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Abstract

Summary: In recent years, SWATH-MS has become the proteomic method of choice for data-independent–acquisi-
tion, as it enables high proteome coverage, accuracy and reproducibility. However, data analysis is convoluted and
requires prior information and expert curation. Furthermore, as quantification is limited to a small set of peptides,
potentially important biological information may be discarded. Here we demonstrate that deep learning can be used
to learn discriminative features directly from raw MS data, eliminating hence the need of elaborate data processing
pipelines. Using transfer learning to overcome sample sparsity, we exploit a collection of publicly available deep
learning models already trained for the task of natural image classification. These models are used to produce fea-
ture vectors from each mass spectrometry (MS) raw image, which are later used as input for a classifier trained to
distinguish tumor from normal prostate biopsies. Although the deep learning models were originally trained for a
completely different classification task and no additional fine-tuning is performed on them, we achieve a highly re-
markable classification performance of 0.876 AUC. We investigate different types of image preprocessing and
encoding. We also investigate whether the inclusion of the secondary MS2 spectra improves the classification per-
formance. Throughout all tested models, we use standard protein expression vectors as gold standards. Even with
our naı̈ve implementation, our results suggest that the application of deep learning and transfer learning techniques
might pave the way to the broader usage of raw mass spectrometry data in real-time diagnosis.

Availability and implementation: The open source code used to generate the results from MS images is available
on GitHub: https://ibm.biz/mstransc. The raw MS data underlying this article cannot be shared publicly for the priv-
acy of individuals that participated in the study. Processed data including the MS images, their encodings, classifica-
tion labels and results can be accessed at the following link: https://ibm.box.com/v/mstc-supplementary.

Contact: mrm@zurich.ibm.com or dow@zurich.ibm.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins participate in virtually every process in the cell, and are direct-
ly responsible for its observed phenotype. Their accurate identification
and quantification can therefore enable the precise characterization of
phenotypes. Proteins are most commonly analyzed by mass spectrom-
etry (MS). Among the available mass spectrometry approaches,
SWATH-MS (Sequential Window Acquisition of all THeoretical frag-
ment ion spectra) has emerged as a technology that combines deep
proteome coverage, high reproducibility and quantitative consistency
and accuracy (Gillet et al., 2012a). In a SWATH-MS measurement, all
ionized peptides falling within a specified mass range are fragmented
in a systematic and unbiased fashion using large precursor isolation
windows (Ludwig et al., 2018). Spectral profiles are then recorded for
all ionized peptides and fragment ions thereof.

While the raw data acquisition is unbiased, peptide identification
requires prior information about the fragment ion patterns and the

retention time (RT) of all targeted peptide fragments, which are typ-
ically extracted from SWATH assay libraries (Guo et al., 2015).
Uncertainties in peptide identification result in inaccurate protein
quantification and potential protein mis-identification, especially as
only a few peptides per protein are typically detected. Protein iso-
forms and peptide modifications further complicate computational
workflows and exacerbate the variability observed across experi-
ments and platforms. Indeed, while a recent benchmark of different
SWATH-MS data processing tools highlighted the convergent iden-
tification and reliable quantification performance of all tools
(Navarro et al., 2016), careful pre- and post-processing and param-
eter optimization were needed to achieve robustness in label-free
quantitative proteomics. The complexity of current MS data ana-
lysis workflows is partly responsible for their slow translation into
clinical practice, despite having been long-postulated to enable a
huge clinical impact (Aebersold and Mann, 2003).
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Contrasting the carefully designed and parameterized workflows
commonly used for the analysis of SWATH-MS datasets, we investi-
gate whether state-of-the-art deep learning models could enable the
circumvention of protein quantification and the execution of certain
predictive tasks directly on raw mass spectrometry data.

Deep learning (DL) has become one of the most active fields in
artificial intelligence, with spectacular performances in a broad area
of applications such as computer vision, speech recognition and nat-
ural language processing. In parallel, recent years have witnessed an
exponential increase in the number of DL applications in computa-
tional biology (Ching et al., 2018). These works have demonstrated
the extraordinary capacity of DL models to automatically learn dis-
criminative features from raw data, thus eliminating the need for in-
tricate feature-engineering. In contrast to targeted proteomic analysis,
deep learning is particularly adept at learning abstract features direct-
ly from the raw data, with different layers of the network sequentially
learning increasingly abstract features in an automatic fashion.

However, the adoption of DL approaches for many applications
in computational biology has been slow due to seemingly inescap-
able data challenges, such as low volume, high sparsity and large
heterogeneity associated with the use of different profiling plat-
forms. Regarding the last point, we note that multi-platforms studies
are especially frequent in traditionally data-scarce domains such as
proteomics. Although the minimum amount of training data
depends on many variables, such as the complexity of the task, or
the type of noise and data distribution, it is generally accepted that
one roughly needs at least 10 times more training samples than
parameters. As an example, the 2015 computer vision’s model that
beat humans at the task of image classification (Alom et al., 2018)
exploited large datasets such as ImageNet (Russakovsky et al.,
2015) and iNaturalist (Van Horn et al., 2018), consisting of 1 120
000 and 579 184 images to classify 1001 and 5089 classes respect-
ively. In contrast, the largest proteomic cohorts comprise a few hun-
dred of samples, and each sample requires gigabytes of storage
instead of the megabytes typically required for images (Liang et al.,
2020). An additional level of complexity is presented by the intrinsic
nature of tandem mass spectrometry, where each sample consists of
a precursor profile (MS1) and multiple precursor fragment profiles
(MS2) and all spectra need to be jointly analyzed to quantitatively
characterize a sample.

Despite these challenges, successful applications of deep learning
in the field of proteomics have been developed. For instance,
DeepNovo–DIA (Tran et al., 2019) captures precursor and fragment
ions to identify novel peptides in human antibodies and antigens.
However, with DeepNovo–DIA only a handful of spectra close to
the investigated feature along the retention-time axis are used, some-
what mitigating the aforementioned restrictions.

Transfer learning for SWATH-MS profile analysis: Transfer
learning is the ability to reuse the knowledge gathered from a learn-
ing task in an unrelated and oftentimes completely different task
(Pan and Yang, 2010). Humans are extremely good at transfer
learning, and, for instance, an English speaker will learn Spanish
much faster if she already speaks Italian. In the context of machine
learning, transfer learning has been applied by repurposing a model
for different tasks than their original target task. The underlying as-
sumption is that if two datasets share a common latent space, a
model trained on one dataset can export the data relationships
learned to the second dataset (Pan et al., 2008).

In this work, we demonstrate an application of transfer learning
to automatically classify tumor versus normal samples using raw
SWATH-MS profiles. Specifically, we transform raw MS data into
an image format, which enables us to reuse pre-trained DL models
for image classification, and later transfer the model to a MS-related
classification task. In our implementation, the first transferred
layers, which have learned to recognize basic image features, are left
unchanged and only their output is coupled to different classifier
algorithms. Even with such a naive implementation, we can achieve
a remarkable classification performance of 0.876 AUC. Our results
suggest that applying deep learning and transfer learning techniques
might pave the way to a broader usage of raw mass spectrometry
data in real-time diagnosis.

2 Materials and methods

The goal of this work is to demonstrate that it is possible to process
raw liquid chromatography/mass spectrometry data acquired by
SWATH-MS as images, encode them as feature vectors and use
them for classification purposes using standard machine learning
approaches. In this section, we describe the main components of our
approach.

2.1 Data
From the Prostate Cancer Outcomes Cohort (ProCOC, ‘PPP1 pro-
ject’) (Umbehr et al., 2008), 554 tissue biopsies, including both be-
nign and tumor regions for each patient, were sampled from 277
prostate cancer patients. The inclusion of technical replicates
resulted in a total of 913 samples considered in this work. Of these,
455 samples are from healthy prostatic tissue and 458 samples are
from different types of malignant tumors. Each individual sample of
the raw data consists of one precursor profile (MS1) and 100 mul-
tiple precursor fragment profiles (MS2) obtained with PCT-SWATH
(Guo et al., 2015). A summary of data acquisition and processing to
obtain the protein expression vectors can be found in
Supplementary Information, Supplementary Section S1. Data acqui-
sition protocols are described in Charmpi et al. (2020).

2.2 Gold standards
To quantify the accuracy of the tested models, we use protein ex-
pression vectors where peptides were quantified using targeted data
analysis with OpenSWATH (Röst et al., 2014) as gold standard.
Peptide quantification exploits prior knowledge about the chroma-
tographic and mass spectrometric properties using curated and
annotated collections of peptide spectra (Ludwig et al., 2018).

We note that the gold standards are not exempt from biases
themselves. For instance, while high performance and accuracy are
typically observed for high-abundance proteins, systematic devia-
tions from the expected values are observed for low-intensity sig-
nals. The deviations depend on the different physicochemical
properties of the peptides and are ubiquitous among the different
label-free quantification proteomic software tools. Similarly, all
software tools depend on the reliable identification of specific pepti-
des. For this, either tandem MS (MS/MS) libraries coupled with stat-
istical methods to separate true from false matches, or ‘pseudo’-MS/
MS spectra that do not require an assay library can be used. In both
cases, incorrect peptide identification results in inaccurate protein
identification and quantification. Despite these shortcomings, reli-
able and accurate protein quantification is typically achieved with
(SWATH)-MS software methods (Navarro et al., 2016).

In a typical MS-experiment, many peptides cannot be quantified
in a run for technical or biological reasons, which results in a large

Table 1. Summary of peptide vector post-processing

Name Processing steps

peptides2 Log2 transformation and quantile normalization

of samples.

peptides3 Imputation of missing values on peptides2 using

technical replicates.

peptides4 Batch normalization over different machine runs per-

formed

on peptides3 using ComBat Stein et al. (2015).

proteins Selection of only the top 3 peptides per protein

(over all samples).

Imputation of missing values with a linear regression.

The strongest intensity of proteotypic peptides are

adopted as protein intensity.

Note: During peptide processing, four different intermediate datasets are gen-

erated. We test the accuracy of our model on the peptides3, peptides4 and

proteins datasets.
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number of missing values. We denote this initial dataset after some
minimal processing peptides2 (Table 1). To partially overcome this
challenge, missing values can be imputed using technical replicates,
resulting in the peptides3 dataset. Peptides that still present missing
values in some samples putation, or display constant values across
all samples are excluded from further analysis. Finally, the most in-
formative peptides are selected, resulting in the peptides4 dataset.
Table 1 describes the different processing steps applied to each data-
set. A more detailed description of the different processing steps can
be found in Zhu et al. (2021).

Each processing step described in Table 1 results in a different
number of retained features, as detailed in Table 2. Due to the elim-
ination of samples with missing values, the size of the peptides3 and
peptides4 datasets is significantly decreased, from around sixteen
thousand peptides features to 1207. The last row of Table 1 resulted
in 265 quantified proteins, which we use throughout this work as
gold standard.

2.3 Mass spectra profiles as images
The output format of different mass spectrometers is vendor-specif-
ic, however, most formats can be converted to mzXML format
(Pedrioli et al., 2004) with the ProteoWizard software (Chambers
et al., 2012). We further modified the Proteowizard software to
transform the mzXML input into images of predefined size.

According to the SWATH-MS acquisition scheme (Gillet et al.,
2012b), MS1 spectra range from 400 to 1249 m/z, while for MS2
they range from 0 to 2000 m/z. Hence, we extended the size of MS1
spectra by adding black padding pixels in the ranges 0–400 and
1250–2000 m/z. With this modification, all spectra cover the range
0–2000 m/z and the same pipeline can be applied to both MS1 and
MS2 raw data formats. Regarding the RT, most of the experiments
have a similar duration, and hence, we scaled the time dimension to
a uniform time duration. At this point, we define a grid over the m/z
spectrum and the RT, and aggregate all individual pixel values over
each bin by computing the average. In a typical SWATH experi-
ment, small changes in the RT of a liquid chromatography method
are observed between different runs. These shifts might be due to
fluctuations in the concentration of the organic solvent, changes in
the flow rate, temperature or even depend on the molecular weight
of the peptides. While we do not explicitly model this variability in
this work, we expect that the binning in the RT dimension partially
decreases the stochasticity on the RT dimension. Finally, we con-
sider two different image sizes, i.e. 512� 512 and 2048�2048 bins
over the m/z and RT dimensions. The sizes were selected to be a
power of two to increase the computational efficiency in using the
cache, and to be not extremely far from the dimensions of the net-
work architecture used for feature extraction.

2.4 Feature vectors
To process raw MS images, we first need to encode them, i.e. trans-
form them into numerical vectors that can be further processed. For
such an encoding, we use pretrained deep convolutional neural net-
works developed to classify natural images (Cui et al., 2018; He
et al., 2016; Howard et al., 2017; Liu et al., 2018; Real et al., 2019;
Sandler et al., 2018; Szegedy et al., 2015; 2017; Zoph et al., 2018).
In these models, the first layers ingest and analyze pixel information,
while the following layers sequentially transform the information
into numeric vectors (Alain and Bengio, 2016) to generate the so-
called off-the-shelf features. Off-the-shelf features have been shown
to be very powerful descriptors of an input image (Sharif Razavian
et al., 2014), even for images belonging to classes not included in the
training set. Hence, according to the transfer learning philosophy,
we generate off-the-shelf MS features from each MS image, and use
these features as input for a classifier, which then makes a prediction
about the sample. Importantly, no further fine-tuning is performed

Table 2. Peptide and proteomic feature vectors

Dataset Number of features Number of retained features

peptides2 16 644 0

peptides3 16 644 1207

peptides4 16 104 1207

proteins 2103 265

Note: Summary of the number of initial features and retained features after

pre-processing as described in Table 1. As there are no features without any

missing value in at least one sample before imputation in the original dataset

(peptides2), all features are eliminated, resulting in zero retained features. We

investigate the influence of the different post-processing pipelines in the mod-

el’s classification accuracy in Section 3.2.

Table 3. Vector encodings overview

Encoder name [ref] Input Output Retained features (for 512�512) in

ms1_only ms1_and_ms2

resnet_v2_101 (He et al., 2016) 224�224�3 2048 942 (45%) 120 577 (58%)

resnet_v2_50 (He et al., 2016) 224�224�3 2048 1145 (55%) 132 459 (64%)

resnet_v2_152 (He et al., 2016) 224�224�3 2048 1570 (76%) 164 260 (79%)

nasnet_large (Zoph et al., 2018) 331�331�3 4032 3671 (91%) 365 296 (89%)

inception_resnet_v2 (Szegedy et al., 2017) 299�299�3 1536 1536 (100%) 155 107 (99%)

inception_v3_imagenet (Szegedy et al., 2016) 299�299�3 2048 2045 (99%) 206 835 (99%)

inception_v2 (Szegedy et al., 2016) 224�224�3 1024 1018 (99%) 103 418 (99%)

inception_v3_inaturalist (Cui et al., 2018) 299�299�3 2048 2044 (99%) 206 725 (99%)

amoebanet_a_n18_f448 (Real et al., 2019) 331�331�3 7168 5114 (71%) 594 543 (82%)

nasnet_mobile (Zoph et al., 2018) 224�224�3 1056 618 (58%) 88 492 (82%)

inception_v1 (Szegedy et al., 2015) 224�224�3 1024 922 (90%) 102 641 (99%)

pnasnet_large (Liu et al., 2018) 331�331�3 4320 4050 (93%) 427 948 (98%)

mobilenet_v2_050_224 (Sandler et al., 2018) 224�224�3 1280 1178 (92%) 118 715 (91%)

mobilenet_v2_075_224 (Sandler et al., 2018) 224�224�3 1280 1181 (92%) 116 858 (90%)

mobilenet_v1_050_224 (Howard et al., 2017) 224�224�3 512 491 (95%) 50 680 (98%)

mobilenet_v2_100_128 (Sandler et al., 2018) 128�128�3 1280 988 (77%) 102 634 (79%)

mobilenet_v2_075_96 (Sandler et al., 2018) 96�96�3 1280 787 (61%) 92 169 (71%)

mobilenet_v1_025_224 (Howard et al., 2017) 224�224�3 256 249 (97%) 25 026 (96%)

mobilenet_v1_050_128 (Howard et al., 2017) 128�128�3 512 446 (87%) 46 829 (90%)

Note: Characteristics of image to feature vector encoders available from https://tfhub.dev/, i.e. image input resolution and output vector size. For any given data-

set, constant features over all samples were removed. Feature retention is reported for grid size 512�512 and is virtually the same for grid size 2048�2048.
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on the extracted features due to the small number of MS samples
available for analysis, which precludes extensive retraining or fine-
tuning.

We use modules a selection of publicly available models from
TensorflowHub as encoder, see Table 3. The table also presents an
overview of the vector encodings for all considered models. We
briefly describe the architectural families and respective naming con-
ventions of trained variants included in our study:

• NASNets are model architectures found with the Neural

Architecture Search (NAS), an automated machine learning

structure for training new neural networks. NASNet begins with

an overall predefined architecture, but optimizes blocks by a re-

inforcement learning search method (Zoph et al., 2018). Also

exploiting NASNet, AmoebaNet-A (Real et al., 2019) is a convo-

lutional neural network, where the architecture of its convolu-

tional cells (or layers) has been found by an evolutionary

architecture search in the NASNet search space. For pnasnet_-

large (Liu et al., 2018), sequential model-based optimization

strategies were used to search for structures in order of increasing

complexity, while simultaneously learning a surrogate model to

guide the search through structure space. The mobile variant is

designed for a constrained computational setting and has a

reduced number of parameters and multiply accumulate

operations.
• ResNet is based on deep residual networks, a family of extremely

deep architectures that utilize skip connections, i.e. shortcuts to

jump over some layers. Residual networks have shown compel-

ling accuracy and good convergence behavior (He et al., 2016).

The last digit in the encoder names in Table 3 represents the

number of layers.
• Inception is a family of deep convolutional neural network archi-

tectures with improved utilization of the computing resources

achieved through careful design to enable increased network

depth and width, while keeping the computational budget con-

stant (Szegedy et al., 2015, 2016, 2017). Inception-v2 (Szegedy

et al., 2016) uses batch normalization at each mini-batch training

(Ioffe and Szegedy, 2015), allowing the use of a much higher

learning rate and making the network more robust to initializa-

tion choices. Inception_v3_inaturalist (Cui et al., 2018) exploits

a training scheme that uses higher image resolution and deals

with the long-tailed distribution of training data. The knowledge

learned from large scale datasets is transferred via fine-tuning to

smaller, domain-specific datasets.
• MobileNets are designed to run on mobile devices and primarily

use depth-wise separable convolutions to reduce the computa-

tional burden (Howard et al., 2017). MobileNetV2 is based on

an inverted residual structure where the input and output of the

residual block are thin linear bottleneck layers (Sandler et al.,

2018). Model variant names include, as percentage, a multiplier

for the depth in the convolutional layers to control model size

and lastly the image input size that affects inference speed.

All the feature encoders were trained on ImageNet (Russakovsky
et al., 2015), an extensive image database where images are organ-
ized according to word concepts, e.g. cat, bird, flower, etc. The only
exception is inception_v3_inaturalist which was trained on the
iNaturalist dataset (Van Horn et al., 2018), a dataset of animal pic-
tures. The encoders were developed to ingest color images of prede-
fined sizes. To apply the encoders to the MS images, the MS images
are processed in two ways. First, we triplicate the gray-scale channel
as rgb channels. Secondly, we resize the images to fit the required en-
coder input size (often 224�224, see Table 3) using bilinear scaling,
Tensorflow’s default resize method. No further pre-processing is
performed on the raw data.

Encoding raw MS images as vectors allows us to concatenate
the one MS1 and 100 MS2 images (spectra) associated with the
same sample into a single vector, which enables us to compare
the classification performance of models trained uniquely using
MS1 spectra (ms1_only) against models exploiting all spectra
(ms1_and_ms2).

However, a downside of including both modalities is that the
number of features is significantly increased. To keep the number of
features manageable, considering the number of samples available,
we eliminate constant features, i.e. features exhibiting a zero stand-
ard deviation across all samples. Almost all off-the-shelf feature rep-
resentations result in some constant features, with the single
exception of inception_resnet_v2, which retains all 1536 features.
On the other extreme, resnet_v2_101 retains the smallest percentage
of features. The percentage of retained features for each encoder is
shown in Table 3.

2.5 Evaluation through classification performance
Each one of the tested encoders described in Section 2.4 transforms
LC-MS/MS data acquired from a single sample into a numerical vec-
tor. At this point, we can define various options for MS image reso-
lution, type of encoder and type of spectral data included, resulting
in several tabular datasets from the same raw MS data. Each data-
set, including the peptide and proteomic gold standards defined in
Section 2.2, can be further processed by a downstream machine
learning algorithm, hence allowing us to compare the predictive
power of the datasets and to investigate the impact of the different
options considered when creating the dataset. As we do not wish to
limit our analysis to a particular predictive model, we extend our
comparison to several of the most frequently used classifiers based
on different theoretical foundations, including logistic regression,
support vector classification (SVC), random forest and gradient
boosted trees (XGBoost), see Table 4.

For all derived datasets, we apply the following pipeline. First,
all random seeds are fixed for comparability and reproducibility.
Next, a random stratified (meaning the ratio of the classes is kept
constant) test set comprising 30% of samples is excluded from train-
ing. The retained features are scaled to the range [0, 1] (per feature)
on the training set, and the learned transformation reapplied to the
test set. To optimize the hyperparameters, we perform a shallow
grid search of hyperparameters (see Table 4) via internal six-fold
cross–validation and two repeats. The optimization results in an in-
dependent set of hyperparameters for each combination of MS
image resolution, encoder, ms1_only versus ms1_and_ms2 and clas-
sification algorithm. The classifier is trained on the full training set
by using the hyperparameters with the best mean test performance
measured by AUC. Finally, the trained classifier is evaluated on the
test set. We reiterate that, as we implemented a random stratified
data split, the ratio of the classes is kept constant in the training and
test datasets. The Python code used for the entire pipeline(including
data splits, hyperparameter optimization and analysis) can be
accessed at https://ibm.biz/mstransc.

Table 4. Classification algorithms and hyperparameter values

tested during optimization

Classifier Parameter Values

Logistic regression (LG) C 0.1, 1, 10, 100

Support vector machine (SVC) C 0.1, 1, 10, 100

kernel ’linear’, ’poly’, ’rbf’

Random forest (RF) n_estimators 100, 500

Gradient boosted trees (XGBoost) n_estimators 100, 500

Note: ‘C’ is a regularization parameter of inverse strength. ‘linear’, ‘poly’ and

‘rbf’ kernel functions refer to the linear, polynomial and radial basis function,

respectively. ‘n_estimators’ is the number of trees in the forest. Classifiers are

implemented using scikit-learn (Pedregosa et al., 2011), with the exception of

XGBoost (Chen and Guestrin, 2016).
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3 Results

We present a comparison of the phenotype classification performan-
ces obtained with different proteomic feature vectors (see Section
2.2) and off-the-shelf features (see Section 2.4). We investigate dif-
ferent metrics to quantify the classification performance, including
Brier loss, Log loss, Accuracy, F1 score, Youden’s index, Recall,
Precision and Specificity. Here, we report only the area under the re-
ceiver operating characteristic curve (AUC), while performances
based on the additional metrics are available in Supplementary
Information.

3.1 Encoders performance
Figure 1shows the evaluation score of all representations combining
both MS1 and MS2 spectra (ms1_and_ms2) and the gold standards.
To facilitate comparisons, for each encoder, we average across clas-
sifiers and image resolutions and report only the median AUC
achieved using both M1 and M2 spectra (ms1_and_ms2).

The ResNet architectures achieve superior performance with
both best median (0.849 AUC by resnet_v2_101) and best single re-
sult (0.876 AUC by resnet_v2_50), followed by Inception and
NASNet architectures that range from 0.827 to 0.777 median AUC.
The worst performance is achieved by mobilenet encoders, with the
lowest median AUC of 0.623 by mobilenet_v1_050_128. However,
even in this case, the AUC is significantly above 0.5 (random predic-
tion). See Table 5 for statistics on all encoders and gold standards.
As a group, MobileNet models exhibit the weakest performance and
show large variability for different choices of classifier and image
resolution.

Similar patterns in terms of the ranked encoder family’s perform-
ance are obtained for the off-the-shelf encoders when only the MS1
image is used, see Figure 2. ResNet encoders still perform best,
closely followed by NASNet and Inception encoders. Reflecting this

similarity, the Spearman’s rank correlation between performances
achieved with MS1 and MS2 or only MS1 is 0.808, see Figure 3.

Similar results are obtained if we average across classifiers and
resolutions for each encoder by computing the median, although the
Spearman’s rank correlation is now slightly higher at 0.875 (see
Table 5). Overall, it is quite remarkable that we were able to create
high-quality features on a vastly different domain and downstream
task without any fine-tuning.

3.2 Gold standards performance
As expected, the classification performance using the gold stand-
ards, as defined in Section 2.4, is very good. The best individual re-
sult was achieved for the peptides4 dataset (AUC 0.959 achieved
with XGBoost). When the results across classifiers are averaged, all
gold standard datasets achieve a very high AUC. The proteins and
peptides3 representations are virtually indistinguishable, see Table
5, despite the proteins dataset including a much smaller number of
features—265 features versus 1207 features in the peptides3 and
peptides4 datasets, see Table 1. This suggests that the removal of
non-proteotypic peptides and selection of top 3 peptides per protein
does indeed preserve most of the biological information contained in
the peptides4 dataset.

Interestingly, there are only very minor differences between the
performances achieved by the three gold standards. All three eval-
uated gold standards achieve very good performances, with only a
small decrease in standard deviation on the proteins dataset, see
Table 5 and Figure 1. One might have expected that the proteins
gold standard performs better than the peptides-based gold stand-
ards, as it integrates biological knowledge about proteotypic pepti-
des and penalizes peptides less highly expressed and, hence, more
likely to be randomly profiled. However, there are two additional
considerations to keep in mind. First, peptides3 and peptides4 in-
corporate a larger number of features, some of which might not be
very informative. This might make the classifiers harder to train and
result in a larger variability across hyperparameters. Second, as
stated in Section 2.2, peptides that still present missing values after
imputation are eliminated from the peptides3 dataset. These pepti-
des are not likely to be missing because of technical reasons, but
might quite possibly be biologically meaningful peptides that differ-
entiate samples. By removing them, one might be depleting the more
processed datasets, i.e. peptides4 and proteins, of important bio-
logical signals. For the most processed dataset, i.e. the proteins data-
set, this factor might counteract the gain originating from the
integration of biological knowledge and reduction of the number of
features, resulting in a similar performance to the peptides3 and pep-
tides4 datasets, and only a slightly reduced standard deviation.

3.3 Classifier agreement
Classifiers trained on the gold standard datasets perform very simi-
larly, see Figure 1 and Supplementary Table S1. Logistic regression,
SVC and XGBoost models achieve almost indistinguishable per-
formances, only the random forest classifiers showed a weaker
performance.

Regarding the classifiers trained on the off-the-shelf encodings,
SVC and logistic regression consistently achieve better performan-
ces, while random forest performs equally well than XGBoost.
However, when using ms1_and_ms2 (very long vectors), random
forest performs worse as XGBoost, with a mean difference of 0.043
AUC across all encodings and resolutions. As random forest is
methodically close to XGBoost—both methods are based on deci-
sion tree algorithms, with XGBoost benefiting from a more
advanced training—the observed difference between both methods
is expected to be alleviated by further hyperparameter optimization.

3.4 Classification performance when using only MS1

compared to using both MS1 and MS2 spectra
We also investigate whether the inclusion of MS2 images improves
the classification performance, and if so, by how much. To investi-
gate this question, as described in Section 2.4, we created two

Fig. 1. Sample representations in the workflow. Mass spectra of MS1 and MS2

scans, illustrated in the top row as 3D views adopted from Ludwig et al.(2018, CC

BY 4.0), constitute the raw data for a single sample. Each individual scan is proc-

essed to an image representation by rasterizing along the retention time (rt) and

mass charge ratio (m/z) axes. The MS images are then resized and the gray-scale

channel triplicated to match the input dimensions of the chosen image–to–vector en-

coder. The MS images are then given as an input to different publicly available mod-

els pretrained for natural image classification. Each model transforms the raw MS

images into feature vectors, i.e. numerical vectors that encode the information con-

tained in the image. The resulting vectors can consist of encodings from MS1 only

(ms1_only), or optionally the concatenation of both MS1 and all MS2 encodings

(ms1_and_ms2). Using the feature vectors, a classifier is trained on the training set

to predict the phenotype, i.e. cancer or normal sample, and evaluated on the test set.

We compare performance between multiple combinations of generated image reso-

lution, encoder and classification algorithm

MassSpecTransCoding i249

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab311#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab311#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab311#supplementary-data


different datasets, ms1_only, which includes only the MS1 raw vec-
tor, and ms1_and_ms2, which consists of a vector concatenation of
the single MS1 and 100 MS2 spectra associated with the same

sample. Figure 4A clearly demonstrates that a higher performance is
achieved when both MS1 and MS2 spectra are included. A one sided
paired t-test with null hypothesis of ms1andms26ms1only was
rejected under a ¼ 0.001 (P-value of 2.61 �10�38). The distribution
of differences in AUC (see Fig. 4B) shows a small benefit (mean delta
of 0.085 AUC) of including MS2 features. The distribution shows a

Fig. 2. Encoding module and choice of classifier drive classification performance.

Publicly available modules—trained to classify natural images—were used to encode

off-the-shelf feature vectors. Exceptions to this are the gold standard datasets pro-

teins, peptides3 and peptides4, which were obtained using a curated proteomics

analysis pipeline. Classification performance, measured by AUC, is reported in order

of descending median AUC for different classifiers and two resolutions of MS

images (rasterized spectra). Here, we only report results obtained using concaten-

ated feature vectors encoded from MS1 and all MS2 images (ms1_and_ms2). As

observed in the figure, the main driver of performance is the encoding of features.

Different off-the-shelf features achieve results ranging from 0.623 up to 0.849 me-

dian AUC, while gold standard features reached 0.951 median AUC. The variance

over results from different classifiers is much larger for off-the-shelf features com-

pared to the gold standard features

Table 5. Summary of classification performances for encoders and gold standards

median AUC mean AUC r AUC architecture

Available input MS1/2 MS1 MS1/2 MS1 MS1/2 MS1

Encoder

Proteins 0.951 NaN 0.947 NaN 0.010 NaN Proteomics

peptides3 0.951 NaN 0.948 NaN 0.012 NaN Proteomics

peptides4 0.947 NaN 0.945 NaN 0.012 NaN Proteomics

resnet_v2_101 0.849 0.759 0.837 0.764 0.036 0.029 ResNet

resnet_v2_50 0.834 0.784 0.826 0.783 0.029 0.013 ResNet

resnet_v2_152 0.832 0.746 0.824 0.747 0.045 0.025 ResNet

nasnet_large 0.827 0.749 0.816 0.757 0.029 0.025 NASNet

inception_resnet_v2 0.820 0.737 0.817 0.740 0.043 0.025 Inception, ResNet

inception_v3_imagenet 0.811 0.770 0.814 0.766 0.029 0.018 Inception

inception_v2 0.806 0.745 0.795 0.735 0.030 0.022 Inception

inception_v3_inaturalist 0.795 0.732 0.800 0.727 0.023 0.022 Inception

amoebanet_a_n18_f448 0.793 0.733 0.788 0.730 0.034 0.023 NASNet

nasnet_mobile 0.792 0.714 0.792 0.710 0.028 0.015 NASNet

inception_v1 0.789 0.717 0.777 0.719 0.035 0.021 Inception

pnasnet_large 0.777 0.748 0.773 0.746 0.023 0.017 NASNet

mobilenet_v2_050_224 0.765 0.622 0.758 0.609 0.039 0.031 MobileNet

mobilenet_v2_075_224 0.737 0.524 0.717 0.520 0.055 0.032 MobileNet

mobilenet_v1_050_224 0.704 0.582 0.686 0.583 0.084 0.044 MobileNet

mobilenet_v2_100_128 0.687 0.485 0.674 0.486 0.050 0.018 MobileNet

mobilenet_v2_075_96 0.666 0.530 0.670 0.534 0.057 0.027 MobileNet

mobilenet_v1_025_224 0.656 0.636 0.643 0.637 0.043 0.040 MobileNet

mobilenet_v1_050_128 0.623 0.512 0.616 0.512 0.036 0.030 MobileNet

Note: For each feature encoding module, median, mean and standard deviation (r) of the classification performance AUC values over the different classifiers are

reported. For each statistic, the input of MS image features concatenated (ms1_and_ms2, in the table MS1/2) is neighbored by MS1 image features only

(ms1_only, in the table MS1) for comparison.

Fig. 3. Classification performance of ms1_only off-the-shelf features. Depicted is the

same plot as in Figure 2, but with ms1_only encodings instead of ms1_and_ms2.

The order of encoders is identical, with the peptide and protein datasets missing as

these cannot be compared to a case where MS2 information is excluded. While the

classification performance of ms1_only encodings is generally lower compared to

ms1_and_ms2, there is a pronounced drop in performance for mobilenets, with

some models performing even worse than random (AUC below 0.5). Different off-

the-shelf features achieve results ranging from 0.485 up to 0.784 median AUC
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smaller peak with larger deltas (slightly violating the normality as-
sumption) that stems solely from results of mobilenets.

A possible downside of including all MS modalities is a sharp in-
crease in the number of features—a single MS1 image might require
hundreds or thousands of features depending on the model, while
the concatenation of all images results in hundreds of thousands fea-
tures. The significantly larger number of features might enable the
encoding of more detailed information about m/z ranges in MS1
spectra. This might boost performance, although the large number
of features might increase the need of having larger datasets or lead
to overfitting when small datasets are used. Appropriate regulariza-
tion techniques, or feature pre-selection by, for instance, removing
features with low signal-to-noise ratios, might alleviate overfitting.
To enhance applicability in a clinical setting, however, it would be
desirable to limit data pre-processing and feature selection and/or
engineering to an absolute minimum. Hence, while waiting for the
next generation of larger proteomics datasets to come, smaller mod-
els might be preferable.

3.5 MS image resolution
The resolution of the MS images (as described in Section 2.3) also
influences the performances of the different classifiers. We find a
small but significant difference in the evaluation scores that favors
the 512�512 resolution versus 2048�2048, as seen in Figure 4C.
Indeed, a one sided paired t-test with the null hypothesis
AUC512x5126AUC2048x2048 was rejected with a level of significance
a ¼ 0:001. For these settings, the mean difference in AUCs is 0.016,
which leads to rejection of the null hypothesis (P-value of 9.22
�10�11). Note that images, regardless of the original resolutions,
are resized according to each encoder’s input size requirements (see
Table 3), most often to 224�224.

4 Discussion

Quantitative proteomics enable the unbiased and faithful character-
ization of molecular phenotypes. A recent benchmark of several
computational workflow tools for the analysis of SWATH-MS data
has highlighted the convergent identification and reliable quantifica-
tion performance of all tools Navarro et al. (2016). However, these
workflows require laborious and carefully fine-tuned pre- and post-

data processing, and various challenges hinder their broad applica-
tion in a clinical setting. For instance, SWATH-MS data analysis
relies on targeted data extraction strategies, which query the
acquired fragment ion maps using a priori information obtained
from spectral libraries to identify and quantify peptides Ludwig
et al. (2018). While methods have been developed that do not re-
quire spectral libraries Ting et al. (2017), their analysis is limited to
peptides of known sequence. Furthermore, although it achieves
good performance, targeted analysis discards a lot of information,
e.g. by ignoring proteins not represented in the spectral library or by
limiting quantification to a selection of expected peaks. In doing so,
subtle differences between related proteoforms, which might be in-
formative to correctly classify a sample, might be discarded early on
in the processing pipeline. It is therefore highly desirable to develop
alternative approaches that can exploit the whole proteome infor-
mation and require minimum or no feature selection.

Deep learning approaches have an extraordinary capacity to auto-
matically learn abstract discriminative features directly from raw data.
At the same time, transfer learning is known to be able to achieve very
good performances in complex tasks where little data is available, as is
often the case in biological data cohorts. Combining the two, we have
investigated whether deep learning models for natural image classifica-
tion (off-the-shelf encoders) can be exploited to produce informative
feature vectors directly from raw SWATH-MS spectral profiles.
Although raw MS images (Fig. 5) are extremely different from natural
images, we were able to achieve very good accuracies for the task of
classifying tumor versus normal prostate tissue biopsies.

As gold standard for comparison, we used protein quantification
derived from the standard SWATH analysis pipeline tuned by do-
main experts. While the gold standards achieves better classification
results than the off-the-shelf encoders, the generation of peptide and
protein datasets from MS raw images requires highly supervised
pipelines supplemented with prior knowledge from peptide libraries.
Contrary to the careful data processing and model fine-tuning of
MS-workflows, our approach does not use any prior knowledge nor
does it require any fine-tuning.

As one MS1 and 100 MS2 profiles are obtained from a single
sample, we investigated two alternative ways of ingesting raw
SWATH-MS data, one based on the sole analysis of MS1 images,
and another one that jointly exploits MS1 and MS2 images. Our
results show that the inclusion of both MS1 and MS2 information
boosts the classification performance of all models, although at the

Fig. 4. Correlation of ms1_only and ms1_and_ms2 AUC. The figure shows the

Spearman’s rank correlation of the AUC obtained using ms1_only versus

ms1_and_ms2. Although the absolute values differ, the ordering of points is highly

similar in both dimensions. The overall Spearman’s rank correlation is 0.81. The

median values per encoder exhibit a Spearman’s rank correlation of 0.88

Fig. 5. Effects of input features on classification performance. Each encoding mod-

ule was applied to images resulting from two different resolutions of grids

(512�512 and 2048�2048) on the spectra, with some initial resizing to fit the mod-

ule’s specific input dimensions. Also, features from either only MS1 or MS1 and all

MS2 (concatenated) were used as input to train four different classifiers. (A) We ob-

serve a clear gain in classification performance when including MS2 features and a

slight difference for the change in resolution. (B) The distribution of differences in

AUC (ms1_only—ms1_and_ms2) shows a significant benefit (mean of 0.085 AUC)

for including MS2 features. The distribution shows a smaller peak with larger deltas

(slightly violating the normality assumption) that stems solely from results of mobi-

lenets. (C) The distribution of differences in AUC for different resolutions shows a

significant advantage (mean of 0.016 AUC) of using the smaller grid size that is

closer to the module’s typical input size and requires less downsizing in the encoding

step
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price of significantly increasing the number of features. Therefore,
when smaller MS-cohorts are used to train the classifiers, the use of
only MS1 spectra might be a preferred strategy to prevent overfit-
ting. However, our cross-validation analysis highlighted how regu-
larization and the removal of features with low signal-to-noise ratio
results in extremely reliable and robust performance, confirming
that overfitting can be mitigated even when dealing with a limited
number of samples.

Several improvements might further increase the performance of
our model and will be investigated in future work. In terms of bio-
logical variability, multiple run alignments might help account for
retention time variation between runs, and noise filtering and batch
correction might lead to additional accuracy gains in the models
exploiting off-the-shelf features. Regarding model improvements,
our current model does not reflect the relationship of the different
MS2 swathes and MS1. Alternative ways of encoding raw MS data
to reflect their dependencies will be investigated in future work.
More importantly, from the engineering point of view, our method
drastically downsizes the original raw SWATH-MS images to rela-
tively small image sizes. This process is likely to result in accuracy
loss, e.g. by binning together peaks that could otherwise be inform-
ative for classifying samples. Ingesting the raw data in an uncom-
pressed fashion would be very promising, although this would
increase the required number of training samples drastically.
However, with the rising popularity of mass spectrometry, larger
size cohorts are expected to become available in the near future.
Larger cohorts will undoubtedly enable training new or fine-tuning
the transferred models, resulting in increased model performance.

Another interesting avenue to explore would be leveraging exist-
ing unlabeled spectra to learn MS-specific features. Namely, instead
of using pretrained models for natural image classification, autoen-
coders (Kramer, 1991; Vincent et al., 2010) could be trained on
existing large raw MS datasets from databases such as PRIDE
(Perez-Riverol et al., 2019) and Peptide Atlas (Desiere et al., 2006).
Using MS-specific architectures, this strategy would enable the
transformation of raw MS images into feature vectors using un-
supervised deep learning techniques. The most fascinating aspect of
this approach is the possibility of addressing two challenges at once:
data scarcity, since we can learn from spectra generated with differ-
ent instruments and species; and the need of learning features that
are more specific to the MS images. The results obtained in this
work using models pretrained on natural images testifies how prom-
ising such methods can be.

As an application example, consider the scenario where the can-
cerous tissue expresses a proteoform with N-terminal truncation
compared to the healthy tissue, i.e. some peptides are missing in the
cancer proteoform due to the pathophysiology of the disease. Such
peptides are expected to be highly discriminative and are expected
to be captured on MS images. However, in the conventional
SWATH analysis, they are likely to be eliminated somewhere along
the processing path unless specifically searched for. By contrast,
learning from MS images does not pre-select features, and hence,
can identify subtle differences across samples. Furthermore, one can
easily envision enhanced models that search for such small differen-
ces, e.g. by exploiting interpretability methods (Dhurandhar et al.,
2018) to identify the key features that underlie the biological simi-
larities and differences. This is in stark contrast to conventional ana-
lysis that can only reveal peptide differences once they have been
hypothezised.

To conclude, our results show that networks trained on natural
images can generalize to the analysis of MS images surprisingly well.
This opens the door to the development of future models trained on
larger cohorts of MS images, potentially accelerating the develop-
ment of deep learning models for proteomics applications in both re-
search and clinical settings.
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