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Hydrogen storage in MOFs: Machine learning
for finding a needle in a haystack
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In recent years, machine learning (ML) has grown exponentially within the field of structure property predic-
tions in materials science. In this issue of Patterns, Ahmed and Siegel scrutinize several redeveloped ML
techniques for systematic investigations of over 900,000 metal-organic framework (MOF) structures, taken
from 19 databases, to discover new, potentially record-breaking, hydrogen-storage materials.
Interest in metal-organic frameworks

(MOFs) continues to grow as more and

more metal-organic structures are

discovered and synthesized: there are

currently ca. 100,000 MOFs in the Cam-

bridge Structural Database.1 Clearly,

this huge number of structures creates

tremendous opportunities due to the

chemical and physical diversity of

MOFs, but it also creates the grand chal-

lenge of identifying the top-performing

materials for a particular application

within reasonable timescales. To address

this challenge, the use of ML in conjunc-

tion with MOFs has also grown signifi-

cantly in the past 5 years, from gas

adsorption prediction to partial atomic

charges, band gap, and other mechanical

and chemical property predictions.2–7

Due to their porous nature, fast kinetics,

reversibility, and high gravimetric den-

sities, MOFs have been widely studied

for many gas-storage problems,

including natural gas and hydrogen.

Hydrogen storage is a key enabling tech-

nology as hydrogen is considered both a

future automotive fuel and a medium for

energy storage; however, its application

has been limited by hydrogen’s low volu-

metric density at ambient conditions.

Current hydrogen-vehicle designs require

storage systems based on high-pressure

compression, which are costly and could

pose safety issues. Design of novel stor-

age systems that can deliver hydrogen

with high energy densities have been a

recent focus of many studies.8–10 In this

context, computational approaches

enabling fast and accurate predictions

for the amount of stored hydrogen can

play an instrumental role in the identifica-

tion of outstanding materials on the com-
This is an o
puter, prior to laboratory synthesis and

testing.

In this issue of Patterns, Ahmed and

Siegel utilized high-throughput machine

learning (ML) models to screen through a

staggering set of 918,734 structures—

predominantly consisting of hypothetical

MOFs—to identify top-performing struc-

tures for hydrogen storage.11 Importantly,

this study assesses the performance of 14

ML algorithms that correlate MOFs’

textural properties with their hydrogen-

storage capacities. These ML models

were restricted to only seven structural

features: single crystal density, pore vol-

ume, gravimetric surface area, volumetric

surface area, void fraction, largest cavity

diameter, and pore limiting diameter.

Hydrogen adsorption was set for two

operating conditions: an isothermal pres-

sure swing at T = 77 K between 5 and 100

bar, and a temperature/pressure swing

between 77 K at 100 bar and 160 K at

5 bar.

An extremely randomized trees algo-

rithmwas identified as the top-performing

ML model for H2 uptake assessment,

trained on a set of 24,674 MOFs,

predicting usable capacities of 820,039

structures. Additionally, the relative

importance of input structural features

was quantified, concluding that pore

volume for gravimetric capacity and void

fraction for volumetric capacity are the

most important features for H2 uptake

predictions.

The article offers an unprecedented

8,282 MOFs with gas adsorption capac-

ities that are predicted to exceed current

state-of-the art materials—8,187 for pres-

sure swing operation and the remaining

95 for a temperature/pressure swing sys-
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tem. These ML models are available pub-

licly on the web (https://sorbent-ml.

hymarc.org), allowing the user to input

structural data to receive rapid predic-

tions of H2 uptake capacities in a matter

of seconds. The project concludes that

the potential candidates typically have

low densities (<0.31 g/cm3) in addition to

high surface area (>5,300 m2/g), large

void fraction (ca. 0.9), and high pore vol-

umes (>3.3 cm3/g), and as a result, mate-

rials meeting these criteria are highly rec-

ommended targets for synthesis. The

authors also performed structural analysis

of the 8,282 predominantly hypothetical

MOFs to probe whether they match previ-

ously synthesized structures to aid the

process of materials selection for further

laboratory tests and synthesis. This inves-

tigation found several examples of suc-

cessfully synthesized MOFs for a number

of top-10 candidates for pressure swing

adsorption, which were all hypothetical

structures, with similarity to MOF-180,

MOF-200, PCN-6X series of MOFs, and

NOTT-112. The top 10 materials for the

temperature and pressure swing system,

were also hypothetical, with no crossover

between top 10 pressure swing candi-

dates, and a similarity search of the top

candidate returned 40 similar MOFs.

In addition to the contribution of new

structures toward the discovery of

hydrogen-storage materials, this report

has benchmarked the ability of 14 ML al-

gorithms that support the capability of

modeling for rapid screening of already-

synthesized and future MOFs using mini-

mal input data and computation time.

This offers a systematic investigation

into how ML workflows impact the ability

to predict H2 storage in MOFs and also
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provides power-law relations for deter-

mining the minimum training size set for

achieving a desired ML accuracy.

This is clearly one of the most extensive

investigations to date incorporating an

enormous pool of structures in the search

for advancements in H2-storage technol-

ogies. Identifying top-performing candi-

dates from this set of mostly hypothetical

structures still remains a challenge as

there is no simple approach to gauge

the cost and ease of experimental MOF

synthesis and potential to scale up

manufacturing. The results of and

methods used in this article are clear evi-

dence of the forward shift to high-

throughput screening via ML techniques.

This submission is a key contribution to

ML models in the field of MOFs, quickly

ushering in the replacement of computa-

tionally expensive and inaccessible tech-

niques with new methods and tools avail-

able to almost any researcher. The

availability of the models and databases

contained within this project enables

drastic improvements in reproducibility

and research speed.

We note that, even if synthesis is

possible for the top-performing materials

identified byMLmethods, the next gener-

ation of computational screening ap-
2 Patterns 2, July 9, 2021
proaches must begin to consider inclu-

sion of techno-economic analysis, scale-

up potential, and stability under process

conditions for all notable materials.
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