile acid synthesis

(See figure on previous page.)
Fig. 4 Identification of high-regulatory load genes in human macrophages. a Active enhancer regions were identified via chromatin
immunoprecipitation coupled to high throughput sequencing (ChIP-Seq) with an antibody against H3K27ac using chromatin from
monocyte-derived day 11 macrophages from 3 anonymous donors. Enhancer regions were considered reproducibly detectable when their
genomic coordinates overlapped by at least one nucleotide in all biological replicates. b Selected enriched sequence motifs located within the
identified active enhancer regions associated to upregulated genes in macrophages and corresponding to known transcription factor binding
sites are shown. See full list in Additional file 1: Figure S4. c Genes associated with at least one active enhancer region were ranked in function
of the number of active enhancer regions. A threshold (blue line) corresponding to the top 10 % and at least 7 active enhancer regions was set
to segregate between high regulatory load genes and the remaining expressed genes (please see Discussion for details on the threshold selection).
105 kb genomic regions surrounding SPI1 and CD4 loci, mapped reads indicating H3K27ac enrichment from the three donor samples, and called
reproducible peaks are shown as examples of high regulatory load and low regulatory load genes, respectively. d The distribution of the expression
levels of the high regulatory load genes was compared to genes that have a number of enhancers below the threshold of seven enhancers but that
are associated to at least one enhancer (KS-test, p-value = 4.63e-38). e The enhancer load of the metabolic genes present in the consistent
version of Recon2 was determined and then manually curated to minimize false peaks-to-gene assignments allowing identification of 74
high-regulatory load genes (≥7 enhancers), 55 of which mapped to the macrophage model. The distribution of expression levels of these
metabolic high regulatory load genes was compared to the distribution of expression of the remaining metabolic genes of the macrophage
model (KS-test, p-value = 1.8537e-11)
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pathway, which also serves as the major cholesterol ca-
tabolism pathway. Consequently, it also produces inter-
mediates like oxysterols that serve as regulators of gene
expression through their role as endogenous ligands for
transcription factors like liver X receptors (LXRs). The
bile acid synthesis pathway has two genes with high
regulatory load in macrophages, CYP27A1 and ACP2,
which are also the highest expressed genes of the path-
way throughout the differentiation from monocytes to

macrophages (Fig. 7a). Both genes are the most
macrophage-specifically expressed genes of the path-
way (Fig. 7b) and CYP27A1 shows the most abundant
expression in different macrophage cells and selected
dendritic cells (Fig. 7c). CYP27A1 is known to be in-
volved in catalyzing the mitochondrial reactions of
the classic, or neutral, bile acid synthesis pathway in the
liver [42, 43]. In addition, CYP27A1 is also responsible for
the first reaction of the alternative, or acidic, pathway to

Fig. 5 High-regulatory load genes show macrophage specific expression and are the highest expressed genes in their respective pathways. The
normalized expression values of the 745 arrays of Primary Cells Atlas were downloaded from the Gene Expression Omnibus repository (GSE49910).
The 745 arrays are subdivided in 188 separate cellular contexts. For each reactions-related gene of a pathway, the normalized expression value was
retrieved and for each gene, the 188 conditions were ranked from the highest expressed to the lowest expression level with the ImpAvRank function
from [74]. For each pathway, the genes are plotted in function of the rank of the monocyte-derived macrophages among the 188 conditions. Each
rank position is represented as a box along the y-axis. High-regulatory load genes are mapped along this axis in function of their rank and depicted in
orange, whereas the remaining genes in the pathway are depicted in dark gray
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hydroxylate cholesterol directly in the mitochondria to
27-hydroxycholesterol in extrahepatic tissues, in particular
in macrophages (Fig. 7d) [44]. Therefore CYP27A1 is a
prime example of a high regulatory load gene potentially
integrating multiple signals to control an entry point reac-
tion of an alternative pathway.
Finally, to test which transcription factors could be re-

sponsible for the high regulatory load of CYP27A1, we
analyzed microarray data from the FANTOM consor-
tium for knock-down experiments of 53 transcriptional
regulators in THP1 monocytes (Fig. 7e) [45]. Interest-
ingly, almost half of the tested knock-downs affected
CYP27A1 expression directly or indirectly with 18 TFs
showing significant downregulation after transfection
and additional 4 regulators causing a significant upregu-
lation (Fig. 7e). Among the TFs causing significant
change in CYP27A1 expression upon knock-down
were many known myeloid regulators that were also
predicted as key TFs based on our de novo motif ana-
lysis (Additional file 1: Figure S4), including CEBP-
family members, Forkhead-family members, and FLI1.
Moreover, CEBPB and SREBF1 knock-downs both led
to decreased expression levels just above the signifi-
cance cut-off with p-values of 0.055 and 0.054, re-
spectively, altogether indicating that CYP27A1
expression is controlled by multiple transcription fac-
tors in monocyte-derived macrophages.

Discussion
Here we present a novel workflow, FASTCORMICS, for
the fast, robust and accurate generation of metabolic
models based on transcriptomics data generated by mi-
croarrays and use FASTCORMICS to generate multiple
metabolic models across tens of primary cell types. This
analysis reveals a cell type-specific usage of the alterna-
tive branches in metabolic networks and raises the ques-
tion about the epigenetic regulation of metabolism in
different cell types. To address this question we per-
formed genome-wide mapping of active enhancers in
primary human macrophages and integrated these data
with metabolic models of monocyte-to-macrophage dif-
ferentiation to expose the metabolic genes under high
regulatory load in macrophages and general features of
these genes within metabolic networks. Interestingly, the
high regulatory load genes show the most abundant and
cell type-selective expression profiles of the genes within
any metabolic pathway and control in particular the
different transport and entry point reactions of the
pathways.
An interesting example of a metabolic enzyme con-

trolling an entry point of an alternative pathway is
CYP27A1, which is encoded by one of the 55 metabolic
genes under high regulatory load in macrophages. The
alternative bile acid synthesis, which is initiated by
CYP27A1 in mitochondria, is also the major cholesterol
catabolism pathway in macrophages. Therefore the regu-
lation of CYP27A1 can be used to control cholesterol
homeostasis in macrophages, and other extra-hepatic
cell types, on one hand through initiating cholesterol
catabolism, and on the other hand due to production of
intermediate oxysterols that indirectly influence chol-
esterol efflux and biosynthesis [46]. CYP27A1 has
therefore many implications to the development of
atherosclerosis and cardiovascular disease. Moreover,
a mutation of CYP27A1 in humans causes a disease
called cerebrotendinous xanthomatosis (CTX), which
leads to accumulation of cholesterol in brain and ten-
dons and is accompanied by neurological dysfunctions,
including parkinsonism, as well as increased rate of ath-
erosclerosis [47, 48].
The disease-association of CYP27A1 is consistent with

previous findings from us and others that genes under
high regulatory load, or controlled by so called super-
enhancers, are often associated with disease [40, 49]. In-
deed, our current findings suggest that within any cell
type the top 10th percentile of highest regulated genes
are significantly enriched for disease-association (which
is also the reasoning behind the applied cut-off for high
regulatory load in this study) [50]. This is possibly due
to their central roles as network hubs within gene
regulatory networks, forming integration points for mul-
tiple signals. While this combinatorial regulation can be

Fig. 6 High regulatory load genes control transport and entry point
reactions in macrophages. The enrichment of transport reactions
and other entry point reactions under high-regulatory load among
the gene-regulated reactions of the macrophage model was
computed using hypergeometric test. An entry point is defined
as the first reaction of a pathway change when considering the
flux direction. In addition, the transport reactions and entry point
reactions were tested separately to estimate their contributions
to the observed enrichment
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robust, it might also increase the likelihood of being af-
fected by alterations such as single nucleotide polymor-
phisms (SNPs) in the regulatory regions. This would be
consistent with the experiments of Siersbaek et al. who
showed that omission of one TFs activity, that of gluco-
corticoid receptor (GR), in early adipocyte differentiation
had more potent effect on super-enhancer activity than
on activity of more isolated GR binding sites [13].
Integrating gene regulatory networks with metabolic

networks is an important and necessary step for truly
global understanding of metabolism and its regulation.
However, the role of high regulatory load genes in con-
trol of metabolism has not been previously specifically
addressed. We find that high regulatory load genes, the
central hubs of the gene regulatory networks, are signifi-
cantly enriched for controlling transport reactions or
other entry points of pathways, like in the case of
CYP27A1, with almost 70 % of such reactions located at
transporters/entry points (Fig. 6). They are the most
abundantly expressed genes within the pathways and
show most variation between cell types, suggesting they
are used as the control points for cell type-specific me-
tabolism. This is consistent with the findings in meta-
bolic control analysis that for linear pathways with
similar individual kinetics assigned to the different en-
zymes the flux control exerted at the upper part of the
pathway and especially at the first step is much higher
than in the lower part [51].
While most high regulatory load genes do control

entry point reactions, there remains a large proportion
of them that do not. An interesting question is what
other network positions are controlled by high regula-
tory load and to which end. Among the non-entry point
reactions associated to high regulatory load genes in
macrophages many are situated immediately down-
stream of branch points where a metabolite can follow
two different fates within the pathway. For example,
kynurininase (KYNU) is a high regulatory load gene

catalyzing branch point reactions in tryptophan metabol-
ism pathway to decide the faith of tryptophan metabolite
kynurenine into downstream metabolites with inflamma-
tory and neuroactive functions [52]. Similarly, UDP-
glucose ceramide glucosyltransferase (UGCG) is a
macrophage high regulatory load gene controlling the
commitment of sphingolipids to glycosphingolipid
branch [53]. Interestingly, the enzyme is also required for
capture of HIV-1 viral particles into dendritic cells and
useful for the virus upon infection [54]. In addition to
branch point reactions, many high regulatory genes also
control reactions along the metabolic pathways. Regula-
tion at such positions might be important for example to
control accumulation of harmful or beneficial metabolic
intermediates. However, it should also be pointed out that
the consistency of the current human GENREs like Recon
2 is only approximately 75 % and many branch or entry
points might still remain unannotated.
In general the context-specific reconstruction of

metabolic network models with FASTCORMICS as
presented here might be severely influenced by the
quality of the used GENRE, especially when applying
automated annotation pipelines. As the overall run-
time of FASTCORMICS is very low, it allows perform-
ing cross-validation studies as described earlier and
thereby detecting high-confidence reactions with mul-
tiple evidence for their presence in the context-specific
model of interest. In general, with run-times in the
order of seconds FASTCORMICS clearly out-performs
competing algorithms and might serve as an important
corner stone of many future applications.
We’ve used FASTCORMICS to generate metabolic

models of hundreds of human cell types, including a
time-course of monocyte-to-macrophage differentiation.
As discussed above, the cholesterol metabolism was pre-
dicted to be increased between day 2 and day 11 of the
differentiation (Fig. 3), consistent with the ability of
healthy resident macrophages to uptake and release

(See figure on previous page.)
Fig. 7 The alternative pathway of bile acid synthesis is controlled by high regulatory load on CYP27A1 gene. a The mean normalized expression
values of the genes implicated in the bile acid synthesis pathway based on the microarray data across the four differentiation time points are
depicted. High regulatory load genes (CYP27A1 and ACP2) are presented in different shades of orange and with a thicker line than other genes of
the pathway. b For each gene of the bile acid synthesis pathway, the rank of the expression level in the macrophage samples among the 188
conditions and cell types of the Primary Cell Atlas are shown by an orange or gray star (*) for high regulatory load genes and genes that are not
under high regulatory load, respectively. Genes in the top ranks are situated in the top of the figure. c The expression profile for CYP27A1 across
all 188 conditions and cell types from Primary Cell Atlas as arbitrary expression units. Macrophage samples are depicted in red. d The alternative
pathway of bile acid synthesis was visualized in Cytoscape. To allow the alternative pathway to carry a flux, an exchange reaction was added,
enabling the export of the last metabolite from the cell. Reactions predicted active in this modified macrophage model (day 11) are depicted as
filled black circles or filled orange circles for reactions under control of high-regulatory load genes. The size of the nodes correlates with the
number of associated enhancers. The reaction names correspond to reaction-identifiers of Recon 2. e The normalized expression levels of CYP27A1
in microarray analysis of THP-1 monocytes in a series of knock-down experiments for 53 different transcription factors or regulators and three
unspecific control siRNAs retrieved from the FANTOM consortium database. Expression values were normalized to the first control siRNA (siNC)
and represent the mean expression values ± SD (n≥ 3). Student’s t-test determined the significance of changes in response to siRNA transfection
(*, p <0.05; **, p <0.01)
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lipids, as part of their generic cleaning role or in a
targeted way through low density lipoproteins (LDLs)
[55, 56]. This may also be correlated to the observed in-
crease in the active reactions in phospholipid (more pre-
cisely glycerophospholipids in Fig. 3) metabolism or
overall increase in expression of genes associated to re-
actions in triacylglycerol synthesis, the two other main
lipid families that constitute LDLs. Also, the differenti-
ation process between day 2 and 11 predicts an increase
in the metabolism of the essential amino acid trypto-
phan, in particular with respect to its kynurenin metab-
olite [57]. In addition, also the metabolism of other
relevant metabolites like the eicosanoids, another im-
portant signaling family [58], or glutamate [59], were
increased, as well as pathways with fewer specific impli-
cations for macrophage biology like inositol phosphate,
pyruvate and propanoate metabolisms. FASTCORMICS
is therefore able to contextualize a qualitative and quanti-
tative difference between monocytes and macrophages.
More detailed analysis of pathophysiologic states of

monocyte-to-macrophage differentiation in inflamma-
tory conditions could be another informative application
of the predictive efficacy of FASTCORMICS. Indeed, in-
flammation of the vascular wall is for example disturbing
the uptake and release equilibrium of lipids by macro-
phages, making them become lipid-loaded foam cells by
mechanisms involving oxidized LDL, and thus partici-
pate to the development of atherosclerosis [56]. Also, in-
flamed microglia (the resident brain macrophages) have
been shown to produce enhanced quantities of quinoli-
nic acid, a metabolite of the tryptophan-derived kynure-
nin, which can become toxic to the brain and could
participate to the development of various neurodegenera-
tive processes among which Alzheimer’s and Parkinson’s
diseases [52, 60].
FASTCORMICS allows in a modular fashion to use

medium information and/or a biomass function for im-
proved contextualization. This would allow generating
more accurate context specific network models. How-
ever, it might be challenging to obtain specific medium
and biomass information for reconstructing a cell’s me-
tabolism residing within a multi-cellular context. In the
presented work a general biomass function was used.
Future progress in the respective analytical methods will
therefore help to further improve the contextualization
via FASTCORMICS by providing more accurate specific
medium and biomass information.
FASTCORMICS is based on the discretization of the

expression data with Barcode, which to our knowledge
currently is the most robust and reliable discretization
method. The pre-processing step with Barcode allows
circumventing the need of setting an arbitrary expres-
sion threshold that segregates between expressed and
non-expressed genes as e.g. in [21, 23, 24]. As such a

threshold is arbitrary and critical for the output meta-
bolic models as in response to this threshold complete
branches, alternative pathways, or subsystems might be
included or excluded, thereby heavily changing the func-
tionalities of the model. Further, Barcode shows a better
correlation between predicted expression and protein
expression than competing discretization methods for
the segregation of gene expression and allows reducing
batch and lab-effects that affect measurements [30].
An interesting future research question is if better

context-specific reconstruction could be obtained by ap-
plying continuous weights instead of discrete core as-
signments or by a combination of the two approaches.
While in general continuous weights might be able to
better capture the continuous distribution of expression
values, this would require the setting of arbitrary param-
eters to convert expression values into optimization
weights, thus rendering this approach biased to arbitrary
settings as also stated by Machado et al. [61]. Thus the
overall performance of such approach needs to be inves-
tigated in more detail in future work. FASTCORE can
form a valuable building block here as well.
Such continuous approach might also be suitable to

treat genes with reactions associated in multiple path-
ways (like the discussed CYP27A1 example) more effi-
ciently, where a stringent including of core reactions
without integration of the expression context of the
remaining reactions in the pathway might not be the
best approach.
Furthermore FASTCORMICS can easily be adapted

for the integration of other omics types, like data from
next generation sequencing methods such as RNA-seq,
while special attention has to be paid to the data type
specific discretization step.

Conclusion
FASTCORMICS allows obtaining high-quality, robust
models in a high-throughput manner. This allows the
use of metabolic modelling as routine process for the
analysis of expression data. Further integration with gene
regulatory network data opens possibilities for better un-
derstanding of the upstream events and identification of
novel drug targets such as the genes under high regula-
tory load which we here find to control entry points of
pathways in the macrophage metabolic network.

Methods
Building of context-specific models with the FASTCORMICS
workflow
The general workflow of FASTCORMICS (Additional
file 1: Figure S1) contains a discretization step with
Barcode to obtain for each gene a z-score which indi-
cates the number of standard deviations of the gene of
the considered array above the mean expression value of
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the same probe set in an unexpressed context measured
across thousands of arrays. Genes with a z-score equal
or below zero, corresponding to the mean of the distri-
bution of the non-expressed genes, are considered as
inactive and are associated with a discretization score
of −1. Genes with z-score above 5, corresponding to
the threshold value benchmarked by Zilliox et al. [30], are
considered as expressed and get a discretization score
equal to 1. Genes with z-score larger than 0 but smaller
than 5 form the undetermined gene set and get a
discretization score of zero. The discretization score 1 is
then mapped to the consistent generic model via the
model’s Gene-Protein-Reactions Rules (GPR) to obtain a
list of active reactions (core reactions). For reactions that
are under the control of one gene only, the discretized
gene score is directly mapped to the reaction. If more
genes are associated to a reaction, the relationship be-
tween the genes and the reaction is given by Boolean
Rules. A Boolean AND means that all the genes have to
be expressed to activate the reaction, which is typically the
case when a reaction is controlled by a complex of pro-
teins. Therefore the minimum of the discretization score
is mapped to the reaction. A Boolean OR signifies that
only one gene has to be expressed. The maximal
discretization score value is then mapped to the reaction.
Boolean ANDs and ORs can be combined inside the same
rule, e.g. ((A AND B) OR C), in this example the minimal
value D is computed of A and B, and then the maximum
between D and C is matched to the reaction. Reactions
associated to a discretization score of −1, are considered
as inactive and removed from the model by setting their
bounds to zero. Reactions with a discretization score
of 1, form the set of core reactions that are fed into
a modified version of FASTCORE (mFC) that allows
leaving a set of reactions non-penalized besides defin-
ing core and non-core reactions. The inclusion of
non-penalized reactions is, unlike core reactions, not
forced, but only preferred over the inclusion of penal-
ized non-core reactions. Barcode-supported trans-
porters are put to the set of non-penalized reactions.
Transport reactions are generally under the control of
promiscuous genes (in the consistent version of
Recon 2 e.g. the gene SLC7A6 controls 294 reactions)
and therefore transporters are not included into the
core set as otherwise whole subsystems would be in-
cluded in the output model due to one gene. Never-
theless, the inclusion of Barcode-supported genes
should be preferred over non-core reactions (which
are not supported) and therefore Barcode-supported
transporters are not penalized. For more details on
FASTCORE see the original paper [28]. A MATLAB
implementation of the FASTCORE and FASTCORMICS
algorithms will be available for download from bio.uni.lu/
systems_biology/software.

Three optional steps can be included in the workflow.
The first one allows further constraining the model with
respect to the medium composition, if this information
is available. Uptake reactions for metabolites not being
present in the medium are shut down and FASTCC [28]
is run to remove reactions that cannot carry a flux due
to these additional constraints. The second optional
step allows adding a biomass function or of produc-
tion reactions of specific metabolites to the model.
FASTCORMICS forces the biomass function or/and
the corresponding exchange reactions to carry a flux
while penalizing the inclusion of non-core reactions
(Additional file 1: Figure S1). Core reactions, includ-
ing core transporters, are not penalized in order to
find, within the different alternatives sets of reactions
that allow the production of biomass or required me-
tabolites, the one that contain the highest number of
core reactions. The output reactions of the modified
FASTCORE are then added to the core set and the
modified FASTCORE is run a second time to now
force all the core reactions to carry a flux while pen-
alizing the non-core reactions. Transport reactions are
removed from the core set, but are not penalized dur-
ing the reconstruction to favor Barcode-supported
transporters over non-core reactions that are not sup-
ported. If no biomass function is added, FASTCORMICS
is only run once. Finally a cross-validation step can be per-
formed to assign a confidence score to the reactions in-
cluded in the model. For the latter, the building process is
repeated multiple times, leaving at each run one core reac-
tion out. Reactions (core and non-core reactions) present
in all the runs are supported by at least 2 core reactions
and therefore are assigned a high confidence score,
whereas core reactions that were not recovered during
their left-out run are supported by the expression value of
their own gene(s) only. The remaining non-core reactions
have a low confidence score as they themselves are not
supported by Barcode and their inclusion in the model de-
pends on a single core reaction only. The same process
can also be repeated with the non-expressed reactions set
in order to estimate if a sub-branch of a pathway was re-
moved from the model due to the presence of a single un-
expressed reaction or to multiple inactive reactions that
interrupts the flux.

Reconstruction of generic cancer models
The NCI dataset composed of 174 Hgu133plus2 arrays
corresponding to 59 cancer cell lines was downloaded
from the Cell miner web page [31] and read in R version
2.15.1 using the affy package (1.36.1). The arrays were
normalized with the frozen Robust Multi-array Average
package (fRMA version 1.14.0) [62] using the core
target and the median polish option. The normalized
values were then processed with Barcode using the
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hgu133plus2frmavrecs vector (version 1.1.12) into a
list of probe sets IDs with the respective z-score
(Additional file 1: Figure S1). The list of probe sets was
then converted in Entrez IDs via the hgu133plus2.db
package (Carlson M. R package version 3.0.0). The
z-scores are converted into discretization scores (1, 0, −1)
using the above mentioned expression threshold of 5 and
non-expression threshold of 0. The ubiquity of expression
(sum of the discretization score for a gene over all arrays)
was computed for each gene and a list of genes Entrez IDs
with their respective score was then loaded in Matlab
(version 2013a) and mapped via the Gene Protein
Reactions Rules (GPR) to the consistent version of
Recon1 (consistRecon1, 2469 reactions) and Recon2
(consistRecon2, 5317 reactions, the lower bound of
the AATAI reaction was set to zero to be consistent with
the reversibility information of the model) obtained with
FASTCC. To be consistent with the experimental setup of
Folger et al. [21] reactions tagged as active in ≥90 % of the
174 arrays were included in the core set with the ex-
ception of Barcode-supported transport reactions. Re-
actions with ubiquity of expression score equal below
zero in ≥90 % were removed from the model as ex-
plained previously. To be comparable to the results of
Folger et al. and Luo et al. [21, 33] the growth of the
cancer cells was simulated on RPMI medium, the up-
take reactions of the consistent versions of Recon 1
and Recon 2 were constrained with respect to the
medium composition (Additional file 2: Table S2,
medium composition sheet). Uptake reactions for the
metabolites present in the medium were automatically
added within FASTCORMICS if required by the biomass
function taken from Wang et al. or for the inclusion of a
barcode-supported pathway. Beside a biomass function, a
sink reaction was added to Recon 1 to balance the glyco-
genin self-glucosylation reaction [21, 33]. The exchange
reaction of triacyglycerides in Recon 2 was left uncon-
strained. FASTCC was run to remove reactions that are
not able to carry a flux due to these additional medium
constraints (Additional file 1: Figure S1).
The modified FASTCORE was then run on the

medium-constrained models forcing the biomass func-
tion to carry a flux while penalizing the inclusion of
non-core reactions. The reactions required to allow a
biomass production were then added to the core set and
the modified FASTCORE was run again now forcing the
inclusion of all core reaction while penalizing the non-
core reactions with the exception of core transporters.
The pre-processing step with Barcode for large data

sets was performed due to memory issues on a Linux
compute server with 3.0 GHz Intel Xeon CPU and
16 GB RAM and took 3 min. The model reconstructions
were performed on a standard 3.40 GHz Intel Core i5
computer with 4 GB RAM in 38 and 288 s for cancer 1

and cancer 2 respectively, so that the overall computa-
tional time of the FASTCORMICS workflow is below
5 min.

Validation of the cancer models by comparison to an
shRNA screen on cancer cell lines
A in silico knock-out experiment was performed on the
obtained cancer models as previously described by
Folger et al. applying Flux Balance Analysis (FBA)
[26, 63]. In Folger et al. a gene is considered essential
if its knock-downs results in a decrease of the growth
rate of more than 1 %. To allow, a comparison with
Folger et al. the 1 % criteria was kept. The lists of es-
sential genes were compared to the ranked list of
8000 genes established by Luo et al. based on an
shRNA knockdown screen on cancer cell lines. The
rank of the essential metabolic genes were compared
to the rank of the remaining metabolic genes (set of
genes associated to Recon2 minus the essential genes)
with a Kolmogorov-Smirnov test (KS-test). In addition
1,000,000 random sets of genes of the same size were
created and the respective KS-test was computed for
evaluating the likelihood to obtain the same or better
KS-score by chance (Additional file 1: Table S1).
To further validate the predicted essential genes, a list

of neoplasia-related genes was retrieved from DisGeNET,
a database for gene-disease associations [21, 34]. A hyper-
geometric test was performed to evaluate the enrichment
of neoplasia-related genes in the predicted essential genes
(Additional file 1: Table S3).

Reconstruction of 156 context-specific models of selected
primary cells
The Primary Cells Atlas (GSE49910) gathering 745 ar-
rays of the HG-U133_Plus_2 platform taken from 100
separate studies, corresponding to >180 different experi-
mental conditions in tens of primary cell types, was
downloaded from the Gene Expression Omnibus reposi-
tory [35]. 156 arrays corresponding to 63 cell types were
selected favoring control samples in order to derive un-
disturbed cell-specific metabolic pathways in resting
cells (see Additional file 3: Table S4 for the list of se-
lected arrays). The arrays were normalized with fRMA
using the median polish and core target option and then
discretized with the Barcode package (as in Reconstruc-
tion of generic cancer models). The probe set IDs were
converted to Entrez IDs with the (hgu133plus2.db) pack-
age as above, which were mapped to the consistent ver-
sion of Recon2. 156 models (one model per array) were
built using the previously described FASTCORMICS
workflow. The high efficiency of FASTCORMICS
allowed to perform this task within 4.5 h (5 min for
the pre-processing with Barcode on 3.0 GHz Intel
Xeon CPU and 4.5 h for the model reconstructions
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on a standard 3.40 GHz Intel Core i5 computer with
4 GB RAM).
The primary context-specific models were represented

as a matrix of 5317 rows corresponding to the reactions
of the consistent Recon2 version and 156 columns for
the number of models. The presence of the reactions in
the different models was indicated by ones and the ab-
sence by zeros. The level of similarity between the differ-
ent models pairs was determined via the Jaccard index.
The resulting Jaccard index matrix of size 156 times 156
was then clustered with the MATLAB clustergram func-
tion (Fig. 1a).

Isolation of primary human monocytes from blood
Primary human monocytes were extracted from the blood
samples of anonymous healthy male donors, donated by
the blood transfer centre of the Luxembourgish Red Cross
and were used for diverse experiments in agreement with
the convention between the Luxembourgish Red Cross
and the University of Luxembourg from 16.05.2011 and
following the principles of Helsinki Declaration.
The blood was diluted 1:1 with phosphate buffered

saline (PBS) (Invitrogen, Life Technologies). Afterwards
the peripheral blood mononuclear cells (PBMC), were
isolated by Ficoll density gradient separation. Therefore
the blood-PBS suspension was transferred to leucosep
tubes (Greiner Bio One,) containing 15 ml of ficoll
(VWR). After a 10 min centrifugation (1000x g, room
temperature, without break), the mixture separated into
an upper phase of plasma, followed by the white periph-
eral blood mononuclear cell (PBMC) layer, the separ-
ation gel ficoll and erythrocytes in the bottom of a 50 ml
tube. The PBMC layer was collected and washed twice
with ice-cold MACS buffer {(PBS, pH 7.2; 0.5 % bovine
serum albumin (BSA) (Sigma-Aldrich, Seelze, Germany)
and 2 mM ethylenediaminetetraacetic acid (EDTA)
(Sigma-Aldrich, Seelze, Germany)} at 4 °C for 10 min at
300 g. From this step on cells were kept on ice. Follow-
ing the separation of the PBMCs the CD14+ cells
(monocytes) were isolated from the total PBMC frac-
tion by using the MACS® technology from Miltenyi
Biotec. In this method, anti-CD14+-antibodies are
conjugated with superparamagnetic particles {CD14
MicroBeads (Miltenyi Biotec)} and bind to the CD14 anti-
gen on the cell surface of CD14+ cells. By using a mag-
net {MACS separator (Miltenyi Biotec)} and LS
Columns (Miltenyi Biotec) the CD14+ cells can be
separated from the rest of the PBMCs. Before the
CD14+ cells were separated, the PBMCs of one blood
preservation were mixed with 200 μl of CD14
MicroBeads and incubated for 30 min at 4 °C on a
rotating wheel. Afterwards the cells were washed with
MACS buffer and centrifuged at 300 g for 10 min at
4 °C. The cells were again suspended in MACS buffer

and loaded on a pre-washed LS-column which was
put on a MACS separator, and contained a pre-
separation filter (Miltenyi Biotec) on top, in order to
avoid a blocking of the column. Subsequently the col-
umn with the CD14+ cells was washed and the CD14+

cells were eluted from the column with MACS buffer,
after taking away the MACS separator.

Differentiation of primary human monocytes into
macrophages
After the successful isolation of the CD14+ monocytes,
the cells were counted and seeded in a density of 2 × 106

cells/ml, either in a 10 cm2 plates (of about 20 × 106

cells) (Thermo scientific) in order to perform ChIP ex-
periments or in 6-well plates (of about 4 × 106 cells/well)
(Thermo scientific) to extract RNA. For culturing and
differentiation of monocytes to macrophages RPMI 1640
medium (VWR) was supplemented with 10 % human
serum {off the clot, type AB (A&E Scientific, PAA,
Pasching, Austria, lot number: C02108-1021)}, 0.1 mg/ml
streptomycin (Invitrogen, Life Technologies), 100 U/ml
penicillin (Invitrogen, Life Technologies) and 0.1 mM L-
glutamine (Invitrogen, Life Technologies). The cells were
kept at 37 °C under a 5 % CO2 atm. The medium was
changed, during the differentiation process of monocytes
to macrophages, 4 and 7 days after seeding. For the RNA
extraction and the subsequent array analysis, the cells
were extracted 2 days, 4 days, 7 days and 11 days after
seeding (see Fig. 2). In order to perform ChIP experiments
the chromatin of day 11 cells was cross-linked (see Fig. 2).

Morphology of primary human monocytes and
macrophages by microscopy
The morphology of the monocytes and macrophages
was visualized by using the microscope Axiovert 40C
(Zeiss) with a magnification between 10x and 20x, the
camera AxioCAM MRC (Zeiss) and the software Zen
blue (Zeiss). Unstained cells were used to generate pic-
tures of the monocytes, macrophages and intermediate
states (see Fig. 2).

Total RNA extraction
The RNA was extracted by using TRI Reagent (Sigma-
Aldrich). The cells in the 6-well plate were lysed with
500 μl of TRI Reagent per well. Following complete lysis,
100 μl of chloroform (Sigma-Aldrich) were added to the
lysate, vortexed for 20 s and incubated at room
temperature for 3 min. These steps were followed by
15 min centrifugation at 4 °C with full speed, during
which the mixture separated into different phases, with
the upper phase containing the RNA. This RNA con-
taining phase was mixed with equal volume of ice-cold
isopropanol (Sigma-Aldrich) in order to precipitate the
RNA overnight at −20 °C to recover also all small RNAs.
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The pelleting of the RNA was done at full speed for
20 min at 4 °C. Then the RNA was washed with 70 %
ice-cold ethanol (VWR) and centrifuged for 5 min at full
speed and 4 °C. Finally, the RNA pellet was dried and
solved in RNase-free water. The concentration and the
purity of the RNA were measured with the NanoDrop
2000c (Thermo scientific). The quality of the RNA
was measured with the 2100 Bioanalyzer from Agilent
Technologies and all the RNA samples had a RIN
number greater or equal to 8.

Data analysis of mRNA microarrays
One hundred ng of total RNA was used to process
Affymetrix Human Gene 1.0st microarrays. The Ambion®
WT Expression Kit was used to reverse transcribe the
RNA into cDNA and to purify it according to manufac-
turer’s instructions (The Ambion® WT Expression Kit
Protocol For Affymetrix® GeneChip® Whole Transcript
(WT) Expression Arrays Part Number 4425209 Rev.B
05/2009). Then the cDNA was fragmented, labeled and
hybridized on the arrays according to The GeneChip®
Whole Transcript (WT) Sense target Labeling Assay
Manual Version 4 from Affymetrix (P/N 701880 Rev.4).
The arrays were washed and scanned after 16 h of
hybridization.
Microarray data were analyzed using Partek® Genomics

Suite™, R Software (http://www.R-project.org/). First, 15
CEL files containing raw probe intensities were imported
into Partek and data were preprocessed using the robust
multi-array average (RMA) algorithm [64]. Preprocessing
aims at estimating transcript cluster (gene) expression
values from probe signal intensities. Boxplot and relative
log expression calculated on resulting gene expression
values were then used to assess the quality of data; no out-
lier was found. Principal component analysis (PCA) was
then performed for data reduction and factor analysis.
PCA was able to separate data according to the time.
According to this observation, the Linear Models for
Microarray (Limma) [65] package was used to identify
genes for which expression changed throughout the
time. Gene expression values were imported into R,
Limma was applied and all times were compared to
the gene expression values generated from D2 cells.
Resulting p-value was adjusted for multiple testing er-
rors using false discovery rate (FDR) [66]. The micro-
array expression data can be found at ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) with accession num-
ber E-MTAB-3089.

Reconstruction of the monocyte-macrophage models
The 15 microarrays of the Hugene.1.0.st.v1 platform
were read into R version 2.15.2, with the oligo package
(1.22.0) and normalized with the fRMA package (1.14.0)
and the hugene.1.0.st.v1frmavecs (1.0.0) vector and then

discretized with Barcode. The probe sets were converted
in Entrez ID via the hugene10sttranscriptcluster.db
package (MacDonald JW. R package version 8.2.0). The
discretized values were then mapped to the consistent
version of Recon 2 (version 3, the lower bound of the
AATAI reaction was set to zero to be consistent with
the reversibility information of the model). In order to
minimize the effect of patient-specific variation on the
models, reactions tagged as active in the cells of 3 out of
4 donors for each time point, respectively 2 out of 3 for
time point D4 were included in the core set, with the ex-
ception of the core transporters that were removed from
the core set, but not penalized during the building
process. Similarly, reactions tagged as inactive in 3 out
of 4 or 2 out 3 donors were removed from the models as
explained previously. Cross-validation was used to deter-
mine the confidence levels of the included and excluded
reactions. Reactions with a high level of confidence are
supported by at least two core reactions. Reactions with
moderate confidence level are reactions only supported
by barcode. Reactions with a weak confidence level are
not supported by expression, but needed to generate a
consistent network model. Excluded reactions with a
high confidence score were never included in any simu-
lations suggesting the presence of other excluded reac-
tions in the branch. Whereas, excluded reactions with a
low confidence level were excluded only due to their low
expression level.

Chromatin immunoprecipitation (ChIP)
The primary human macrophages (15.5-21 × 106 cells/
10 cm2 dish) were fixed for 8 min with 1 % formalde-
hyde in PBS (Sigma-Aldrich) and were washed before
with PBS. Then the formaldehyde was quenched for
5 min with a final concentration of 125 mM of glycine
(Sigma-Aldrich). The fixed cells were washed twice with
PBS, the PBS of the second washing step contained
protease inhibitor (PI, Roche Applied Sciences). This
step was followed by scraping the primary human
macrophages in the PBS-PI solution and spinning
them down at 4 °C for 5 min at 1300 rpm. The pellet
was resuspended in 1500 μl of ice-cold lysis buffer
(5 mM 1,4-piperazinediethanesulfonic acid (PIPES)
pH 8.0 (Sigma-Aldrich); 85 mM potassium chloride
(KCl) (Sigma-Aldrich); 0.5 % NP-40 (VWR)) contain-
ing PI and incubated for 30 min on ice. Afterwards,
the cell lysate was centrifuged at 5000 rpm for 10 min at
4 °C. The pellet was resuspended in 750 μl of ice-cold
shearing buffer {50 mM Tris Base pH 8.1 (Sigma-Aldrich);
10 mM EDTA, disodium salt (Sigma-Aldrich); 0.1 %
sodium dodecyl sulfate (SDS) (Sigma-Aldrich); 0.5 %
sodium deoxycholate (Sigma-Aldrich,)} into which
fresh PI was added. After 30 min incubation on ice, the
chromatin was sheared with a sonicator (BioruptorTM
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Next Gene, Diagenode) during 30 cycles at high intensity
(30 s off and 30 s on). The sheared chromatin samples were
then centrifuged at 15.000 rpm for 10 min at 4 °C in order
to pellet the remaining cell debris. The supernatant, which
contains the chromatin, was transferred to a new tube.
Twenty-five μl of the sheared chromatin was purified

to check the size of the sheared DNA on an agarose gel.
The concentration of the DNA was determined by the
Qubit dsDNA HS Assay Kit (Invitrogen) and the Qubit
2.0 Fluorometer (Invitrogen) according to the manufac-
turer’s instructions.
For each immunoprecipitation 5 μg of sheared chro-

matin and 0.5 μg as input were used. In order to pre-
clean the chromatin, the sheared chromatin was diluted
with modified RIPA Buffer {(140 mM NaCl; 10 mM Tris
pH 7.5; 1 mM EDTA; 0.5 mM ethylene glycol-bis(2-
aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA)
(Sigma-Aldrich); 1 % Triton X-100 (Sigma-Aldrich);
0.01 % SDS; 0.1 % sodium deoxycholate (Sigma-Aldrich)}
containing PI, up to 1200 μl, and incubated for 30 min
with 25 μl of protein A magnetic (PAM) beads (Millipore)
at 4 °C on a rotating wheel. Afterwards, the PAM beads
were captured with a magnet and the supernatant con-
taining the pre-cleared chromatin was transferred to a
new tube. This pre-cleared chromatin was then incubated
overnight with 5 μg of an antibody against the active en-
hancer mark H3K27ac (Abcam, product No.: ab4729). On
the next day the antibodies were captured with 25 μl of
PAM beads during 2 h on a rotating wheel at 4 °C. This
step was followed by pelleting the magnetic beads on the
tube side by using a magnetic stand. The supernatant was
discarded and the PMA beads, linked with the antibodies
and, due to this, to chromatin, were washed twice with
800 μl of wash buffer 1 {(20 mM Tris pH 8.1; 50 mM
NaCl; 2 mM EDTA; 1 % TX-100 (Sigma-Aldrich); 0.1 %
SDS)}, once with 800 μl Wash Buffer 2 {(10 mM Tris,
pH 8.1; 150 mM NaCl; 1 mM EDTA; 1 % NP40; 1 % so-
dium deoxycholate (Sigma-Aldrich); 250 mM lithium
chloride (LiCl) (Sigma-Aldrich)} and twice with 800 μl TE
buffer (10 mM Tris pH 8.1; 1 mM EDTA pH 8). All the
washing steps were performed for 2 min on a rotating
wheel at room temperature, followed by pelleting the
beads on a magnetic stand. In order to detach the chro-
matin from the PMA beads and to get rid of the proteins,
the washed beads as well as the input were incubated
with 100 μl elution buffer (0.1 M sodium bicarbonate
(NaHCO3) (Sigma-Aldrich); 1 % SDS) and 10 μg
RNase at 65 °C overnight on a shaking platform. 5 μg
of proteinase K were added after the overnight step
for 90 min at 42 °C. Afterwards, the DNA was purified
with a QIAquick PCR clean-up kit. Again, the DNA con-
centration was measured by using the Qubit dsDNA HS
Assay Kit and the Qubit 2.0 Fluorometer according to the
manufacturer’s instructions.

ChIP-Seq
ChIP-Seq was performed with chromatin from three dif-
ferent donors. For each donor one ChIP sample using an
antibody against H3K27ac and one input sample were
sequenced. The sequencing of the ChIP samples was
done at the Genomics Core Facility in EMBL Heidelberg.
For sequencing, single-end-reads were used and the sam-
ples were processed in an Illumina CBot and sequenced
in an Illumina HiSeq 2000 machine. The sequencing
data can be found at Gene Expression Omnibus GEO
(http://www.ncbi.nlm.nih.gov/geo/) with accession num-
ber GSE68798.

Quality control and identification of enriched genomic
regions
After sequencing the quality of the raw reads was con-
trolled by applying the software FastQC v.0.10.1 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The
reads that had a low quality base pair calling or the ones,
which were detected as read artefacts were removed
from the dataset (minimum quality score of phred 10
across the read length was required). Furthermore,
these reads were read stacks collapsed using the
FASTX software v.0.0.13 (http://hannonlab.cshl.edu/
fastx_toolkit/index.html). The reads, which were not
rejected by the quality control, were aligned to the
human genome version 19 (hg19). This was done by
applying the software Bowtie v0.1.25 [67] (one mis-
match allowed, maximum three locations in the genome
from which the highest quality match was reported).
The software QuEST v.2.4 [68] was used in order to

identify enriched regions. The 44-mers were aligned to
the hg19 by using the mappability parameter 0.88. The
ChIP enrichment was set to 15 and the ChIP to back-
ground enrichment to 3. BigWig files were generated,
which were used to visualize the data with the soft-
ware Integrated Genome Viewer (IGV) v.2.3 (http://
www.broadinstitute.org/software/igv/home) [69] (Fig. 4).

Generation of enhancer-to-gene associations
The identified enriched regions were extended to both
sides to create sequences of 450 bp in length that would
include the sequences immediately flanking the modi-
fied histone and thereby capture the potential TF
binding sites. Afterwards the lists of enriched regions
were overlapped, generating a list of 16290 common
enriched regions. For this the software Galaxy (http://
galaxyproject.org) (07.07.2015, version 15.05) was used.
Afterwards the common enriched regions were analyzed
for their association to all genes by using the software
GREAT v.2.0.2 [70] with the setting “single nearest gene
within 500 kb”. For the metabolic genes these associations
were further manually curated to make sure that the iden-
tified loci do not contain alternative highly expressed
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genes or previously unannotated transcripts such as non-
coding genes.
For de novo motif analysis only enhancers associated

to genes upregulated ≥2-fold in macrophages (D11 cells
compared to D2 cells) with a FDR < 0.05 were consid-
ered. These were derived independently of the GREAT
analysis by taking the TSSs of the up-regulated genes
and extending +/−200 kb and overlapped with the com-
mon enriched enhancer regions by using Galaxy (http://
galaxyproject.org).

De novo motif identification
In order to identify the common sequences of the puta-
tive enhancers associated to genes upregulated in macro-
phages, de novo motif identification was performed by
using the software MEME-ChIP (http://meme-suite.org/
tools/meme-chip) (08.07.2015) version 4.10.01 [71].
Database Jolma 2013 [72] for known TF binding motifs
was used to identify the TFs that might have bound to
the putative enhancers. For the analysis of the data de-
fault settings were applied. For the MEME options the
expected motif site distribution was set to zero or one
occurrence per sequence. The count of motifs was set to
10. The minimum width of the motifs was set to 6 bp
and the maximum width to 25 bp. For the CentriMo
analysis, the software was asked to find uncentered re-
gions and include sequence IDs.
These analyses generated a list of enriched motifs,

which were linked to TFs that potentially bind these
motifs. The enriched motifs were identified by analys-
ing the meme-chip.html data generated by the MEME-
ChIP software. Therefore, the e-value generated for
the motifs found by the different programs were con-
sidered. The motifs with a known TF binding site are
listed in the Additional file 1: Figure S4. The motifs
with an e-value < 0.05 were considered. In addition, if
a TF was associated to a motif that occurred several
times, the motif with a lower e-value was considered.

Test for specific location of high-regulatory load genes at
entry points of pathways
The enrichment of transport reactions under high-
regulatory load among gene-regulated reactions was
computed via a hypergeometric test. For this test, the
population size N, the number of successes states in the
population K, the number of draws n and the number of
successes k are respectively equal to the number of reac-
tions in the macrophage model under gene control, the
number of transporter under gene regulation, the num-
ber of genes under high-regulatory load and the number
of transporter under high-regulatory load. In Recon 2,
most transporters reactions were assigned to so-called
transport subsystems (i.e. transport nuclear) but never-
theless some transporters are part of other pathways.

For this study, we defined transporters as reactions that
carry metabolites between compartments and therefore
both types mentioned above were included.
To investigate if others reactions, beside transporters,

were under high regulatory load, an enrichment test for
reactions under the control of high-regulatory load
genes situated at entry points of pathways was per-
formed. An entry point is defined as the first reaction
after a pathway change as annotated in the input models.
Thereby the flux direction is taken into account. To
identify entry points of pathways, for each reactions of
the macrophage model under gene control flux variabil-
ity analysis was performed to determine in which direc-
tion the reaction can carry a flux. It is important to note
that the reversibility of the reactions given by the bounds
only partially addresses this question, as the reversibility
of adjacent reactions constraint the overall flux direction
as well. Consumed metabolites in each reaction were
identified in order to determine if one or more reactions
producing these metabolites were part of a different
pathway. Inorganic metabolites, CO2, known cofactor
combinations (see Additional file 6: Table S8) and me-
tabolite couples that do not change during the chemical
reaction and therefore have the same chemical formula,
were not considered. Reactions only composed of me-
tabolites defined previously as cofactor are not taken
into consideration as this would lead to a high numbers
of false positives. Further Acetyl-coA is considered as a
co-factor if it acts as a coA donor in the reaction. For each
of the remaining metabolites, the producing reactions and
the pathways to which they belong were determined. If
the producing reaction is not a transporter and belongs to
a different pathway than the considered reaction, the latter
is an entry point of the pathway. In case that the produ-
cing reaction is a transporter, the transported metabolites
and initial compartment were determined. If the pathway
is the same as the considered reaction, the latter is an
entry point after a compartment change, otherwise it is an
entry point after a pathway change.
To avoid a bias of the enrichment test due to the

transporters reactions, the latter were not considered for
the test and therefore the population size N was defined
as the number gene regulated reactions in macrophage
being not part of the transporter set. The success in
population K was defined as the set of reactions being
entry points, the number of draw n are the reactions be-
ing entry points while excluding transporters and the
successes k are the entry points under high regulatory
load. The test was repeated without excluding trans-
porters and successes were then defined as transporters
or entry point reactions under high regulatory load. Fi-
nally, pathways were visualized in Cytoscape via the out-
putNetworkCytoscape function of the Cobra toolbox in
MATLAB.

Pacheco et al. BMC Genomics  (2015) 16:809 Page 21 of 24

http://galaxyproject.org
http://galaxyproject.org
http://meme-suite.org/tools/meme-chip
http://meme-suite.org/tools/meme-chip


Additional files

Additional file 1: FASTCORMICS allows fast context-specific metabolic
model reconstruction using microarray data. This files furthermore
contains: Table S1. Essentiality testing of different cancer models, Table S3.
Hypergeometric test quantifying the enrichment of neoplasia related genes
retrieved from DisGeNet, Table S6. Summary of the monocyte-macrophage
models, Table S7. Confidence level of the included and excluded reactions
of the monocytes macrophage models, as well as Figure S1. FASTCORMICS
workflow, Figure S2. Correlation plot of predicted lactate secretion rates
by context-specific cancer cell models and measured lactate secretion
rates, Figure S3. Scatterplot of the fraction of active reactions in monocyte
derived macrophages versus the fraction of active reactions in monocytes.
(PDF 2196 kb)

Additional file 2: Table S2. Medium composition and biomass
formulation. The biomass equations are given with the metabolites
abbreviations IDs as found in the models (sheet 2). In the sheet
three, the 1st column contains the medium composition used to
constrain Recon 1 using the metabolites abbreviation as used in the
model. In the second column are displayed the medium composition
for Recon 2. (XLSX 12 kb)

Additional file 3: Table S4. List of selected 156 arrays ordered in
function the Jaccard similarity index used for Fig. 1 and of the remaining
745 arrays that compose the primary cell atlas dataset. The first column
contains the Gene Omnibus ID of the arrays. The second and third
column contains a description of the arrays and the array names and the
last column the order of the arrays in the cluster plot (Fig. 1a) from left to
right. Arrays stated as not selected were not depicted for the Fig. 1 but
were used to produce together with 156 arrays to produce Figs. 5 and 7.
(XLSX 39 kb)

Additional file 4: Reconstructed models in SBML format. The zipped
file with 3 subfolders (cancer, monocyte and macrophage models, 156
primary cells models) contains 2 cancer models (cancer 1, cancer 2), 4
macrophage models (day 2, day 4, day 7, day 11), and 156 primary cells
models, respectively. (7z 25 mb)

Additional file 5: Table S5. Lists of the significantly up- (sheet 1) and
down-regulated genes (sheet 2) (FDR < 0.05 and absolute (log fold
change >1)) during monocyte to macrophage differentiation. Columns
represent probe IDs, Gene symbol, log2 ratio between day 2 and day 11
of differentiation, fold change between the same time points, the p-value
obtained after performing Empirical bayesian statistique (limma) and the
FDR. (XLSX 186 kb)

Additional file 6: Table S8. List of cofactor combinations that were not
considered in the reaction equations for the determination of the entry
points in Fig. 6. (XLSX 12 kb)
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