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Abstract: Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set
of cells that characteristically show prompt responses toward specific antigens. Unconventional T
cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic
antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T
cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific recep-
tors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response.
The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the
onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the
physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic
activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have
displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic
and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus
in immunotherapy against neoplastic disease. This review concentrates on the present knowledge
concerning the function of unconventional T cell sets in the antitumor immune response in hematolog-
ical malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative
disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells
could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions
(such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy.
The exact knowledge of the role of these cells could represent the prerequisite for the creation of a
new form of immunotherapy for hematological neoplasms.

Keywords: unconventional T cells; natural killer T cells; innate lymphoid cells; gamma delta T cells;
MAIT cells; leukemia; lymphoma; multiple myeloma; vaccination; immunotherapy

1. Introduction
1.1. General Aspects on Unconventional T Cells

In recent years, more attention has been paid to the unconventional T cell subsets
and their role in anti-tumor immunity, especially in hematology malignancies, due to new
findings on the topic. Unconventional T cells, namely, γδ T cells, MAIT cells, and iNKT
cells (invariant natural killer T) as a part of NKT cells, have features of both innate and
adaptive immunity that can be summarized in three main points:

• rapid responses to innate immune cells due to antigen-independent activation thanks
to cytokines and ligand recognition;
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• non-classical MHC to innate immune cells;
• the exhibition of limited T cell antigen receptor (TCR) repertoires, recognizing uncon-

ventional peptide antigens as a distinctive feature.

Depending on the expression of the delta chain variable region segment of their TCR,
γδ T cells are distinctive in subpopulations prevalently found in tissue or in blood. Vδ1-
positive cells are the most abundant population in adult peripheral tissues, including the
gut, skin, and liver. Vδ2-positive cells are found mainly in blood, accounting for about
0.5–5% of total CD3+ cells and are usually paired with a Vγ9 chain. Finally, as the non-
Vδ2 population, there are Vδ3-positive cells accounting for only 0.2% of peripheral CD3+
cells, but their frequency can increase in lupus patients or in cytomegalovirus (CMV) and
HIV-infected patients. Over the last few years, alongside Vδ2+ T cells, the subpopulation of
Vγ9-negative T cells clonally expands upon CMV infection and shows effector function [1].

MAIT cells are abundant in humans representing up to 10% of circulating CD3+ T
cells in the peripheral blood, but they are preferentially localized in tissues and mucosa,
representing up to 45% of liver T cells [2]. A minor population representing only 0.1–1% of
human T cells in the blood and liver are natural killer T (NKT) cells. They are divided into
two subtypes: type I and type II NKT cells. Type I NKT cells are more commonly referred
to as invariant NKT (iNKT) cells because their TCR is composed of an invariant α-chain
(V-α24/J-α18 in humans) bound to a limited array of β-chains. To date, they represent the
more studied subtype amongst NKT as the knowledge of type II NKT cells is currently
limited given the inaccurate and imprecise methods used to detect them.

Different from αβ T cells and unconventional T cells, there are the innate lymphoid
cells (ILCs) that develop from common lymphoid progenitor cells (CLPs) but have no rear-
ranged antigen-specific receptors and, in contrast, are enriched on their surface of CD127
(IL-7Rα) [3]. Classically, they can be divided into three groups on the basis of the expression
of transcriptional factors and cytokines responding differently to several stimulations [4].

So, we distinguish group 1 ILC (ILC1) with Th1-like properties which express tran-
scriptional factor T-bet and respond to IL-12, IL-15, and IL-18 stimulation. Group 2 ILC
(ILC2) can generate Th2-like cytokines under IL-25 and thymic stromal lymphopoietin
(TSLP) induction and are characterized by transcriptional factors RoRα and GATA3. Group
3 ILC (ILC3) is defined by the expression of RORγt and AHR-producing IL-22 and/or
IL-17 under the stimulation of IL-23 and/or IL-1β. ILC3 can be divided into two sub-
groups based on their expression of the natural cytotoxicity receptor (NRC) NKp44; indeed,
NKp44+ ILC3 is the main producer of IL-22 [5]. Finally, a novel recognized subset is
regulatory ILC (ILCreg) which secretes IL10 and TGF-β (acting in an autocrine manner too)
under the stimulation of IL-2 in the presence of transcriptional factors Id3 and SOX4 [6].

1.2. Activation and Functions of Unconventional T Cells

Human γδ T cells display broad reactivity to many types of viruses and bacteria,
showing potent cytotoxic functions and cytolytic activity via the expression of perforin,
granzymes, and natural cytotoxicity receptors. γδ T cells play a role to defend against
bacteria [3] and CMV infection and have been postulated to play an in vitro protective role
against coronavirus infection [7]. To date, the blood ratio of immature neutrophils to γδ T
cells has been considered as a good prognostic marker for severe COVID-19 [8,9].

Similarly, MAIT has also been shown to have a protective role in immunity against
human virus infection, such as hepatitis C virus in which in vitro activated MAIT cells were
shown to suppress virus replication [10]. Even though the links with clinical outcome are
unclear, MAIT shows signs of activation during SARS-CoV-2 infection, as reported in many
pieces of research [11]. In a similar fashion, NKT cells are involved in microbial infection,
demonstrating anti-viral immunity against HIV or COVID-19 through direct cytotoxicity,
for instance [12].

In different manners and at different levels, all unconventional T cells can contribute
to tumor surveillance because they populate tissues and mucosa, and also circulate in the
blood. The expression of multiple receptors and the fact that they can directly respond
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to cytokines in a TCR-independent manner demonstrates their primary role in defense
against tumor development. For example, innate receptors, namely NKG2D, NKp30,
and NKp46 exhibited on Vδ1+ T cells, have been studied in detail given their relevance,
as demonstrated in primary multiple myeloma patients [13].

However, through their TCR, they recognize “unconventional antigens” presented by
MHC-like molecules, such as BTN, MR1, and CD1, with an immediate response.

In particular, phosphoantigens activate Vγ9Vδ2 cells by binding butyrophilin 3A1
(BTN3A1) [14], which is ubiquitously expressed on tumor cells and cooperates with
BTN2A1 to date, and is considered fundamental for the activation of γδ T cells [15].
Differently, Vδ1 cells recognize various stress-related ligands, including MICA, MICB,
ULBP, and CD1c and CD1d glycoproteins [16], through MHC class I, establishing their
reactivity towards phycoerythrin [17], and more recently, ephrin type-A receptor 2 [18],
a non-MHC-like protein, similar to annexin A2 and endothelial coupled protein-C receptor,
recognized by Vδ3 and Vδ5, respectively [19,20]. MAIT shows the capacity to respond to
antigens derived from microbial vitamin B biosynthesis intermediates, such as activating vi-
tamin B2 (riboflavin) metabolites, presented by MHC class-I-related molecule MR1 without
requiring the presence of b2-microglobulin [21]. In opposite to this activation mechanism,
MAIT cell activation can be performed in a TCR-independent manner by responding to
IL-12 and IL-18 directly. In the same fashion, type I NKT cells recognize glycolipid anti-
gens (most notably alpha-galactosylceramide (α-GalCer)) presented by another class-I-like
molecule, CD1d, while type-II NKT cells recognize mammalian glycolipid sulfatide, which
is produced at high concentrations in neuroendocrine tissue [22].

ILCs can maintain tissue homeostasis and inflammation by releasing cytokines. Indeed,
they show protective responses against microorganisms in lymphoid tissue formation and
in tissue remodeling after damage. For example, consistent studies demonstrated their
involvement in inflammatory bowel disease (IBD), similar to γδ T cells, with a predominant
frequency of ILC1 and ILC2 in patients with CD and with UC, respectively [23,24].

Particular relevance is attributed to the ability of ILC and unconventional T cells to
produce IL17, which is considered a crucial cytokine due to its levels being elevated in vari-
ous inflammatory conditions, including sepsis, pneumonia, systemic lupus erythematosus,
rheumatoid arthritis, allograft rejection, and cancer.

Indeed, there is a subset of MAIT that can express CD161hi that is associated with the
production of IL17, which has various implications for antiviral immunity [25]. Tumor-
infiltrating IL17-producing γδ T cells are associated with worse prognosis in patients with
a solid tumor; thus, there is a need for more in-depth studies [26]. IL-17-producing NCR-
negative ILC3 can increase frequency in the gut of IBD patients and is involved in tumor
development given the association of neutrophil recruitment that can disrupt junction
proteins, such as E-cadherin and JAML, leading to epithelial permeability, and either
increasing the inflammation state or promoting angiogenesis [27].

The purpose of this review was to evaluate the presence of quantitative and functional
alterations of unconventional T cells in the various hematological malignancies and to
present the data existing in the literature on the possibility of modulating cell activity for
the prevention or treatment of liquid tumors.

1.3. Search Strategy

A literature search was conducted for English language publications in MEDLINE (via
PubMed). A time restriction was not applied to the search strategy. The search terms were
“unconventional T cell”, “innate lymphoid cell”, “MAIT cell”, “iNKT cell”, “natural killer
cell”, “γδ cell” AND “acute myeloid leukemia”, “acute lymphoblastic leukemia”, “chronic
myeloid leukemia”, “multiple myeloma”, “chronic lymphocytic leukemia”, and “lym-
phoma”. Studies were accepted from any country. The population of interest was pediatric
and adult patients, given the diverse incidence of different hematological neoplasms at
different ages.
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2. Acute Leukemia

Acute leukemia is a hematological malignancy which influences differentiation, prolif-
eration, and cell cycle progression in myeloid or lymphoid precursors. Although chemother-
apy has been the traditional form of treatment for these diseases, this approach augments
infection vulnerability, comorbidities, and immunosuppression. Moreover, immunothera-
pies demonstrate hopeful treatment opportunities for leukemia [28].

However, excellent knowledge of the state of the immune system, and in particular
of the unconventional effectors, seems to be an indispensable prerequisite for the effec-
tive treatment of leukemia, as immune dysfunction has been effectively characterized
in this condition and has shown to play a role in both disease severity and progression.
In subsequent sections, we will evaluate how the different effectors of innate immunity are
modified in the various forms of leukemia and how the modulation of their activity can be
used to treat these pathologies (Figure 1).

Figure 1. Acute myeloid leukemia (AML) unconventional immune cell scenario. NK: The NK
receptor NKG2D can make tumor cells vulnerable to NK cell-mediated lysis. The systemic reduction
of NKG2D on the NK surface of tumor subjects is reported, causing an alteration in NKG2D-mediated
NK cell function. Hepatitis A virus cellular receptor 2 (HAVCR2 or TIM-3) is intensely present on
NK cells in AML subjects, associated with augmented cytotoxic activity and with a better prognosis.
Moreover, AML blasts can stimulate the aryl hydrocarbon receptor (AHR) system that augments
miRNA-29b production in NK cell precursors, altering their maturation process and activity. ILC:
The CD56 innate cell set has mixed phenotypic and transcriptional characteristics of traditional ILCs
and lytic NK cells. These CD56 ILC1-like cells have a relevant cytotoxic ability. On the other side,
the co-transfer of CD4+CD25+IL5Rα+ILCregs stimulates neoplastic growth. Finally, the presence
of NCR+ ILC3 in TLO is related to a better prognosis. γδ T: Results indicate an altered presence of
TIGIT and CD226 on γδ T cells with an increase in TIGIT+ γδ T cells and a reduction in CD226+ γδ
T cells in subjects with de novo AML, but restoring both can ameliorate a drug response. IL-2 and
IL-21 stimulate γδ T cells and IL-15 boosts it toxicity. MAIT: A reduction in AML. In addition, lower
MAIT levels favor higher GVHD occurrence.
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2.1. Natural Killer Cells and Acute Myeloid Leukemia

It has been reported that acute myeloid leukemia (AML) subjects present notably
smaller amounts of circulating NK cells with respect to normal subjects that show a rela-
tionship with a poorer outcome [29].

In addition to decreased quantities of NK cells, Chretien et al. stated that AML subjects
often have a less mature circulating NK cell phenotype, and they evaluated CD57 and KIR
expression, which had inferior overall survival (OS) compared to AML subjects expressing
a more mature NK cell profile both in the bone marrow and peripheral blood [30]. These
results are supported by other studies which display a block in NK cell maturation in
animal experimental models of AML, evidenced by their incapacity to pass from stage 2
(CD27+CD11b−) to stage 3 (CD27+CD11b+) NK cells in the spleen [31]. Significantly,
this blockade was revocable, indicating that treatment might re-establish mature effector
NK cells.

Changes in the maturation process are also demonstrated by the presence of an
altered operative function. In fact, mature NK cells extracted from the peripheral blood
of AML subjects show a low presence of major stimulating NK receptors, an augmented
presence of CD94/NKG2A inhibitory receptors, reduced generation of IFN-γ and TNF-α,
and diminished cytolytic abilities [32,33].

A modification of NK cell activity could be fundamental in the onset of AML, par-
ticularly in its secondary forms. Several experimentations have reported genetic sus-
ceptibilities reaching AML with coexistent NK cell alteration. The genetic deficit of the
transcription factor GATA2 disposes patients to AML [34,35] and provokes relevant NK
cell alterations, especially deficiency in CD56bright cells with the maintenance of the
CD56dim compartment [36,37].

The augmented incidence of AML in subjects with altered NK cell activity appeared
to be partially correlated to the deficiency of detection and, consequently, the inability to
kill tumor cells. Several mechanisms appeared to be capable of justifying such a situation.
For instance, ligands of the activating NK receptor NKG2D make tumor cells vulnerable
to NK cell-mediated lysis. However, tumor cells utilize different mechanisms to elude
NKG2D-mediated surveillance, such as NKG2D ligand shedding, causing a decreased
surface expression amount. Furthermore, a systemic reduction in NKG2D on the NK
surface of tumor subjects was reported in several experimentations and was ascribed
to soluble NKG2DL (sNKG2DL). In fact, in AML subjects, the presence of sNKG2DL is
correlated with a reduction in the surface NKG2D expression, causing an alteration in
NKG2D-mediated NK cell function [38]. Soluble ligands of N-cell-stimulating receptors can
also be found joined to tumor-originated exosomes in leukemic subjects’ serum, provoking
the inhibition of NK cell stimulation [39]. Other soluble molecules, such as transforming
growth factor-beta1 (TGF-β), may also have remarkable repressive impacts [40], and sera
isolated from AML patients have been reported to include micro-vesicles carrying TGF-β
at their surface, which can induce a change in NK cell activity.

Co-inhibitory receptors present in T cells significantly affect the institution of a clini-
cally significant reduction in the immune response of several tumors or, in some conditions,
the enhancement of the immune activity. Hepatitis A virus cellular receptor 2 (HAVCR2 or
TIM-3) is intensely present on NK cells in AML subjects, associated with augmented
cytotoxic activity and a better prognosis [41]. AML blasts may stimulate the aryl hydrocar-
bon receptor (AHR) system that augments miRNA-29b production in NK cell precursors,
altering their maturation process and activity [42]. NK cells offer multiple capacities to
interfere with tumor development because they have cytotoxic and regulator activity.
As an anti-tumoral immune cell, the analysis through the expression of specific cell surface
markers, such as TIM3, needs more in-depth prospective studies to assess the its use for
AML patients, as well as optimized therapies currently administrated for patients with
solid tumor.

In parallel, the prospect of adjusting the operative modifications of the NK cells of
AML patients and employing these cells to cure leukemia nowadays seems like an actual
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therapeutic possibility. NK cell capacity is used to destroy neoplastic cells, i.e., MHC
class-I-defective cells, in diverse therapeutic strategies, comprising the administration of
lymphokine-activated NK cells, hematopoietic stem cell transplantation (HSCT), or NK
cells modified to present chimeric antigen receptors (CAR) for the treatment of high-risk
acute leukemia [43–45].

In a study performed on AML subjects with refractory disease, Björklund et al. as-
sessed the efficacy of IL-2-stimulated allogeneic NK cells [46]. Their findings sustain
the hypothesis that NK cells may exert anti-leukemic activity on AML subjects, even in
chemotherapy-resistant subjects, and these data were confirmed by a different study per-
formed on older AML patients [47]. Responding subjects showed less marked stimulation
of CD8+ T cells and lesser amounts of inflammatory cytokines after NK-cell adminis-
tration. Furthermore, NK cells transitorily persist and undergo in vivo maturation into
antileukemic effector cells.

Different types of NK cell treatments presently being evaluated on AML patients
comprise expanding blood NK cells which employ K562 feeder cells and originating NK
cells from induced pluripotent stem cells. Encouraging results were attained in a phase
1 trial employing expanded NK cells ex vivo utilizing membrane-bound IL21 expressing
K562 feeder cells. The study displayed only a few cases of infusion-correlated reactions,
although some subjects presented bland graft versus host disease (GVHD)-related signs [48].

Different strategies in which NK cells may be essential for leukemia treatment have
been implemented in the haplo-hemopoietic stem cells transplant (HSCT) setting to treat
high-risk leukemia. In this group of patients, NK cells have been reported to have a
relevantly significant impact on leukemia cells and the onset of infections [49].

An important role of NK cells has been highlighted in AML transplant therapy [50,51].
This relationship is because an essential graft management in this type of transplant is the
massive T lymphocyte reduction to prevent a grave GvHD. In this highly incompatible
HSCT, NK cells have a crucial impact on anti-leukemia activity in the absence of T cells.
This therapeutic activity is correlated with NK alloreactivity, secondary to a KIR-HLA
difference in the donor versus recipient direction. Remarkably, the dimension of the
alloreactive NK cells was reported to relate to more effective anti-leukemia activity and
the survival possibility. This T-diminished haplo-HSCT also allows the opportunity to
evaluate in vivo the NK cell expansion from CD34 + HSC [52]. The first NK cell set
demonstrable in the peripheral blood of HSCT-recipient is CD94/NKG2A+, while KIR+
NK cells emerge in the peripheral blood after 6–8 weeks. A new transplantation setting has
been implemented [53,54]. This is founded on the selective reduction of TCRγδ + T cells,
which are responsible for GVHD and B cells; thus, the administered mononuclear cells,
in addition to CD34+ cells, also comprise mature alloreactive NK cells and TCRγδ + T cells,
both provided with anti-leukemia function [55,56].

As reported above, a prominent development in leukemia treatment is constituted by
the employment of chimeric antigen receptor (CAR)-engineered NK cells which, differently
from CAR-T cells, may derive from allogeneic donors since they do not provoke GVHD.
Clinical experimentations employing CAR NK cells have displayed only a few cases of
treatment-correlated cytokine release syndrome or infusion reactions, collateral effects
generally caused by CAR T cell treatment. The first phase 1 research employing CD33-CAR
NK-92 cells in relapsed/refractory AML subjects did not find dose-limiting toxicities at up
to 5 billion cells per subject [57]. However, a shortcoming of employing this type of cell,
i.e., a tumor cell line, is that it is necessary to irradiate the cells to control growth in the
recipient, and this procedure causes a short half-life of cells; thus, multiple administrations
are required to obtain long-lasting responses [57].

2.2. Innate Lymphoid Cells and Acute Myeloid Leukemia

It was reported that the amount of innate lymphoid cells (ILCs) in AML subjects is
remarkably diminished after chemotherapy with respect to normal subjects [58], and other
studies have confirmed this finding. However, research assessed the amount of total ILCs
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in the peripheral blood of normal subjects and AML patients. The findings displayed that
ILCs were considerably altered at diagnosis in relation to the number, subsets, and activity,
while ILC normality was in part recuperated in subjects responsive to treatment, proposing
that ILC dysregulation characterizes AML regardless of chemotherapy. Moreover, authors
stated a positive relationship between the amount of peripheral blood in ILCs and the rate
of circulating leukemic blasts. They found no distinction between their number in the bone
marrow and peripheral blood at disease onset. Fascinating are the data on the functionality
of these cells that appeared drastically altered in the cytokine production upon in vitro
stimulation compared to ILC from normal subjects [59].

A different experimentation recognized a CD56 innate cell set holding mixed phe-
notypic and transcriptional characteristics of traditional ILCs and lytic NK cells. These
CD56 ILC1-like cells have a relevant cytotoxic ability that is reduced in AML subjects at
the onset of disease but is re-established after remission. To explain the mechanism of
alteration and restoration, it has to be reminded that their killing ability is KIR-independent
and is due to the expression of NKp30, NKp80, TRAIL, and NKG2A. The presence of
leukemic blasts intensely reduces their cytotoxic activity, likely by decreasing the presence
of cytotoxic-correlated molecules. Remarkably, CD56 ILC1-like cells are present in the NK
cell preparations employed in NK transfer-based clinical experimentations, and repairing
their activities with anti-NKG2A antibodies might present a new approach for enhancing
immune treatments [60].

On the other hand, other groups of ILCs such as type 2 innate lymphoid cells (ILC2s)
may be altered as far their amount and function in AML subjects. One such study demon-
strated that mesenchymal stromal cells (MSCs) from AML subjects or normal MSCs
with an increased expression of cyclooxygenase-2 (COX2) stimulated the growth of co-
cultured hematopoietic stem and progenitor cells (HSPCs), which can be avoided by use
of COX2 knockdown or TM30089, an antagonist of the PGD2 receptor CRTH2. The study
demonstrated that the PGD2-CRTH2 pathway operates on ILC2s, stimulating their growth
and inducing them to generate IL-5 and IL-13. The interruption of the PGD2-stimulated
ILC2reg pathway inhibited growth of HSPCs. On the contrary, co-transfer of CD4 + CD25 +
IL5Rα + Tregs stimulated neoplastic HSPC growth and accelerated leukemia expansion in
xeno-transplanted animals. Thus, the PGD2-activated ILC2-Treg axis could be an important
therapeutic target for AML [61]. Analogous results have been obtained in acute promye-
locytic leukemia, a form of AML in which tumor-originated PGD2 and NKp30-BH76
engagement stimulates ILC2s produce IL-13 that induces myeloid-derived suppressor cells
(MDSC) [62]. MDSC can inhibit cytotoxic T lymphocytes (CTLs) development in vitro,
and to generate of antigen-specific CD8+ T cell tolerance in vivo [63].

The effects of ILC2s have also been recognized in allogeneic transplantation. Steroid-
non-responsive acute (a)GVHD is the most important complication for AML subjects
experiencing allo-HSCT, with only 15% of these subjects alive after 1 year. Previous studies
demonstrated that the administration of donor ILC2 cells could both avoid and cure
aGVHD of the gut with no impact on the graft-versus-leukemia response [64]. However,
this clinical strategy is unwieldly, as it can necessitate the production of donor-originated
ILC2 cells for each patient. So, the possibility to employ third-party ILC2 cells can offer
ready-to-use preparation to avoid aGVHD. A different study confirmed that third-party
ILC2 cells augment the survival rate of allo-HSCT patients. The protocol provided for
four weekly administrations of ILC2 cells and ILC2 cell activities was entirely absent if the
cells could not produce IL-13 and amphiregulin. The possibility to produce third-party
ILC2 cells guarantees a new and effective possibility to prevent aGVHD [65]. The cellular
therapies based on ILC2 constitute an advanced step towards personalized medicine.

A different set of ILCs cells which also seems to be modified in AML subjects is
that of ILC3s. Natural cytotoxicity receptor-positive (NCR+) ILC3 cells participate in the
development of tertiary lymphoid organs (TLO) at the tumor sites, and it has been reported
that the presence of TLO is correlated with better outcomes.
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One study demonstrated a reduction in NCR+ ILC3s but not NCR- ILC3s in peripheral
blood samples of AML subjects at diagnosis [66].

However, the uncertainty of ILC effects comprising ILC3 in the progression of tumors
may present significant uncertainties regarding their possible therapeutic employment
in AML, although their ability to stimulate tissue repair and protect against pathogens
may be advantageous in AML subjects undergoing chemotherapy or radiotherapy before
HSCT. These treatments provoke tissue injuries as critical intestinal mucositis [67]. These
harms can worsen with allo-HSCT following the occurrence of GVHD due to donor T
lymphocytes [66]. An animal experimental model of aGVHD demonstrated that host-
originated IL-22 could avoid the onset of GVHD, and that gut ILC3 cells are the principal
makers of IL-22 after total body irradiation therapy [67–69]. Furthermore, ILC3-originated
IL-22 can also promote thymic epithelial cell recovery, thus permitting a prompter re-
formation of the T cell subset [70].

Furthermore, ILCs may participate in the repair of the mucosal health, and also in the
restructuring of mucosa-associated TLO as reported above, and in this situation, it has been
demonstrated that CD34+ cells, employed as a font of hematopoietic precursors in HSCT,
differentiate towards ILC3, and these cells are more present in the lymphoid progenies of
CD34+ precursors originated from umbilical cord blood or bone marrow [71,72].

A further set of ILCs seems to be changed in AML subjects, the regulatory innate
lymphoid cells (ILCregs). A few years ago, a sub-group of ILC cells with phenotype of
Lin-CD45+ CD127+ IL-10+ was detected in the gut and identified as ILCregs [73]. While the
aspect of these cells remembers lymphocytes, they do not present CD4 and FoxP3, and so
they are not Tregs [74]. ILCregs present ILC antigens (such as CD25 and CD90) and have
an increased expression of IL-2R gamma and SCA-1, but they do not present ILC1 markers
(such as NK1.1 or NKp46), ILC2 molecules (such as ST2 and KLRG1), or ILC3 markers
(such as NKp46, CD4, and RORγt) [75].

A number of ILCreg cells in AML subjects were remarkably reduced with respect to
findings in healthy controls. Furthermore, examining miRNAs from ILCregs-correlated
genes comprising TGFBR1, TGFBR2, ID2, ID3, IL2RB, IL3RG, and SOX4 displayed 34 miRNA
from plasma samples and 14 miRNAs from BM cell samples, which were different in AML
subjects and healthy donors [76]. These findings confirmed both the reduction and the
functional alterations of ILCregs in AML patients [76].

2.3. γδ T Cells and Acute Myeloid Leukemia

A study assessed the composition of γδ T cell subgroups in AML subjects of diverse
clinical statuses by evaluating the immune checkpoint co-inhibitor T cell immunoglob-
ulin and immunoreceptor tyrosine-based (TIGIT) inhibitory (motif domain) and its co-
stimulatory receptor CD226 [77]. Results stated an altered presence of TIGIT and CD226 on
γδ T cells with an augment in TIGIT+ γδ T cells and a reduction in CD226+ γδ T cells in de
novo AML subjects, while TIGIT− CD226+ γδ T cells were reinstated in AML subjects who
attained a complete response after treatment. Interestingly, subjects who presented with
higher amounts of TIGIT+ CD226− γδ T cells showed shorter overall survival for non-acute
promyelocytic leukemia, and this could be recognized as a new prognostic marker [77].
In agreement with the results of this study, a recent meta-analysis of gene expression results
performed on nearly 18,000 cancer patients comprising hematological tumors and solid
tumors recognized infiltrating γδ T cells as the most relevant element correlated with
favorable outcomes [78,79]. Transcriptomic studies showed an augment of Vγ9Vδ2 cells
and a subset of γδ T cells in the group of leukemia patients [80], and this increase was
positively correlated with improved outcomes for CLL and AML patients only.

On the basis of these data, γδ T cells have been taken into consideration as a possible
cell source for T cell-mediated antileukemic treatment and augmenting Vδ1 T cells in AML
subjects might be useful [81,82]. In fact, adoptive transfer and the in vivo stimulation of
γδ T cells are secure therapeutic strategies that can reach relevant clinical responses [83].
A relevant vantage with employing γδ T cells is that they are improbable to provoke GVHD,
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permitting them to be produced from normal subjects and administered in an allogeneic
set of patients as a ready-to-use treatment [84].

However, despite the above, according to some studies, attention should be given
to patients undergoing allogeneic transplantation. In an animal model of GVHD, some
studies have reported the alloreactive capacity of γδ T cells which can cause GVHD on-
set; transgenic mice presenting a great amount of γδ heterodimers on peripheral T cells
responded to non-classical MHC class lb and provoked aGVHD when employed as donors
in allo-HCT animal models [85]. On the contrary, the diminished occurrence of GVHD was
observed in animals treated with anti γδ TCR antibodies or in γδ deficient animals. This
was justified by decreased donor T cell development and diminished allogeneic stimulatory
ability of DCs [86].

Numerous methods have been used to enhance the therapeutic effect of these cells,
and a study assessed the effects of IL-15 on γδ T cells and employed a stimulatory tool
in the ex vivo growth of γδ T cells for adoptive transfer in AML patients. The addition
of IL-15 to γδ T cell cultures induced a more activated phenotype with a more evident
Th1 polarization, and an increased cytotoxic capacity [87].

The effect of IL-15 on γδ cells has also been used in different experimentations, such as
the attempt to harness γδ T cells by a dendritic cells (DC) vaccine to amplify the anti-tumor
efficacy of vaccination [88]. In a study, authors address soluble IL-15 produced by IL-15 DCs
as the main factor responsible for the IL-15 DC-mediated γδ T cell stimulation. Therefore,
the use of IL-15-producing DC cells could make DC-based cancer vaccines more effective
through the participation of γδ T lymphocytes in the anti-leukemic immune response [89].

A novel approach to augment γδ activity implicates the employment of artificial
antigen-presenting cells (aAPCs) originated from the K562 cell line [90]. These leukemic
feeder cells were altered to present several molecules on their membrane, such as CD19,
CD64, CD86, and IL-15. When γδ T cells were co-cultured and IL-2 and IL-21 were added,
there was an exceptional polyclonal expansion and most of these cells presented different
γδ TCR domains and could destroy leukemic cells via TCR, NKG2D, and DNAM-1 [85,90].
As part of these methods, also for γδ T cells, there was the possibility of targeting CD19
antigen-positive leukemia cells with promising efficacy [91]

2.4. MAIT Cells and Acute Myeloid Leukemia

In the context of hematological neoplasms, MAIT cells are, for the most part, unex-
plored. However, as these cells are extremely abundant and have a great cytolytic capacity,
MAIT cells might be excellent agents for immunotherapeutic treatment in leukemic patients.

In a prospective experimentation involving 216 AML subjects, circulating MAIT
cells were measured before and after chemotherapy [92], and it was stated that MAIT
cells displayed a reduction in AML subjects with respect to normal subjects. Moreover,
after induction treatment, leukemic patients showed a further severe decrease in MAIT
cell numbers, with improvement after one month. Interestingly, a relationship between
reduction in MAIT cells number and unfavorable cytogenetic signature was also found,
suggesting a correlation between MAIT cells and AML progression [92].

Even in the case of MAIT cells, the most remarkable experimentations in AML subjects
are those correlating to their effects in the group of AML subjects experiencing allogeneic
transplantation. Solders et al. reported a reduction in MAIT cell counts in subjects with
grade 2–4 GVHD versus subjects with grade 0–1 GVHD [93]. Analogous findings have
been reported by other authors such as Bhattacharyya who registered reduced MAIT cell
counts on day 30 after allo-HCT in leukemic subjects with grade 3–4 GVHD [94]. MAIT
cell reconstitution might be considered as a predictor of GVHD, as lower MAIT cell counts
on day 60 after transplant have been related to the onset of aGVHD in a study performed
on pediatric and adult subjects receiving bone marrow transplantation [95–97].
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2.5. Acute Lymphoblastic Leukemia
2.5.1. Natural Killer Cells and Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) is a hematologic malignancy with highly aggres-
sive features, which is inclined to relapse, and has a bad outcome and limited clinically
efficacious treatments [98].

However, only a few studies have evaluated the function and effects of unconventional
T cells in ALL progression (Figure 2). In any case, the number of NK cells in the bone
marrow of ALL at the onset was associated with enhanced response to treatments and aug-
mented leukemia remission percentages [99]. Furthermore, the prevalence of stimulated
NK cells presenting FasL, NKp46, and KIR2DL5A in ALL subjects was related to enhanced
leukemia responses after the administration of cytarabine, methotrexate, and hydrocorti-
sone [100]. Thus, many studies characterizing NK in ALL patients are required to find new
targets for combined immunotherapies.

Figure 2. Acute lymphoblastic leukemia (ALL) unconventional immune cell scenario. NK: NK cells
presenting FasL, NKp46, and KIR2DL5A in ALL subjects was related to an enhanced leukemia
response. γδT: Fc receptor FcRgIII (CD16) joins to the Fc portion of immunoglobulins and pro-
vokes anti-leukemic actions through antibody-dependent cell cytotoxicity (ADCC) effects, similar to
NK cells.

2.5.2. γδ Cells and Acute Lymphoblastic Leukemia

The main mechanism for anti-leukemic effect of γδ T cells is the presence of Fc receptor
FcRgIII (CD16). In fact, CD16 can stimulate Vg9Vd2 T cells provoking TNF-a production,
which in turn is regulated by CD94 NK receptors. This molecule joins to the Fc portion
of immunoglobulins and provokes anti-leukemic actions through an antibody-dependent
cell cytotoxicity (ADCC) effect, similar to NK cells [101]. The effectiveness of the γδ T cell-
originated ADCC against CD19+ ALL was confirmed by employing a CD19 antibody [102],
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as well as a so-called “triplebody” with two binding sites for CD19 and one for CD16 [103],
and a combination of others combination can permit the rapid lysis of leukemic blasts.

2.6. Chronic Myeloid Leukemia
2.6.1. Natural Killer Cells and Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy character-
ized by the presence of the (9; 22) (BCR-ABL1) fusion gene [104].

In CML subjects, peripheral blood NK cells are reduced and show alteration in their
growth and cytolytic ability with respect to normal donor blood NK cells [105]. In addition,
the CD56+ bright NK subset and cytotoxic NK are remarkably decreased in all CML
subjects. Nevertheless, this decreased toxicity was easily repristinated by incubation with
recombinant IL-2. Authors demonstrated that NK clonogenic frequency and growth ability
decrease as CML advances, revealing a hereditary defect in their ability to respond to
physiological NK stimuli. Relevant modifications were reported in the absolute amount
of circulating CD56+/CD3− NK and CD56+ bright NK, as well as growth on a per cell
basis [105] (Figure 3).

Figure 3. Chronic myeloid leukemia (CML) unconventional immune cell scenario. NK: NK cells are
reduced and show alterations. IL-2 boost their activity. On the contrary, IL-12 and IL-18 diminish
IFN-γ production. γδT displayed an increased presence of CD69, IFN-γ, TNF, and TNF-related
apoptosis-inducing ligand (TRAIL), a stimulated phenotype, with an increased antileukemic activity.
Once administered, Vg9Vd2 cells, ZOL, and IL-2 provoked a reduction in the leukemic burden.

NK cells can be active against a great group of hematological neoplasms comprising
CML, and the rate and function of these immune effectors can be essential in the therapeutic
response and prognosis of CML subjects [106,107]. In fact, an augmented percentage
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of mature NK cells have lately been reported to be correlated with successful imatinib
withdrawal in the EURO-SKI trial. A portion of these subjects have been KIR-genotyped
and catalogued according to haplotype B/x and A/A subtypes [108]. These data are
validated by a diverse array of research, which evaluated the prognostic value of the
KIR2DL5B genotype [109]. The receptor KIR2DL5 has a specific combination of genetic,
and functional characteristics that give an inhibitory activity when joining to its ligand.
The study was conducted on CML subjects inserted in two clinical protocols evaluating
the possibility of TKI discontinuation: STIM and STIM2. Authors demonstrated that the
KIR2DL5B-positive genotype was correlated to a late second molecular remission after TKI
rechallenge, but not to time the first molecular remission [109]. These findings propose
that KIR2DL5B could impact the lymphocyte-derived management of leukemic residual
disease in subjects with CML relapse.

Analogous results were also reached by other experimentations that reported that
KIR2DS1 was the only independent element for the minor possibility of attaining a com-
plete cytogenetic response, minor progression-free survival, and overall survival [110],
while Yeung et al. reported that KIR2DL5B was correlated with a minor event-free survival
and with inferior major molecular response in a consecutive imatinib–nilotinib therapeuti-
cal approach [111].

2.6.2. γδ Cells and Chronic Myeloid Leukemia

The acquisition of new knowledge in the field of the antineoplastic capabilities of
γδ cells means that their employment in CML could be hypothesized [112]. When CML
cells are cultured with zoledronic acid (ZOL) + IL-2 + IFN type I, their toxic effects are
augmented and Vγ9Vδ2 cells may be able to effectively kill myeloid leukemia cells [113].
In this experimentation, γδ T cells displayed an increased presence of CD69, IFN-γ, TNF-α,
and TNF-related apoptosis-inducing ligand (TRAIL), which demonstrates the achievement
of a stimulated phenotype and increased antileukemic activity. Furthermore, stimulation
with ZOL + imatinib has also been reported to augment the synapses with cytotoxic activity
between Vγ9Vδ2 cells and leukemic cells in vitro [114]. To confirm these data, it was also
shown that when Vγ9Vδ2 cells, ZOL, and IL-2 were administered in a leukemia animal
experimental mouse model, they provoked a reduction in the leukemic burden in vivo and
allowed a longer survival in these animals [114]. Thus, it is clear that the antitumoral activity
of Vγ9Vδ2 T cells can be induced by specific drugs and molecules, even if the frequency
and clinical significance during the progression of leukemia still remain controversial.

A diverse procedure to augment cell expansion in vitro was planned by generating
Vγ9Vδ2 CD27/CD45RA double-negative effector memory cells [115]. Authors produced
a Ph+ cell line, EM-2eGFPluc, and intravenous administrations of these cells into NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) animals caused a bone marrow engraftment. In vitro-
expanded γδ T cells intraperitoneally survived at least 33 days post-injection. This ad-
ministration caused a reduced bone marrow leukemia load in treated animals, and γδ
T cells were identified in bone marrow and spleen, indicating the possible efficacy of
this treatment [115].

2.7. Natural Killer Cells and ILCs in Chronic Myeloproliferative Diseases Ph−
BCR-ABL-negative myeloproliferative neoplasms (Ph− MPN) make up a various

set of hematologic malignancies, comprising polycythaemia vera (PV), essential thrombo-
cythemia (ET), and myelofibrosis (MF). Mutations in Janus kinase-2 (JAK2), calreticulin
(CALR), and myeloproliferative leukemia protein (MPL) genes have been associated with
these diseases [116] (Figure 4).
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Figure 4. BCR-ABL-negative myeloproliferative neoplasms (Ph- MPN) unconventional immune cell
scenario. NK: Ph- MPN patients have fewer NKs with altered function. ILC: ILC1 was augmented in
JAK2-mutated and triple-negative patients, while ILC3 was increased in the CALR-mutated group.
The ILC3 augment can be correlated with the increased concentration of IL-1b and IL-23.

Ph- MPN patients have fewer NKs with altered function. Different studies performed
on MF patients displayed a condition of mutation-dependent immune changes with
cellular elements of the innate immunity exhibiting different types of functional inad-
equacy [117,118]. For instance, ILC1 was augmented in JAK2-mutated and triple-negative
patients, while ILC3 was increased in the CALR-mutated group. However, regardless of the
mutational condition, ILCs presented reduced activity. As for the mechanisms responsible
of these alterations, the augment of ILC1 can be justified taking into consideration the
augmented levels of IL-12 found in circulation. This interleukin is crucial for ILC1 mat-
uration and ILC2 transformation into ILC1. Similarly, the ILC3 augment c be correlated
with the increased concentration of IL-1b and IL-23. Of note, the number of ILC3 markers
was considerably greater in Ph-MPN patients with an intermediate-2/high IPSS score,
suggesting the possible effects in myelofibrosis progression [119].

2.8. Multiple Myeloma
2.8.1. Natural Killer Cells and Multiple Myeloma

Multiple myeloma (MM) is a malignant disease of plasma cells that grow in protected
niches in the bone marrow. While the outcome of MM improved in recent years because of
novel treatment options, it remains an incurable malignancy [120,121].

Previous experimentations have verified an augmented amount of CD56+ CD3− NK
cells in the bone marrow and peripheral blood in MM patients and subjects with monoclonal
gammopathy of undetermined significance (MGUS), a clinical precursor condition leading
to MM. Remarkably, MM subjects presenting more NK cells at the onset of disease had
a more severe prognosis [122]. The augmented quantity of NK cells might be due to
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unproductive stimulation of the immune system containing MM cell proliferation [122,123]
(Figure 5).

Figure 5. Multiple myeloma (MM) unconventional immune cell scenario. NK: MM subjects present-
ing a more significant number of NK cells at the onset of disease had a severer prognosis, leading
to the unproductive stimulation of the immune system. Patients augmented with NK cells were
concomitant with a less mature CXCR4+ NK cell subset. The presence of CD56+ CD3− NK cells of
CD56- was related to a worse prognosis. IL-6 and IL-10 participate in NK cell functional alteration.
Anti-KIR antibodies stimulated antineoplastic NK toxicity, as well as soluble IL-2 receptor. ILC: IFN-γ
decreased in MM. The administration of IMiDs such as pomalidomide re-establishes the production
of IFN-γ by ILC1s. ILC2s showed a weak ability to produce IL13 and an inadequate response to
IL-2/IL-33 stimulation. γδT: IFN-γ secretion and Vδ1 T cell toxicity against MM cells occurred
due to the T cell receptor (TCR) and other molecules (such as NKG2D, CD3, and CD2 receptors),
DNAX accessory molecule-1, and intracellular cell adhesion molecule (ICAM)-1. MAIT presented
low CD27 expression as well as low IFN-γ production.

However, a recent meta-analysis showed that CD56-negative MM subjects showed
a reduced OS in Asian subjects and reduced PFS in non-Asian subjects. It is noteworthy
that not even the new therapeutic approaches are capable of modifying the unfavorable
prognosis caused by CD56 negativity, except for MM subjects undergoing ASCT [124].

Numerous cytokines produced in MM, such as IL-6 and IL-10, participate in NK cell
functional alteration. A previous study demonstrated that IL-6 can inhibit the cytotoxic
activity of NK cells [125]. At the same time, IL-10 disturbs the generation of TNF- α and
IFN-γ [126,127] and stimulates the occurrence of NK-resistant tumor phenotypes [128].
Furthermore, other different soluble components may reduce NK-derived antimyeloma
abilities. The presence of COX-2 on MM cells stimulates the generation of prostaglandin
E2 (PGE2) [126] which augments the concentrations of cyclic adenosine monophosphate
(cAMP) and blocks stimulating impulses transduced by CD16, NCR, and NKG2D. This
causes a reduction in NK cell cytotoxicity [125,129]. At the same time, the augmented
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concentrations of soluble IL-2 receptors, reported in the sera of MM patients, may also alter
the stimulation of NK cells originating via IL-2 by T lymphocytes [130].

A study tried to assess the effects of NK cells on gammopathy progression. In many
MGUS patients, authors reported an augment of NK cells concomitant with a less mature
CXCR4+ NK cell subset, while subjects with reduced NK cell quantity in BM have low
CXCR4 and high CX3CR1 levels [131]. As the two chemokine receptors have opposite
effects on bone marrow (BM) NK cells, it is possible to hypothesize that chemokine receptor
expression controls the NK cell BM distribution during gammopathy progression. In any
case, in advanced phases of the disease, NK cells have been negatively related to MM
progression, confirming that MM disturbs NK cell anti-tumor activity [132]. In active
MM, NK cell function is further altered, and DNAM-1 and NKG2D expression is reduced,
probably owed to the generation of soluble ligands that may stimulate receptor internal-
ization, or to the effects of cytokines or exosomes produced by MM cells [133]. Thereby,
inhibitory receptor expression, such as PD-1, is augmented and causes NK cell exhaustion
after interaction with ligands, such as programmed cell death ligand-1 (PD-L1) expressed
on MM cells [134].

However, as reported above, the relationship between NK cells and the progression of
MM is debated, and disagreement is also reported regarding NK cell functions as either
decreased NK cell functionality or augmented NK cell function. This is probably due to the
clinical stage, and the different aggressiveness of the disease [135–141].

In a previous report, we evaluated NK characteristics in the bone marrow and pe-
ripheral blood of MM patients at the onset of the disease [142]. Our results demonstrated
that NK cells were more frequent than in normal subjects. Among total MM-NK cells,
we identified a relevant augment of the CD94lowCD56dim NK cell subset, which is already
present in MGUS and smoldering MM, and ultimately expands during disease progres-
sion. Moreover, a relevant percentage of CD94lowCD56dim NK cells was in a growth
condition. We evaluated these cells for their cytotoxic capabilities, including principal
cytotoxic NK cells against autologous MM cells. In vitro, MM cells could quickly stimulate
the growth of the CD94lowCD56dim NK cell subset. Mechanistically, this augment exists
due to cell-to-cell contacts between MM and NK cells and necessitated both stimulations
via DNAM-1 and interaction with CD56 present on MM cells [142].

Other studies have attempted to evaluate the processes of cytotoxicity in NK cells
towards MM plasma cells. NK toxicity is related to the presence of activating receptors
(AR) and inhibitory receptors (IRs) on the NK cell membranes connected with specific
ligands present on target cells. Targeting NK IRs may inhibit NK cells from identifying and
destroying myeloma cells. To overwhelm IR/AR disequilibrium and the modified stimula-
tion after AR decrease, the employment of immune checkpoint inhibitors to block IRs on
NK cells can diminish the inhibitory impulse, thus augmenting NK cell stimulation [143].
For this reason, numerous assays have tried to develop anti-KIR antibodies, and preclinical
research demonstrated that the anti-KIR mAb 1-7F9 (IPH2101) reduced inhibitory recep-
tors KIR2DL1/2/3 and stimulated antineoplastic NK toxicity against leukemic cells [144].
In MM, combined lenalidomide (Len) administration with IPH2101 in experimental animal
models increased the effects of anti-MM NK cells and augmented MM cell clearance [145].

A phase I trial (NCT00552396) evaluated IPH2101 as a single drug in MM subjects
and displayed augmented NK cell toxicity against MM cells ex vivo. The administration
of IPH2101 seemed secure and unburdened with significant side effects at the dosage that
attained complete inhibitory KIR saturation [146]. A different phase I trial (NCT01217203)
performed by the same research group evaluated the IPH2101-Len combination, whereby
numerous subjects had severe side effects, but some presented clinical responses [147].

2.8.2. Innate Lymphoid Cells 1 and Multiple Myeloma

In patients with plasma cell dyscrasias, an augment in the fraction of ILC1s is reported
in the bone marrow. Furthermore, though the ability of ILC1s to produce cytokines such
as IFN-γ was conserved in MGUS subjects, it was remarkably decreased in smoldering
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MM patients [148]. Interestingly, ILC1 cells have been reported to produce augmented
concentrations of Ikzf3 (Ajolos), a transcription factor implicated in B cell differentiation,
which is a target of immunomodulatory (IMiDs) drugs. The administration of IMiDs
such as pomalidomide re-establishes the production of IFN-γ by ILC1s [149], and the
change in ILC1 function might be employed to treat multiple myeloma [150], increasing the
effectiveness of drugs such as daratumumab, a monoclonal antibody directed against CD38.

In a different study, authors employed the KHYG1 NK cell line originating from a
subject with an NK cell leukemia, i.e., CD38low, and can be modified to transitorily present
a CD16 receptor variant coding the F158V polymorphism (CD16F158V). This condition
increases daratumumab function by stimulating ADCC via the non-cleavable CD16 vari-
ant [151]. Equally, FcεRIγ-deficient NK (g-NK) cells are a rare group of cells originated from
CMV-seropositive subjects (CD38low and SLAMF7low). An experimentation demonstrated
that with respect to traditional NK cells, ex vivo g-NK cells, in combined administration
with daratumumab, presented an augmented cytotoxicity against MM cells [152].

2.8.3. Innate Lymphoid Cells 2 and Multiple Myeloma

In patients with monoclonal gammopathies, a reduced amount of ILC2s in the bone
marrow was reported, and this finding was associated with a concurrent augment in the
circulating set of ILC2s. In MGUS subjects, ILC2s showed the ability to produce IL13, which
was not reported in subjects with smoldering MM [149]. Moreover, diverse experimentation
demonstrated that myeloma cell proliferation was linked with modifications of activity and
phenotypic changes in bone marrow ILC2s, with an augmented presence of maturation
markers and decreased cytokine response to IL-2/IL-33 [153]. A study recognized a
subset of KLRG1hi ILC2s stored in the spleen and liver of Il2rg/Rag2/mice reconstituted
with BM ILC2s. An analogous set of KLRG1hi ILC2s was identified in the peripheral
blood, spleen, and liver of IL-33-treated wild-type animals. The attendance of KLRG1hi
ILC2s in ILC2-reconstituted Il2rg−/− Rag2−/− animals or in IL-33-treated wild-type
animals, which were correlated with augmented eosinophil amounts but did not influence
multiple myeloma progression. Remarkably, while reduced myeloma cell proliferation
was displayed after IL-12 and IL-18 administration in Rag-deficient animals, this was
overturned when animals were treated with IL-33 together with IL-12 and IL-18 [153]. These
results suggest that IL-33 administration stimulates circulating inflammatory KLRG1hi
ILC2s, blocks type 1 immunity against multiple myeloma cells, and contraindicates the
therapeutic dispensation of IL-33 to myeloma subjects.

In the literature, there are no in-depth studies on the role played by ILC3 on the onset
and progression of MM.

2.8.4. γδ T Cells and Multiple Myeloma

Recent studies have proposed that γδ T cells may also be anti-myeloma effectors [154–156].
Stimulated γδ T cells exercised powerful toxic effects against MM cells in vitro [157,158],
and represented a possible and secure strategy for MM treatment [159].

In an experimental study, Vδ1 T cells obtained from normal subjects showed pro-
nounced toxicity against plasma cells derived from MM patient bone marrow [160]. More-
over, Vδ1 T cells derived from MM subjects displayed similarly relevant destruction of
primary myeloma cells, as well as against myeloma cell lines U266 and RPMI8226 and
plasma cell leukemia ARH77.

As far as the mechanisms are concerned, IFN-γ secretion and Vδ1 T cell toxicity
against MM cells partially occurred via the T cell receptor (TCR) and other molecules
(such as NKG2D, CD3, and CD2 receptors; DNAX accessory molecule-1; and intracellular
cell adhesion molecule (ICAM)-1). Authors have stated that Vδ1 T cells are extremely
myeloma-reactive and have proposed Vδ1 T cells as a possible agent for a new anti-
myeloma immunotherapy [13].

Other researchers have verified these findings and attempted to further clarify the
role of these cells. The stimulated T cells destroyed RPMI8226 and U266 myeloma cells in
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a γδ T cell dosage-dependent modality, and upon in vitro treatment with mevastatin or
zoledronic acid, MM killing improved. Furthermore, of considerable interest is the fact that
the amount of ICAM-1 on MM cells seems to correlate with the toxicity exerted by γδ T
cells, and that the employees of an anti-ICAM-1 monoclonal antibody blocked cytolytic
effects. From the point of view of a possible future therapeutic use, it is interesting to
note that AMO-1 myeloma cells transfected with ICAM-1 cDNA, were vulnerable to γδ T
cells, unlike parental AMO-1 cells. This indicates that MM subjects with cells presenting
outstanding amounts of ICAM-1 are appropriate for cellular immune treatment employing
γδ T cells in clinical settings [160]. The routine characterization of γδ T cells in samples of
MM patients could work similarly to personalized medicine.

Recent attempts to join traditional treatments with immunotherapy for MM have led
to the development of numerous encouraging therapies. Niu et al. reported that low-
dose bortezomib did not reduce the survival of stimulated γδ T cells, but caused MM cell
suicide [161]. Moreover, low-dose bortezomib augmented the presence of NKG2D and
DNAM-1 ligands on MM cells, which increased the sensitivity of MM cells to the cytotoxic
effects of γδ T cells. These findings indicate that the combined administration of low-dose
bortezomib and stimulated γδ T cells encouraged synergistic killing activity on MM cells.
This could also be the first of future studies to investigate this combination therapeutic
approach. Many other drugs, such as carfilzomib, lenalidomide, and elotuzumab, aug-
mented NK cell toxicity against MM cells [162–165], and the employment of stimulated γδ
T cells along with chemotherapy drugs might be a promising strategy for the treatment of
multiple myeloma.

2.8.5. MAIT Cells and Multiple Myeloma

MAIT cells seem to be modified as quantities and functions in MM, although the data
in the literature are sometimes discordant. A study stated that MAIT cell percentage in MM
blood was decreased with respect to normal subjects, but it was equivalent to normal ageing
subjects. Moreover, the authors did not find an augment of these cells in the bone marrow of
these patients. MM patients at the onset of the disease displayed a decreased generation of
IFN-γ and CD27 expression with MAIT cells, indicating an exhausted phenotype. However,
IFN-γ production was re-established in relapsed subject samples.

Furthermore, the authors demonstrated that immunomodulatory drugs such as
lenalidomide and pomalidomide could block MAIT cell activation [166]. These data were
confirmed by other studies [167]. Thus, changes in MAIT cells can participate to the onset
of disease and may be a novel immunotherapeutic objective for the therapy of MM.

2.9. Chronic Lymphocytic Leukemia
2.9.1. Natural Killer Cells and Innate Lymphoid Cells in Chronic Lymphocytic Leukemia

Immune disorders are characteristic of chronic lymphocytic leukemia (CLL), and,
from an initial stage, immune alterations participate in infective or autoimmune complica-
tions [168,169]. Furthermore, the increasingly immunosuppressive milieu in CLL affects
disease progression and treatment responses [170]. The processes triggering these condi-
tions include both the innate and adaptive immune systems. In CLL patients, NK cells
display reduced toxicity despite a quantitative augment [171]. NK cells are increased at the
onset of CLL, and their amount seems to correlate with the outcome [172], although NK cells
display an altered cytolytic function and a modified ability to produce cytokines [173,174]
(Figure 6).
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Figure 6. Chronic lymphocytic leukemia (CLL) unconventional immune cell scenario. NK: NKs
are augmented but with less toxicity. Soluble BAG6 (i.e., NKp30-ligand) can stimulate NK cells
via NKp30. ILC: ILCs are augmented. γδT: the increase in Vγ9Vδ2 tumor-infiltrating T cells was
correlated with a favorable prognosis in CLL. Vδ1 cells that present NCRs could kill CLL cells via
NKp30 and NKp44.

Among the probable processes accountable for this condition, it was reported that CLL
cells may deliver soluble BAG6 (i.e., NKp30-ligand) and can challenge the exosome-bound
BAG6 to stimulate NK cells via NKp30 [175].

Total ILC numbers were also remarkably augmented in the peripheral blood of CLL
subjects with respect to age-matched normal subjects [176], and this boost showed a
relationship with the leucocyte count in CLL subjects, proposing an increase in ILCs with
CLL advancement as the number of ILCs showed an inverse correlation with time to first
treatment. It is well known that the hypermutation status of immunoglobulin heavy-chain
genes (IgVH) is one of the most relevant prognostic factors in chronic lymphocytic leukemia
(CLL). According to the degree of IgVH mutation, CLL patients can be divided into
two different prognostic groups. Nevertheless, despite the correlation with the outcome,
the number of ILCs did not change between the two prognostically different groups, i.e.,
mutated (M-CLL) or unmutated (U-CLL) subjects, and the ILC subtype distribution of
M-CLL subjects was equal to that of U-CLL [176].

2.9.2. γδ T Cells in Chronic Lymphocytic Leukemia

γδ T cells have been stated to have augmented proportions in CLL subjects [177–180],
although the techniques employed to ascertain the relative percentages of these cells have
sometimes struggled to separate them appropriately from αβ T cells and NK cells.

A group of researchers perfected the computational CIBERSORT detection of tumor-
infiltrating Vγ9Vδ2T cells by deconvoluting tumor microarray datasets, employing machine
learning methods, and demonstrating more variability with respect to interindividual
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difference. Generally, the augment of Vγ9Vδ2 tumor-infiltrating T cells was correlated with
a favorable prognosis in CLL [80].

In any case, the increased occurrence of these cells has been reported to be directly
proportionate to leukemic advancement, as CLL subjects in more grave conditions dis-
played greater Vδ1 cell counts with respect to normal subjects. Thus, these lymphocytes
are the principal T cell subset in the peripheral blood of these patients, and it was also re-
ported that CLL patients presented Vδ1 cells with great concentrations of granzyme B [181].
These results propose that CLL can modify the γδ T cell occurrence and that these cells are
effective during disease regression or advancement.

Furthermore, numerous aspects render γδ T cells as possible agents for novel treat-
ments against CLL, given the great activity against leukemic cells and the lack of alloreac-
tivity against the host.

Correia et al. reported that Vδ1 cells that present NCRs could kill CLL cells via
NKp30 and NKp44. The use of low doses of IL-2 can appear to be helpful in maintaining
NKp30 expression [182]. Furthermore, the expression of these NCRs was correlated with
augmented concentrations of granzyme B and appear to have synergistic effects, causing
higher cytotoxicity against CLL cells. So, some studies tried to identify elements to enhance
the activity of these cells. Lança et al. showed that the expression of UL-16-binding protein
1 (ULBP1,) a ligand that activates the receptor NKG2D in CLL cells, is augmented in
leukemic patients and is essential for the identification of Vδ1 cells [183], contributing to
the antileukemic immune response.

Other studies have sought to elucidate the role of γδ T cells after drug administration
for CLL treatment. One study used chemotherapeutic drugs and kinase inhibitors to
augment the cell sensitivity to γδ T cell cytotoxic activity in CLL cells [184]. Numerous
experimental models suggested synergistic actions of the combined administration of
chemotherapy and adoptive transfer allogeneic Vδ2 T cells [185]. For instance, ibrutinib
has been recognized to stimulate γδ T cells against CLL cells, and it was demonstrated as
being capable of stimulating an antitumor phenotype [184]. It is known that γδ T cells from
CLL are dysfunctional in the generation and activity of cytokines [186]. However, when
Vγ9Vδ2 cells were treated with ibrutinib and IL2, a Th1 phenotype and memory cells were
stimulated, and anti-leukemic activities were re-established [184].

2.10. Unconventional T Cells in Lymphomas

Innate immune responses are essential in the progression of Hodgkin lymphoma
(HL) as Hodgkin Reed–Sternberg cells can elude immune-mediated identification and
elimination with the augmented expression of PD-L1. It is known that patients with HL
present an alteration of immune surveillance mechanisms. This condition could be partly
responsible for the onset of the disease and its progression. As evidence of this, an increase
in γδ T cells was found in these subjects. In the same subjects, there was an increase in the
soluble component of MIC-A (s-MICA). Such data could also have prognostic significance,
as NKT cells higher than 40 µL and high values of s-MICA appear to correlate with
a worse prognosis.

Diffuse large B cell lymphoma (DLBCL) is the most common type of aggressive non-
Hodgkin lymphoma. Based on the gene profile, it is possible to distinguish two different
forms of the disease: one that originates from the germinative center (GC) and those
originating from activated B cells (ABC). The two forms have a different prognosis and
respond differently to standard therapy. The different behavior could at least be attributable
to the different arrangement of the cells. Although in both forms, the Vδ1 T cells were
the principal γδ T cell subset of cells and the GC type was associated with an increase in
Vδ1+ T cells in tumors, whereas the non-GC subtype was related to a minor amount of
γδ T cells [187].

Furthermore, while circulating Vδ1+ T cells of patients displaying a naïve phenotype,
the more significant part of tumor Vδ1+ T cells exhibited a central memory phenotype.
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However, circulating resident γδ T cells from DLBCL subjects were not altered as far as
their functionally is concerned, as they could produce great quantities of IFN-γ.

This observation suggests that the tumor environment in DLBCL patients is less
favorable for the differentiation of Vδ1+ T and Vδ2+ T cells into the T effector memory cells
subset, which could potentially exert a more potent antitumor response [188].

The existence of a correlation between immune cells and prognosis has been confirmed by
other studies, supporting the idea that the immunological composition of the tumor microen-
vironment is capable of influencing a different evolution of the lymphomatous disease [189].

3. Therapeutical Perspectives and Concluding Remarks

It is now evident that numerous cells that participate in the regulation of innate
immunity, especially NK T cells, have a crucial impact on anti-neoplastic protection due to
their ability to drive the adaptive immunity towards a Th1 response which is advantageous
for the control of malignancies. However, they may also negatively affect neoplastic
advancement, especially after changes caused by the tumor milieu.

Recently, several strategies for modulating and augmenting the efficacy of the effectors of
innate immunity have been suggested as a possible treatment for hematological malignancies.

A promising modality to augment NK cells infusion therapeutic potential is provided
by producing bi- and tri-specific killer engagers (BiKEs and TriKEs). These molecules en-
close variable portions from antibodies which can recognize diverse antigens. Indeed, these
new therapies target antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism
by improving its efficacy on human NK cells. Indeed, ADCC is mediated by CD16 (FcγRIII),
the low-affinity receptor for IgG Fc expressed in NK cells and other innate cells, leading
to cytokine production and a cytotoxic response through the encounter of the Fc portion
antibodies. One of these molecules was expected to identify antigens, such as CD19 or
CD33, and was able to augment the degranulation of NK cells and the generation of cy-
tokines against B-ALL and B-CLL or MDS primary cells [190]. In the following period, more
complex constructs were designed. For instance, an IL-15 cross-linker TriKEs was built
to recognize the antigen CD33 that augmented NK cell toxicity against the acute promye-
locytic leukemia cell line HL-60, and against AML blasts. Furthermore, this technique
helped to boost NK cell growth and survival, as well as increase the anti-leukemic activity
in vivo [191]. This product is under evaluation in phase I clinical trials (NCT03214666).
Following the same research path, a TriKes against the antigen CD19 was designed and
tested against primary CLL cells in vitro [192]. The same research group also designed
a new CLEC12A TriKE, i.e., a compound which can target an antigen on leukemic stem
cells and AML cells. This construct displayed promising anti-leukemic in vivo efficacy in
an animal xenograft model of HL-60 cells or primary AML cells cocultured with NK cells
from healthy subjects [193]. The effectiveness of these killer engagers in augmenting NK
cell anti-leukemic activity could guarantee the development of an effective treatment for a
pathology that has not yet found resolutive treatments.

Several other attempts have been made to enhance the antitumor activity of the
effectors of innate immunity in unconventional T cells. For instance, a high dose i.v. of
vitamin C may also be evaluated to augment the in vitro proliferation and effectiveness of
γδ T cell therapy [194,195].

Furthermore, the discovery that T and NK cells can present PD1 made it possible to
hypothesize a new type of intervention in the treatment of HLA-I-defective malignancies,
which are imperceptible by T cells, by employing monoclonal antibodies that target PD1 or
PD-L1. Furthermore, NK cells can be controlled by inhibiting KIR or NKG2A, thereby
overcoming inhibitory activity after their relationships with leukemic cells presenting
HLA-I [196]. In the haplo-HSCT condition, it makes sense to alloreactive all donor NK cells.
Several authors have investigated adoptive NK cells transferal to enhance anti-leukemic
immune response after HSCT. Allogenic NK cells from normal subjects have the great
advantage of being grown up in a non-immunosuppressive milieu, and their transference
to leukemic subjects might represent a new interesting therapeutic approach [197]. Fur-
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thermore, donor NK cells have mismatched inhibitory receptors for HLA class I ligands,
which permits them to target leukemic cells presenting ligands for their receptors, but not
normal tissues, thus allowing the graft-versus-leukemia effect to avoid GVHD [56]. In vivo,
a dose–response relationship was observed between the amount of NK cells adminis-
tered in AML, CML, and MDS patients and a slower disease advancement or augmented
relapse-free survival [198].

Other clinical trials have employed γδ T cells to destroy different leukemic cells,
and one possible strategy to augment γδ T cell-mediated cytolysis is via the augmentation
of NKG2D ligands on leukemic cells, which can be attained via diverse systems, such as
proteasome inhibition and epigenetic change. In a study, NKG2D ligand expression was
evaluated in Nomo-1 and Kasumi-1, two AML cell lines, after treatment with different
amounts of bortezomib. Proteasome inhibitors remarkably augmented the expression of
the NKG2D ligand ULBP [199]. The combined employment of γδ T cells and bortezomib
caused higher cytotoxicity against AML cell lines than γδ T cells alone, and the same results
were attained after employing T-ALL cells. Bortezomib augmented ULBP expression in
T-ALL cell lines and enhanced the cytotoxic activity of γδ T cells against leukemic cells.
So, it is possible to conjecture that employing a combined administration of a stress ligand-
inducing drug with allogeneic γδ T cells originating from a normal donor can efficaciously
destroy different neoplastic cells in hematological malignancies.

The variation of innate immunity can also be helpful in the field of vaccination treat-
ment. Hematologic malignancies commonly present the required apparatus for induc-
ing an antineoplastic immune response; nevertheless, several hematologic tumors are
weakly immunogenic [200–202].

Mattarollo et al. tried to enhance the immune response against B cell lymphomas by
generating a tumor cell vaccine, including galactosylceramide (-GalCer), that modifies the
immune-adjuvant abilities of NKT cells [203]. In an experimental animal model employing
E- myc transgenic mice, a single vaccination of irradiated -GalCer-loaded autologous
lymphoma cells was adequate to block the proliferation of tumors and augment animal
survival. Vaccine administration caused increased the IFN-γ production and transitory
proliferation of NKT cells, the more relevant font of IFN-γ.

However, this therapeutical strategy was attempted in numerous other hematologic
malignancies and was efficacious against AMLETO9a acute myeloid L=leukemia. In this
case, -GalCer was substituted with mannosylceramide, causing long-lasting defense against
tumoral cells [203]. These findings confirm the decisive immune-adjuvant activity of NKT
cell ligands in therapeutic antitumoral vaccination against oncogene-driven lymphomas.

In the near future, a promising field of study could be used to employ immune
cell-originated extracellular vesicles (EVs), which have some specific characteristics, e.g.,
comprising stability, the ability to cross blood–tumor barriers, and the ability to insert
several effector molecules. For these reasons, immune cell-originated EVs are essential
facilitators of intercellular communication that control numerous innate immune response
systems and have been employed as potent antileukemic vaccines or for the treatment of
hematologic malignancies [204].

However, despite the encouraging results obtained, the road to routine clinical use
of the modulation of innate immunity in the treatment of hematological neoplasms still
appears long, and numerous data are still needed to obtain a complete picture of the
activity of these cells in hematological neoplasms. Further studies should aim to clarify
some contradictions between the results obtained from different studies in the literature.
In some cases, these differences may be due to the studies’ different experimental conditions,
and the different influence exerted by the neoplastic cells on the immune system response.
In other cases, methodological errors and inadequate sampling may lead to unreliable
results. Furthermore, more experimentations should be dedicated to elaborating innovative
in vitro models, such as three-dimensional spheroid cultures, which permit more reliable
results with respect to traditional two-dimensional tumor γδ T cell cocultures [205].
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Still, there are several difficulties in ascertaining the best therapeutic situations that
take advantage of the full antineoplastic ability of these cells in vivo.

In a short time, investigations should aim to explore the clinical employment of
combined approaches that might act on the neoplastic cells and the tumor milieu. Ulti-
mately, the findings of these studies should provide essential comprehensions that can
hopefully lead to novel therapeutic options to avoid relapse and enhance survival in
hematologic patients.
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