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Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also

known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic

autoimmune disease caused by loss-of-function mutations in the autoimmune regulator

(AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in

the peripheral escape of self-reactive T lymphocytes and the generation of several

cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad

of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis

(CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison’s disease). In

addition, APECED patients develop several non-endocrine autoimmune manifestations

with variable frequencies, whose recognition by pediatricians should facilitate an earlier

diagnosis and allow for the prompt implementation of targeted screening, preventive, and

therapeutic strategies. This review summarizes our current understanding of the genetic,

immunological, clinical, diagnostic, and treatment features of APECED.
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INTRODUCTION

APECED is a rare monogenic autoimmune disease (OMIM#, 240300) caused by loss-of-function
AIRE mutations that impair central immune tolerance and result in the peripheral escape of self-
reactive T lymphocytes, which infiltrate various endocrine (e.g., parathyroids, adrenals, gonads,
thyroid, pancreas) and non-endocrine (e.g., enamel, stomach, small intestine, lungs, liver, salivary
glands, kidneys, spleen, skin) organs and cause autoimmune tissue destruction. Since the discovery
of mutations in the AIRE gene as the cause of APECED by positional cloning in 1997 (1, 2)
and the initial characterization of the immunological functions of AIRE in the thymus in 2002
(3), significant progress has been made in our fundamental understanding of the genetic and
immunological basis of AIRE deficiency via the study of APECED patients and of Aire-deficient
mice, which develop a multisystem autoimmune disease that closely resembles human APECED
particularly on the NOD genetic background, featuring endocrine, non-endocrine, and fungal
infection disease manifestations (3–6). In addition, recent patient cohort studies have uncovered an
expanded clinical spectrum of APECED (7, 8), which has led to novel observations thatmay help (a)
accelerate diagnosis via earlier recognition of certain disease manifestations and (b) devise effective
screening, preventive, and treatment strategies for affected patients. In this review, we present our
current knowledge of the genetic and immunological underpinnings of AIRE deficiency and discuss
the clinical presentation, diagnostic criteria, and management of APECED patients.
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GENETICS OF APECED

Bi-allelic loss-of-function mutations in AIRE typically underlie

APECED with >100 mutations and/or deletions being described

throughout the AIRE gene (9). Certain APECED cohorts
harbor characteristic founder mutations. For example, Finnish,

Sardinian, Persian Jew, and Sicilian APECED patients typically
carry homozygous p.R257X, p.R139X, p.Y85C, and p.R203X
mutations, respectively (9, 10). In the genetically diverse
American APECED cohort, compound heterozygous AIRE
mutations were observed often, with the two most common
mutations being p.L323SfsX51 followed by p.R257X (7). In
that cohort, p.L323SfsX51, was associated with the development
of certain non-endocrine autoimmune manifestations such as
pneumonitis and hepatitis (11, 12). Notably, a remarkable
variability in the spectrum and severity of the clinical phenotype
is seen among APECED patients who carry the same AIRE
mutations, including among siblings (13–16). This suggests that
yet-unknown genetic modifiers may affect individual patient
susceptibility to various organ-specific manifestations of the
syndrome. To that end, the peripheral tolerance immune
checkpoint molecules Cbl-b and Lyn were shown to cooperate
with AIRE in modulating the development of autoimmune
retinitis and exocrine pancreatitis in mice, respectively (17,
18). In addition, when deficiency in the IL-2/STAT5 response
regulatory element CNS0 was combined with AIRE deficiency
in mice the result was exacerbation of autoimmune destruction
in multiple organs, including in tissues (e.g., adipose tissue)
that did not exhibit autoimmunity in isolated CNS0 or AIRE
deficiencies (19).

Moreover, several dominant-negative AIRE mutations have
now been recognized within the SAND and PHD1 domains
of the gene and exhibit varying degrees of dominant negative
effects in vitro and in mice (20–25). Affected patients typically
develop milder APECED with fewer autoimmune manifestations
compared to patients with classical APECED, while some
patients remain unaffected without autoimmunity, indicative
of incomplete clinical penetrance (21). Moreover, patients with
dominant-negative AIRE mutations do not always harbor the
cytokine- and tissue antigen-targeted autoantibodies of classical
APECED patients (21). Because the minor allelic frequency
of some of these mutations (e.g., p.V301M, p.R303Q) is
relatively high in the general population, genetic variation in
AIRE may contribute to the development of organ-specific
autoimmune diseases with a greater frequency than previously
anticipated. Of interest, a recent genome-wide association
study (GWAS) identified two protein-coding AIRE variants
(rs74203920; rs2075876) associated with autoimmune Addison’s
disease, one of which (rs74203920, p.R471C) was also found to
be associated with pernicious anemia in an independent GWAS
(26, 27).

In recent years, the cis-regulatory element CNS1, which
promotes AIRE expression in medullary thymic epithelial cells
(mTECs) (28, 29) and several regulatory molecules that affect the
expression and/or transcriptional activity of AIRE (i.e., HIPK2,
FBXO3, JMJD6, SIRT1, DGCR8) have been characterized (30–
34). In the subset of patients with a clinical diagnosis of APECED

who have wild-type AIRE genotype (7), it will be important to
examine whether mutations in these or other AIRE regulators
and/or partners may underlie their autoimmune disease.

PATHOGENESIS OF AIRE DEFICIENCY

AIRE-Deficient T Lymphocytes
AIRE is a transcriptional regulator that is highly expressed
in a subset of mTECs where it promotes the expression of
a large number of -but not all- tissue-specific antigens (3).
This process facilitates the negative selection of self-reactive
T lymphocytes and the differentiation of self-antigen–specific
regulatory T lymphocytes, which collectively shape and maintain
central immune tolerance, reviewed elsewhere (13, 14, 35–
40). In AIRE deficiency, self-reactive CD4+ T lymphocytes
escape from the thymus into the periphery and are both
necessary and sufficient to cause autoimmune tissue infiltration
and destruction, as shown by adoptive transfer experiments of
Aire−/− CD4+ T lymphocytes in immunodeficient mice, by
CD4+ T lymphocyte depletion experiments in Aire−/− mice,
and by experiments in Aire−/−Tcra−/− mice (3, 4, 41, 42).
The recent discovery and characterization of the post-Aire
expressing mTEC subset and of extrathymic Aire-expressing
cells (eTACs) in secondary lymphoid tissues require additional
functional studies to precisely decipher their contributions in
maintaining immune tolerance (43–48). The use of tetramer
reagents, epitope mapping, and T cell receptor (TCR) sequencing
has helped characterize self-reactive T lymphocyte populations
and TCR repertoires in AIRE-deficient mice and/or humans (49–
56). As mentioned earlier, AIRE also participates in the positive
selection of thymic regulatory T cells (57) and mouse studies
have shown that defective neonatal output of thymic regulatory
T cells in AIRE deficiency contributes to the development of
organ-specific autoimmunity (58). Beyond CD4+ T lymphocytes,
AIRE-deficient CD8+ T lymphocytes and γδ T lymphocytes have
also been implicated in the development of certain -but not all-
organ-specific autoimmune manifestations in Aire−/− mice (i.e.,
oral candidiasis, pneumonitis, retinitis, peripheral neuropathy)
and more work is needed to further define their roles in the
breakdown of organ-specific tolerance in cooperation with or
independent of Aire−/− CD4+ T lymphocytes (6, 59, 60).

Tissue Antigen-Specific Autoantibodies
Furthermore, B lymphocytes are dysregulated in AIRE deficiency
associated with expansion of autoreactive naïve B lymphocytes,
increased frequency of the CD21loCD38− B lymphocyte
subset, and production of a broad array of autoantibodies
directed against cytokines and tissue antigens (7, 13, 56).
Studies in Aire−/− mice have shown that deletion of mature
B lymphocytes and their autoantibody-producing potential
ameliorates certain organ-specific autoimmune manifestations
(41, 42). Whether AIRE-deficient B lymphocytes contribute
to autoimmunity via direct priming of AIRE-deficient T
lymphocytes and/or via autoantibody production remains
unclear (42). Of note, experimental transfer of autoantibody-
containing AIRE-deficient serum in mice is not sufficient to
promote autoimmunity (41, 42). Serum transfer experiments in
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the recently developed AIRE-deficient rat model, which harbors
a broader spectrum of autoantibodies relative to AIRE-deficient
mice, may help further elucidate the potential direct role of
autoantibodies in autoimmune tissue destruction (61, 62).

In APECED patients, the detection of several tissue
antigen-directed autoantibodies has been associated with
the presence of corresponding organ-specific autoimmune
manifestations (13, 52, 63–75). New experimental approaches
such as phage/bacterial peptide display (PhiP-Seq) and yeast
surface display (REAP) have been recently used to uncover
novel autoantigen specificities such as KHDC3L, associated
with primary ovarian failure, RFX6, associated with intestinal
dysfunction, and colipase, associated with exocrine pancreatic
insufficiency (76, 77). However, for most of the tissue antigen-
targeted autoantibodies detected in APECED patients, it is
difficult to reliably predict the development of the corresponding
autoimmune manifestation at the individual patient level as their
sensitivity and specificity is not very high. Indeed, patients may
harbor an autoantibody without featuring the corresponding
clinical manifestation while other patients may have a clinical
manifestation without harboring the corresponding tissue
antigen-directed autoantibody.

Three examples of tissue antigen-directed autoantibodies
that can be helpful in the clinical management of APECED
patients are worthwhile briefly mentioning. The detection
of autoantibodies to 21-hydroxylase in an APECED patient
without Addison’s disease who did not previously harbor
these autoantibodies is often a herald for the forthcoming
development of primary adrenal insufficiency (71). Intensified
screening with ACTH stimulation testing can help prevent
acute adrenal crises in such patients. Moreover, the lung-
targeted autoantibodies KCNRG and BPIFB1 have very high
specificity (>90%) for autoimmune pneumonitis, although their
sensitivity is ∼30–60% and, thus, a negative result does not
rule out the presence of pneumonitis (11, 52, 74, 78, 79).
APECED patients carrying KCNRG- and/or BPIFB1-directed
autoantibodies should undergo chest imaging with computed
tomography and pulmonary function testing to evaluate for
the presence of autoimmune pneumonitis, even if alternative
diagnoses (e.g., asthma, bronchitis) were previously made (11).
Furthermore, autoantibodies observed in classical autoimmune
hepatitis (e.g., anti-LKM, anti-SLA, anti-ASMA) are not typically
detected in patients with APECED–associated autoimmune
hepatitis (12). Thus, a diagnostic liver biopsy should be
performed in APECED patients with persistent transaminase
elevation even when classical autoimmune hepatitis-associated
biomarkers are negative.

Autoantibodies Against Type-I Interferons
(IFNs)
Beyond tissue antigen-directed autoantibodies, APECED
patients harbor neutralizing autoantibodies against certain
cytokines, primarily type-I IFNs and type-17 cytokines (80–83).
Neutralizing autoantibodies against type-I IFNs, predominantly
directed to IFN-ω and the majority of the 13 subtypes of
IFN-α, are present in >95% of APECED patients, whereas

autoantibodies against IFN-β are detected in ∼20% of patients
(81, 82), and autoantibodies against IFN-ε are infrequently
detected (84). Because IFN-ω-directed autoantibodies are
detectable with high sensitivity during infancy before the
development of clinical manifestations, and because at that early
age these autoantibodies are highly specific for APECED, their
early detection carries significant diagnostic utility in children
with suspected APECED (81, 82). Of note, IFN-α autoantibodies
were proposed to act as ameliorating factors for the development
of type-1 diabetes in APECED patients who carry GAD65-
directed autoantibodies, indicating that these autoantibodies
may also have therapeutic utility (73).

Despite the presence of autoantibodies against type-I IFNs,
APECED patients do not develop the severe viral infections
that are seen in patients with inherited complete deficiencies
of IFNAR1 and IFNAR2 including herpes simplex encephalitis
and live attenuated measles-mumps-rubella vaccine-associated
disease (85, 86), although ∼10–20% of APECED patients have
been reported to develop prolonged and/or severe manifestations
of cutaneous varicella zoster and/or mucosal herpes simplex
infections (87). These clinical observations suggest that APECED
patients retain residual compensatory activity of some of the
type-I IFNs and/or that alternative type-I IFN-independent
immune pathways may provide protection against these viral
diseases in the setting of neutralizing autoantibodies against
type-I IFNs (88–90). The recent report of severe live attenuated
yellow fever 17D vaccine-associated disease in three individuals
with neutralizing autoantibodies to type-I IFNs without APECED
suggests that this vaccine should be avoided in APECED
patients (91).

COVID-19 Infection and Vaccination in APECED

Patients

Neutralizing autoantibodies against type-I IFNs, particularly to
the 13 IFN-α subtypes and IFN-ω, were recently identified in
∼10% of patients suffering from critical COVID-19 pneumonia
(92) and were shown to delay SARS-CoV-2 clearance (93).
This observation was confirmed in independent patient cohorts
(94–96). In addition, inborn errors of type-I IFN immunity
were reported in some -but not all- examined cohorts of
patients with life-threatening COVID-19 (97–99). Given these
observations, and the life-threatening pneumonia requiring
mechanical ventilation in the first three reported APECED
patients with COVID-19 (92, 100), we performed a follow-up
international observational study of 22 SARS-CoV-2–infected
APECED patients (84). We found that most APECED patients
developed severe, hypoxemic COVID-19 pneumonia requiring
hospitalization and intensive care unit admission, and four
patients (18%) succumbed to the infection (84). These data
suggest that the presence of neutralizing autoantibodies to type-
I IFNs and the inflammation-prone lung tissue of APECED
patients may heighten their risk for life-threatening COVID-19
complications (11, 84, 101). Of interest, another recent study
reported four APECED patients who developed mild COVID-
19 infection despite the presence of neutralizing autoantibodies
to type-I IFNs, consistent with a model of incomplete clinical
penetrance (102). These patients were <26-year-old, female,
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and did not have pre-existing autoimmune pneumonitis (102).
Collectively, these reports indicate that APECED patients,
particularly adults and/or those with underlying pneumonitis,
can be at risk for severe COVID-19. Therefore, APECED
patients should be prioritized for vaccination against SARS-CoV-
2, which they appear to tolerate without unusual adverse events;
however, it is important to note that not all APECED patients
develop robust humoral responses to the SARS-CoV-2 vaccine,
especially those receiving immunomodulatory therapy (103). In
our experience with SARS-CoV-2–infected APECED patients at
the NIH Clinical Center, we proceed with prophylactic hospital
admission upon diagnosis for close clinical monitoring. In the
early ambulatory non-hypoxemic phase of the infection, we
consider administration of anti-spike SARS-CoV-2 monoclonal
antibodies (104), which was shown to decrease the risk of
hospitalization, severe infection, and death from COVID-19 in
high-risk individuals without APECED (105). Administration
of IFN-β and/or plasmapheresis could also be considered in
this setting (84, 106). In the late hypoxemic phase of infection,
prompt initiation of corticosteroids is critical to ameliorate lung
injury (84, 107), while remdesivir may curtail viral proliferation
(108). Caution should be exercised with the use of anti-
spike SARS-CoV-2 monoclonal antibodies or IFN-β during the
hypoxemic phase of COVID-19, as thesemodalities could worsen
lung inflammation and hypoxemia (109, 110).

Autoantibodies Against Type-17 Cytokines,
IFN-γ-Driven Defects in Oral Epithelial
Barrier, and CMC
The presence of neutralizing autoantibodies against type-17
cytokines is associated with CMC, the “signature” infectious
disease in APECED patients (80, 83). The majority of
APECED patients carry neutralizing autoantibodies against IL-
22 (frequency, ∼70–90%), whereas neutralizing autoantibodies
against IL-17F (frequency ranging from ∼20% to ∼80%
depending on the patient cohort) and IL-17A (frequency,∼35%)
are detected less often and neutralizing autoantibodies against IL-
17B and IL-17C are not detected (7, 8, 80, 83, 111, 112). However,
the association between CMC and the presence of autoantibodies
against type-17 cytokines is incompletely penetrant as some
patients carry autoantibodies but do not manifest CMC and some
others develop CMC without harboring these autoantibodies
(7, 8, 80, 83, 113). In fact, in the Russian and American
patient cohorts, the frequencies of IL-17 autoantibodies were
similar in APECED patients with or without CMC (7, 8),
indicating that additional factors must also contribute to CMC
susceptibility. Moreover, patients who receive IL-17–targeted
monoclonal antibodies (e.g., for psoriasis or inflammatory
bowel disease) infrequently develop mild, treatment-responsive
oropharyngeal candidiasis (OPC; mean frequency, <10%), as
opposed to the∼80–90% frequency of CMC in APECED patients
(114, 115). These clinical observations are consistent with the
incomplete blockade of IL-17 receptor signaling conferred by
these monoclonal antibodies at the mucocutaneous barrier (116,
117), as opposed to the complete abrogation of IL-17 receptor
signaling in patients with inherited complete deficiencies of

the IL-17 receptors IL-17RA and IL-17RC and of the IL-
17 receptor adaptor ACT1 who develop CMC with complete
penetrance (118–120). Furthermore, patients with inherited IL-
10RB deficiency whose cells do not respond to IL-22 (nor
to IL-10, IL-26, IL-28, and IFNL1) do not develop CMC;
a single case of treatment-responsive OPC in the absence
of iatrogenic immunosuppression has been reported in IL-
10RB–deficient patients (OPC frequency, ∼3%) who develop
very severe early-onset inflammatory bowel disease requiring
treatment with corticosteroids and/or TNF-α inhibitors (121–
123). Taken together, although APECED patients harbor
neutralizing autoantibodies against type-17 cytokines, their
presence is unlikely to be the sole factor that might contribute
to CMC in the APECED population (124).

This led us examine potential additional mechanisms of
CMC susceptibility in AIRE deficiency. Aire-deficient mice,
which infrequently harbor neutralizing autoantibodies against
type-17 cytokines, were susceptible to OPC despite mounting
intact type-17 mucosal responses, indicating that impaired type-
17 immunity is not the primary driver of mucosal fungal
susceptibility in the model (6). Instead, Aire−/− T lymphocytes
were both necessary and sufficient to drive OPC susceptibility
(6), in agreement with their previously established necessary
and sufficient roles in driving susceptibility to all endocrine and
non-endocrine autoimmune manifestations of AIRE deficiency
in the model (3, 4, 41). Mechanistically, excessive production
of IFN-γ by mucosal Aire−/− CD4+ and CD8+ T lymphocytes
impaired the integrity of the oral epithelial barrier and promoted
OPC, which were both ameliorated by inhibition of IFN-γ and/or
JAK/STAT (6). IFN-γ was similarly toxic to human oral epithelial
cells in vitro and evaluation of mucosal responses in a large
cohort of APECED patients, including with RNA-sequencing
of oral mucosal tissue in five adult individuals with a history
of CMC, showed clear corroborative evidence of exaggerated
type-1 responses, while type-17 mucosal responses were intact
(6). These findings are consistent with residual compensatory
activity of type-17 cytokines in the oral mucosa of the examined
patients. Future work will be required to evaluate type-1 and
type-17 mucosal responses in infants with APECED before
the development of CMC and at the onset of CMC, and to
longitudinally study oral mucosal immune responses in patients
during acute and quiescent phases of CMC. These studies will
help further define the relative contributions of excessive IFN-γ
vs. type-17 impairment to the initiation, severity and/or relapse
frequency of CMC in APECED patients; it is conceivable that
the two mechanisms converge in a subset of APECED patients
at different times. Moreover, a clinical trial is being deployed at
the NIH Clinical Center to evaluate the safety and efficacy of
JAK/STAT inhibition in the management of CMC in APECED
patients. Of note, although CMC is the “signature” infection of
APECED, these patients are not at risk for invasive candidiasis
or other invasive fungal infections, which rely on myeloid
phagocytes for effective host defense (125).

Taken together, these findings show that, in certain defined
settings, mucosal fungal susceptibility may be driven by
aberrant T lymphocyte-mediated immunopathology, not
only by impaired type-17 immunity, and support a novel
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conceptual framework for classifying distinct molecular subtypes
of CMC based on the balance between impaired type-17
immunity and/or immunopathology-promoting excessive type-1
inflammation (124).

CLINICAL PRESENTATION AND
DIAGNOSIS OF APECED

APECED is clinically defined by the classic triad manifestations
of CMC, hypoparathyroidism, and adrenal insufficiency.
Developing any dyad among these classic triad manifestations
establishes a clinical diagnosis of APECED. Developing a
single classic triad manifestation in a patient whose sibling has
APECED also establishes a clinical diagnosis. The development
of a classic diagnostic dyad raises suspicion for APECED, which
then leads to sequencing of the AIRE gene and/or testing for
autoantibodies against IFN-ω. Several APECED cohorts have
been described worldwide with varying disease prevalence. The
highest prevalence has been reported in Finnish, Sardinian, and
Persian Jew populations (∼1:9,000–1:25,000), whereas in the
United States, the prevalence of APECED is estimated between
1:100,000–1:300,000 (126).

APECED is a multisystem autoimmune disease that involves
several endocrine and non-endocrine organs. More than 30
different autoimmune manifestations have been reported over
the past decades with variable, cohort-specific representation
of some of these disease components (Figures 1–3); among
these manifestations, over 25 involve non-endocrine tissues
(7, 8, 13, 112, 126–140). In a prospective natural history
study of APECED at the NIH Clinical Center, where we
have thus far enrolled >150 patients and evaluated them
in a uniform, systematic manner with a multidisciplinary
team of clinicians regardless of their underlying clinical
manifestations, we have observed a dramatic enrichment of
certain non-endocrine autoimmune manifestations relative to
other APECED cohorts (7). Specifically, American APECED
patients develop a hexad of non-endocrine diseasemanifestations
consisting of urticarial eruption (“APECED rash”), autoimmune
gastritis, intestinal malabsorption, autoimmune pneumonitis,
autoimmune hepatitis, and Sjögren’s-like syndrome with much
greater frequency (∼40–80%) compared to previously reported
European APECED cohorts (<5–20%) (7) (Figures 2, 3). In the
American and Russian APECED cohorts that collectively follow
>250 patients, several uncommon disease manifestations have
also been described, which had not been apparent in previously
reported smaller cohorts (8, 141–144).

In the American APECED cohort, we found the mean age
of reaching a classic diagnostic dyad to be ∼7.5 years; this
delay in developing a classic diagnostic dyad is consistent
with prior reports (145). Notably, only ∼20% of the patients
developed their first two consecutive manifestations among
the classic triad manifestations. In contrast, the remaining
∼80% of the patients developed a median of three non-triad
manifestations before eventually reaching a classic diagnostic
dyad, therefore resulting in significant delays in establishing
a clinical diagnosis (7). Among the non-triad manifestations
that occurred early before the development of a classic

diagnostic dyad in American APECED patients, three were
more prominent: (a) an urticarial eruption (“APECED rash”),
which together with CMC were the most common initial
disease manifestations, and presented typically as a self-
limited, non-pruritic, and often recurrent maculopapular rash
with a characteristic histological appearance of combined
neutrophilic and lymphocytic dermatosis associated with NLRP3
inflammasome activation but without eosinophilic infiltration
or vasculitis (7, 146) (Figure 2); (b) enamel hypoplasia, often
featuring early tooth cavity formation, which underscores the
importance of close cooperation between dental and medical
professionals in the management of APECED patients (147–
149); and (c) intestinal malabsorption, which is associated with
increased fecal fat, loss of small intestinal enteroendocrine
and/or Paneth cells, and gut dysbiosis (150–152). Less frequently,
keratoconjunctivitis, autoimmune hepatitis, and autoimmune
pneumonitis were observed early in the course of the disease
before the development of a classic diagnostic dyad (7, 11, 12)
(Figures 2, 3).

These findings led us to propose expanded diagnostic criteria
that incorporate the adjunct triad manifestations of APECED
rash, enamel hypoplasia, and intestinal malabsorption with the
classic triad manifestations (7). With these expanded diagnostic
criteria, the development of a diagnostic dyad among the classic
and adjunct triad manifestations would be reached ∼4 years
earlier compared to the development of a diagnostic dyad among
the classic triad manifestations, thereby decreasing the time to
clinical diagnosis by half (7). In that dataset, accelerated APECED
diagnosis by applying the expanded diagnostic criteria would
have led to the prevention of life-threatening hypocalcemic
seizures and/or adrenal crises in about half of the patients.
We have now validated the diagnostic utility of the expanded
diagnostic criteria in independent patient cohorts that have been
evaluated in our prospective natural history study from both
the Americas and non-Nordic European countries (Ferré &
Schmitt et al., submitted). In addition, independent re-analysis
of previously published APECED cohorts from Finland, Turkey,
Sardinia, India, and Brazil indicated that the implementation
of our proposed expanded diagnostic criteria would have also
resulted in accelerated clinical diagnosis and earlier recognition
of APECED in those populations (136–138), attesting to the
broader applicability and usefulness of these expanded diagnostic
criteria. Future prospective evaluation of patients from other
countries in a similar uniform, systematic, multidisciplinary
manner will help further define the diagnostic utility of the
expanded diagnostic criteria in APECED. An earlier recognition
of APECED via the expanded diagnostic criteria could have
major clinical implications including (a) early screening
for life-threatening endocrinopathies (hypoparathyroidism,
adrenal insufficiency), (b) early initiation of treatment for
life-threatening non-endocrine autoimmune manifestations
(hepatitis, pneumonitis), and, possibly, (c) early administration
of prophylactic immunomodulation with the goal to prevent the
development of autoimmunity in children.

Taken together, these findings show that children affected
by APECED in the Americas and other geographic regions
are likely to be evaluated by dermatologists, dentists, allergists,
immunologists, gastroenterologists as well as hepatologists,
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FIGURE 1 | Spectrum of clinical manifestations in APECED patients. Depiction of organ-specific autoimmune manifestations observed with variable frequencies in

patients with APECED. Derived from Constantine and Lionakis (13) with permission from Wiley.

pulmonologists, and ophthalmologists early in the course of
their disease, not only by endocrinologists who are traditionally
more familiar with APECED. The presence of any of the
manifestations within the adjunct triad of APECED rash,
enamel hypoplasia, and intestinal malabsorption in a child
with or without CMC or endocrinopathies or other organ-
specific autoimmunemanifestations (e.g., hepatitis, pneumonitis,
keratoconjunctivitis, other) should raise suspicion for APECED.
Such children should undergo a) sequencing of the AIRE gene
with copy number variation analysis to evaluate for AIRE
mutations and/or deletions, and b) testing for the presence of
autoantibodies against IFN-ω (13, 67, 126) (Figure 4).

CLINICAL MANAGEMENT OF APECED
PATIENTS

The management of APECED patients can be challenging
due to the complex medical conditions that they develop,

which are associated with poor quality of life and substantial
psychosocial burden to both patients and their families (153).
Mortality may exceed 30% even with best available medical
treatment, driven by adrenal or hypocalcemic crises, end-organ
failure (e.g., fulminant autoimmune hepatitis, pneumonitis-
associated respiratory failure), malignancies (i.e., oral, esophageal
and/or gastric), infections, or suicide (7, 128, 154). Therefore, a
coordinated multidisciplinary approach that incorporates several
medical and dental specialties is required to provide the best
clinical care for the individual patient. Herein, we briefly
outline a roadmap of general principles for the management of
APECED patients.

Surveillance for New Manifestations
A critical component of the management of APECED patients
is the systematic surveillance for the early detection of new
endocrine and non-endocrine manifestations. In patients
without hypoparathyroidism, periodic measurement of calcium
and intact parathyroid hormone levels can help prevent
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FIGURE 2 | Representative histological features of common non-endocrine manifestations in APECED patients. (A) A liver biopsy displaying severe chronic hepatitis

with expansion of portal areas by inflammation and fibrosis and extensive interface hepatitis with numerous plasma cells infiltrating into the hepatic parenchyma (H&E;

scale bar: 50µm; original magnification, ×200). (B) A minor salivary gland biopsy depicting lymphocytic and plasma cell infiltration in and around the ducts of the

gland (H&E; scale bar: 50µm; original magnification, ×200). (C) Skin biopsy of a patient with APECED rash demonstrates perivascular and periadnexal inflammation

in the superficial and deep dermis with pallor of the papillary dermis (H&E; scale bar: 2mm; original magnification, ×40) (D) An open lung biopsy revealing chronic

bronchiolitis with lymphocytic infiltration within and around the bronchiolar mucosa and lymphoid aggregates in the interstitium nearby (H&E; scale bar: 50µm; original

magnification, ×200). (E) A stomach biopsy exhibiting chronic antral inflammation with lymphoplasmacytic infiltrates in the lamina propria and occasionally on glands

(H&E; scale bar: 50µm; original magnification, ×200). (F) A jejunal biopsy depicting mild villus blunting and focal acute inflammation (H&E; scale bar: 50µm; original

magnification, ×200). Images in panels A-E are derived from Ferré et al., (7).

FIGURE 3 | Clinical images depicting ophthalmologic, mucocutaneous and dermatologic manifestations in APECED patients. (A) Extensive keratopathy secondary to

chronic keratoconjunctivitis. (B) Depiction of Candida chelitis and thrush affecting the tongue. (C) Endoscopic visualization of the esophagus demonstrating Candida

esophagitis. (D) Nail dystrophy. (E) Alopecia areata. (F) Vitiligo affecting the knees. (G) APECED rash in an infant with APECED. Image 3G is derived from

Ferré et al., (7).

unsuspected acute hypocalcemic seizures and/or tetany. In
patients without Addison’s disease, periodic ACTH stimulation
testing can help prevent unsuspected acute adrenal crises.

Screening for subclinical hypoparathyroidism and/or Addison’s
disease is particularly important before performing invasive
procedures (e.g., esophagogastroduodenoscopy, bronchoscopy)
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FIGURE 4 | Diagnostic algorithm in patients with suspected APECED. The presence of any 2 manifestations amongst the combined classic and adjunct triads should

raise suspicion for APECED and should prompt further work-up with AIRE sequencing and measurement of IFNω autoantibodies.

as these can precipitate acute hypocalcemic and adrenal crises
in APECED patients with subclinical hypoparathyroidism
and Addison’s disease. Periodic measurement of thyroid
stimulating hormone, glucose, hemoglobin A1c, follicle
stimulating hormone, and luteinizing hormone levels can
help with early detection of subclinical hypothyroidism,
type-1 diabetes, and hypogonadism. Periodic monitoring of
transaminases, creatinine, and vitamin B12 levels, chest imaging
with computed tomography, and bone density (DEXA) scan
can help with early detection of subclinical autoimmune
hepatitis, tubulointerstitial nephritis (TIN), pernicious anemia,
pneumonitis, and osteopenia, respectively (11, 12, 155). Periodic
examination of the oral mucosa by dental specialists can help
with early detection of pre-cancerous or cancerous lesions
(156). Periodic screening for asplenia, which develops in early
adolescence in ∼10–20% of patients, includes monitoring for
new-onset leukocytosis and thrombocytosis, examination of
peripheral blood smears for Howell-Jolly bodies, and/or nuclear
liver-spleen scans.

Management of CMC
Untreated candidiasis can lead to esophageal strictures and may
contribute to the development of squamous cell carcinomas of
the oral mucosa and/or esophagus; therefore, it is important
to treat APECED patients with acute mucosal fungal infection
(156, 157). Acute episodes of mucosal candidiasis respond well to
induction therapy for four weeks -to reduce the rate of infection
relapse following treatment discontinuation- with a triazole such
as fluconazole. An echinocandin (e.g., caspofungin, micafungin)
is effective when fungal cultures reveal azole-resistant Candida
strains, which are observed often in patients with APECED and
other CMC syndromes (158, 159). In patients with frequent
infection relapses (i.e., >3–4/year) in the absence of antifungal
prophylaxis, we opt to transition from induction therapy to

secondary prophylaxis with swish and swallow amphotericin B
solution; in patients with infrequent infection relapses (i.e., <1–
2/year), we opt to discontinue antifungal agents at the end of
induction therapy and repeat induction therapy when candidiasis
recurs. JAK/STAT inhibition has successfully remitted CMC in
some patients with STAT1 gain-of-function (160) and it may have
a role in the treatment of APECED-associated CMC given the
exaggerated mucosal IFN-γ responses that we recently reported
in the setting of AIRE deficiency (6); a formal clinical trial has
been prepared at the NIH to investigate the efficacy of this
treatment modality.

Management of Endocrine Manifestations
Close monitoring of serum and 24-h urine levels of calcium
and phosphorus are needed to optimize the management of
hypoparathyroidism. The goals of replacement treatment include
the prevention of hypocalcemic crises but also avoidance of
the long-term development of nephrocalcinosis, nephrolithiasis,
and renal failure resulting from excessive replacement. To that
end, maintaining serum calcium levels within the lower range
of normal or just below the normal range is favored (161). The
recent introduction of recombinant PTH in clinical practice for
the treatment of adult patients with hypoparathyroidism (162)
may help a subset of APECED patients with hypoparathyroidism
to achieve optimal calcium homeostasis, particularly in the
setting of pre-existing renal impairment and/or intestinal
malabsorption. We recently reported that the peri-procedural
use of recombinant PTH in APECED patients was safe and
successfully maintained serum calcium levels without the need
for intravenous calcium supplementation that can worsen
nephrocalcinosis (163). Close monitoring of electrolytes and
blood pressure are needed to optimize the management of
adrenal insufficiency. The goals of replacement treatment include
the prevention of adrenal crises but also avoidance of the
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long-term development of osteopenia resulting from excessive
replacement. All patients with adrenal insufficiency should have
access to parenteral hydrocortisone for acute stress dosing and
a medical alert bracelet and/or Addison’s disease emergency
card and should be educated by their treating physicians on
the appropriate clinical indications that warrant increasing
their hydrocortisone dose (e.g., febrile illness). Furthermore,
prompt initiation of hormone replacement is critical to achieve
optimal pubertal development and growth in patients with
hypogonadism; sperm and oocyte cryopreservation could be
considered, when feasible, in adolescent patients before the
development of gonadal failure (164).

Management of Non-endocrine
Manifestations
Early diagnosis of certain non-endocrine autoimmune
manifestations and initiation of immunomodulatory treatment
is critical to prevent the development of irreversible end-organ
damage. Autoimmune hepatitis develops in up to 40% of
APECED patients, with presentations that may range between
asymptomatic laboratory abnormalities to life-threatening
fulminant failure requiring liver transplantation (12, 165, 166).
A liver biopsy should be performed in APECED patients with
persistent elevation in transaminases and/or bilirubin levels,
even when classical serological biomarkers for autoimmune
hepatitis are negative (e.g., anti-LKM, anti-SLA, anti-ASMA).
Histological analysis shows lymphoplasmacytic infiltration
and varying degrees of, typically mild, fibrosis in those with
autoimmune hepatitis or may reveal an alternative diagnosis
(e.g., fatty liver disease) (12) (Figure 2). APECED-associated
autoimmune hepatitis responds clinically and biochemically
to immunomodulatory treatment. Azathioprine-based or
6-mercapropurine–based therapy is most often used in
clinical practice similar to classical autoimmune hepatitis
in patients without APECED. In patients with mutations in
the thiopurine S-methyltransferase (TPMT) gene that alter
the metabolism of azathioprine and result in greater drug
exposures and higher risk of azathioprine-induced toxicity,
other T-lymphocyte–modulating agents such as mycophenolate,
sirolimus, cyclosporine, and tacrolimus have been reported to
remit liver inflammation (12). We favor the use mycophenolate
or sirolimus in APECED patients due to the renal impairment
that cyclosporine or tacrolimus may cause. Of note, we have
observed a higher frequency of biopsy-proven mycophenolate-
induced colitis in this patient population (∼40%) relative to that
observed in solid organ transplant recipients (<10%), which
requires additional observational studies (167).

Autoimmune pneumonitis develops in up to 40% of APECED
patients, typically presenting with chronic cough that is often
misdiagnosed as asthma or bronchitis. Chronically untreated
pneumonitis progresses to cause severe bronchiectatic structural
lung disease with development of secondary pulmonary
infections with bacteria and non-tuberculous mycobacteria
(11, 168). We perform periodic chest imaging with computed
tomography in all APECED patients because some patients
can be asymptomatic in the early stages of autoimmune

pneumonitis. A bronchoscopy should be performed in patients
with radiographic evidence of bronchiectasis and/or ground
glass or nodular opacities and/or in patients with abnormal
pulmonary function testing, even when BPIFB1 and/or KCNRG
autoantibodies are negative. Bronchoscopic findings consistent
with the diagnosis of autoimmune pneumonitis include (a) the
presence of increased numbers of activated neutrophils in the
airways and (b) a thickened basal membrane with increased
intraepithelial (CD8+ T lymphocytes > CD4+ T lymphocytes)
and submucosal (CD4+ T lymphocytes > CD8+ T lymphocytes
> B lymphocytes) inflammation in endobronchial tissue
biopsies (11). Peribronchial lymphocytic inflammation (CD4+

T lymphocytes and CD8+ T lymphocytes > B lymphocytes)
with B lymphocyte aggregates deeper in the lung parenchyma
are typically observed when patients undergo transbronchial
tissue biopsies (Figure 2). We recently reported that treatment
with the combination of azathioprine (or mycophenolate)
and rituximab results in remission of pneumonitis with
improvement in clinical symptoms and in radiographic and
pulmonary function abnormalities (11). Future studies will be
aimed at examining whether targeting the IFN-γ/JAK-STAT
axis may ameliorate non-endocrine autoimmune manifestations
(including pneumonitis) in APECED patients.

TIN is uncommon (<5–10%) and presents with rapidly
increasing creatinine levels that can lead to renal failure requiring
kidney transplantation, as opposed to the slower progression
of renal impairment that is seen in APECED patients with
nephrocalcinosis who do not suffer from TIN (13, 169). Thus,
a kidney biopsy should be performed in patients with rapidly
evolving renal disease. Azathioprine or mycophenolate, when
initiated early, may halt the progression of TIN in some -
but not all- patients (13, 169). It is important to note that
patients require T lymphocyte-directed immunomodulatory
treatment following kidney or liver transplantation because TIN
or autoimmune hepatitis will recur in the transplanted organs
without immunosuppressive treatment (170, 171). Intestinal
malabsorption develops in up to 80% of APECED patients and
treatment can be challenging. It is important to rule out exocrine
pancreatic insufficiency with measurement of fecal pancreatic
elastase-1 levels as these patients respond clinically to pancreatic
enzyme replacement therapy. Autoimmune enteritis features
lymphocytic infiltration (T > B lymphocytes) in the small
intestine and may respond clinically to T lymphocyte-directed
immunomodulatory treatment, with sirolimus providing better
results (unpublished observations) (Figure 2). Lactobacillus-
based probiotic therapy was recently reported to ameliorate
some gastrointestinal symptoms in a subset of APECED patients
based on the presence of gut dysbiosis that is seen in intestinal
malabsorption (151). Untreated keratoconjunctivitis can cause
blindness and topical application of ophthalmic cyclosporine
solution is effective. Patients with asplenia require vaccinations
and prophylactic antibiotics to prevent the development of life-
threatening sepsis by encapsulated bacteria (172). Anemia is
a common laboratory abnormality in APECED patients and
may be caused by (a) iron deficiency, which is often associated
with intestinal malabsorption and may thus require parenteral
supplementation, and/or (b) anemia of chronic disease, and/or
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(c) B12 deficiency, which requires supplementation to prevent
the development of irreversible neurological sequelae, and/or, (d)
rarely, autoimmune pure red cell aplasia, which is often refractory
to T-lymphocyte–modulating therapy (141, 173).

CONCLUSIONS

APECED is a multisystem autoimmune disease caused by AIRE
deficiency, which impairs the negative selection of T lymphocytes
in the thymus. In recent years, the characterization of genetically
diverse APECED patient cohorts and of dominant-negative
AIRE mutations that cause milder autoimmune manifestations
with incomplete clinical penetrance, and basic studies in
Aire-deficient mice have shed more light into the genetics,
immunology, clinical presentation, diagnosis, and treatment
of AIRE deficiency. Moving forward, improved awareness of

APECED among clinicians and a better understanding of the
pathogenesis of AIRE deficiency should help devise enhanced
strategies for earlier diagnosis and for effective preventive and
therapeutic interventions, which should collectively improve the
clinical outcomes of affected patients.
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