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Abstract

Background: Excretory/secretory proteins (ESPs) play a major role in parasitic infection as they are present at the
host-parasite interface and regulate host immune system. In case of parasitic helminths, transcriptomics has been
used extensively to understand the molecular basis of parasitism and for developing novel therapeutic strategies
against parasitic infections. However, none of transcriptomic studies have extensively covered ES protein prediction
for identifying novel therapeutic targets, especially as parasites adopt non-classical secretion pathways.

Results: We developed a semi-automated computational approach for prediction and annotation of ES proteins
using transcriptomic data from next generation sequencing platforms. For the prediction of non-classically secreted
proteins, we have used an improved computational strategy, together with homology matching to a dataset of
experimentally determined parasitic helminth ES proteins. We applied this protocol to analyse 454 short reads of
parasitic nematode, Strongyloides ratti. From 296231 reads, we derived 28901 contigs, which were translated into
20877 proteins. Based on our improved ES protein prediction pipeline, we identified 2572 ES proteins, of which
407 (1.9%) proteins have classical N-terminal signal peptides, 923 (4.4%) were computationally identified as non-
classically secreted while 1516 (7.26%) were identified by homology to experimentally identified parasitic helminth
ES proteins. Out of 2572 ES proteins, 2310 (89.8%) ES proteins had homologues in the free-living nematode
Caenorhabditis elegans and 2220 (86.3%) in parasitic nematodes. We could functionally annotate 1591 (61.8%) ES
proteins with protein families and domains and establish pathway associations for 691 (26.8%) proteins. In addition,
we have identified 19 representative ES proteins, which have no homologues in the host organism but
homologous to lethal RNAi phenotypes in C. elegans, as potential therapeutic targets.

Conclusion: We report a comprehensive approach using freely available computational tools for the secretome
analysis of NGS data. This approach has been applied to S. ratti 454 transcriptomic data for in silico excretory/
secretory proteins prediction and analysis, providing a foundation for developing new therapeutic solutions for
parasitic infections.

Background
The secretome of an organism is defined as the subset
of proteins secreted by the cell [1]. This subset of pro-
teins is usually known as excretory/secretory (ES) pro-
teins [2], plays an important role in producing clinical
infections in the host organism. ES proteins are the

choice of new therapeutic solutions for different clinical
infections, especially in the case of parasitic infections
[3,4] because these proteins are present at the host-para-
site interface and act as immunoregulators to host
immune recognition for parasite survival inside the host
organism [5].
Transcriptomic data is the representation of actively

expressed genes in a cell at any given time. Earlier tran-
scriptomic studies were based on generation of
expressed sequence tags (ESTs) generated at different
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stages of an organism using traditional Sanger sequen-
cing. These studies were restricted to the analysis of a
few thousand ESTs at a time. Recent technological
improvements in cDNA sequencing, using next genera-
tion sequencing (NGS) platforms, are able to generate
millions of reads, to record the transcript profile of an
organism at a given developmental stage. The read
length generated through NGS is quiet short (50-400
bases) as compared to traditional Sanger sequencing
(800-1000 bases). Thus, the assembly of shorter reads is
challenging in terms of computational power and
resources needed. These reads are assembled into long
consensus sequences (clusters) known as contigs using
assemblers such as ABySS [6], Velvet [7] and MIRA [8],
which have been reviewed in a recent study [9]. ABySS
and Velvet provide good results for genome assembly,
while MIRA is very well tested for handling de novo
transcriptome assembly [10]. Since the genomes of only
a very few parasitic nematodes are currently available,
de novo assemblers such as MIRA are the only option
for NGS data from these neglected organisms.
Recently, NGS platforms have been used to generate

large amounts of transcriptomic data for different
organisms, including several helminth parasites like Fas-
ciola gigantica [11], Fasciola hepatica[12], Trichostrongy-
lus colubriformis[13], Oesophagostomum dentatum[14],
Haemonchus contortus [15], Dictyocaulus viviparus[16],
Necator americanus [17], Clonorchis sinensis[18],
Opisthorchis viverrini [18] and Teladorsagia circumcinta
[19]. Here, NGS data has been assembled with CAP3
alone [14,16] or with MIRA followed by CAP3 [12,18],
based on combinations of assemblers performing better
in a recent study [10]. However, none of these studies
have extensively covered ES protein prediction and
further analysis, for identifying therapeutic targets.
ES proteins were once considered to be secreted only

through conventional secretion pathways, using N-term-
inal signal peptide signatures, but there are now many
proteins which are found to be secreted by non-classical
secretory pathways [20]. Usually non-classical secretory
proteins are predicted through SecretomeP [21], which is
the most widely used tool for non-classical secretory pro-
teins. However in case of parasites, SecretomeP is not able
to completely predict non-classical secretory proteins, as
shown in the study of Brugia malayi[22]. Hence, a novel
approach to identifying non-classically secreted proteins is
required for comprehensive secretome analysis.
Transcriptomic data has been used extensively for the

prediction of ES proteins in parasitic helminth studies
[23]. EST2Secretome, a computational prediction and
annotation pipeline for ES proteins from our group, was
designed to handle ESTs from Sanger sequencing and

currently has the following limitations: (i) assembly of
short reads, (ii) prediction of non-classical secretory pro-
teins and (iii) pathway mapping using KOBAS [24,25],
which contains pathways that are not regularly updated.
In the present study, we have developed an updated

computational approach for the prediction and annota-
tion of ES proteins using NGS transcriptomic data over-
coming the limitations of the earlier EST2Secretome
pipeline. We have developed a robust assembly protocol
for NGS data. In order to identify non-classically
secreted proteins that are missed by SecretomeP, we
have also compiled a dataset of experimentally deter-
mined ES proteins of parasitic helminths for homology-
based prediction (details in the Methods section). Addi-
tionally, we have replaced KOBAS with KAAS [26], for
efficient and up-to-date pathway identification.
We applied our approach to ~0.3M 454 transcrip-

tomic reads for a parasitic nematode, Strongyloides ratti,
which is a gastro intestinal nematode that infects rats,
comprehensively reviewed by Viney [27] and is a Clade
IV parasite [28]. Genome data is available only for the
free living nematodes, C. elegans[29] and C. briggsae[30]
from Clade V, which is adjacent to Clade IV and for a
parasite, Brugia malayi[31] from Clade III, which is not
similar to Clade IV parasites, whereas limited transcrip-
tomic and proteomic data from experimental studies are
available for several helminth parasites. As such, a
BLASTX against a reference organism, as proposed
recently [32] will not provide comprehensive annotation
results, unless the fully annotated proteome of a very
similar organism is available.
In adult phase, S. ratti is present in both parasitic

(females only) and free living forms (male and female)
[27]. Eggs produced by parasitic females develop into
free living males, free living females and parasitic
females by different larval stages. Our dataset is derived
from the adult nematode, which includes parasitic and
free living forms (sequencing details in the Methods sec-
tion). The NGS data has been clustered and translated
into proteins and ES proteins predicted using a series of
computational tools, augmented by homology matching
to our in-house dataset of experimentally determined
parasitic helminth ES proteins. Predicted ES proteins
have been annotated functionally in terms of protein
families, domains and biochemical pathways. ES proteins
have also been compared with proteomic data of the
host (rat) and other nematodes, with an emphasis on
the best characterized nematode, C. elegans. Such anno-
tation techniques have enabled us to identify 19 novel
targets, matching to lethal RNAi phenotypes in C. ele-
gans, which could be considered in the development of
future therapeutic strategies.
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Methods
cDNA sequencing data sets
For this study, S. ratti cDNA sequencing data from the
University of Liverpool [33] is used. cDNA libraries were
prepared from adult helminths, comprising a mixture of
parasitic females, free-living males and free-living
females. Sequencing was performed using 454-FLX plat-
form (Roche diagnostics). The pyrosequencing procedure
used to prepare this dataset is described elsewhere [34].

Components of computational approach
Our approach to predict and annotate ES proteins is
divided into three phases, shown in Figure 1, corre-
sponding approximately to those in EST2Secretome
[23]. EST2Secretome was developed with the aim to

predict and annotate ES proteins from ESTs (generated
mainly using Sanger sequencing) mainly from parasitic
nematodes. Now with the use of NGS, the input
sequence data has changed considerably in terms of
read length and number; necessitating modifications to
tackle NGS data as well reliably predict non-classical
protein secretion and use updated annotation tools.
Phase I: extraction and assembly of data
FASTA and associated quality files were extracted from
SFF file along with clipping of sequence adapters using
the sff_extract software [35]. Extracted data from sff files
is first assembled using the MIRA [8] (V3.2.0rc1) assem-
bler using quality information. MIRA is our preferred
assembler as it is an open source tool which is considered
reliable for data from different NGS platforms [8] and it

Figure 1 Bioinformatics workflow for secretome analysis. Bioinformatics workflow comprising Phase I (pre-processing and assembly), II
(prediction of excretory/secretory proteins) and III (Protein-level annotation) were augmented by homologue identification from nematodes as
well as parasitic nematodes, using specialized databases.
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has been very well tested in other parasitic helminth
transcriptomic studies [12,18]. For this dataset, we have
used MIRA, ABYSS and Velvet, compared with Newbler
(data not shown), MIRA giving the longest contigs.
Contigs generated by MIRA are further passed to the
Contig Assembly Program (CAP3) [36], to extend the
MIRA assembly. This is in accord with an earlier study
which suggests that serial assembly from two assemblers
can improve the quality of the assembly [10]. Second
order contigs generated using CAP3 are combined with
MIRA contigs, to be conceptually translated into putative
proteins using ESTScan [37].
Phase II: prediction of excretory secretory proteins
ES proteins were predicted using a combination of four
tools, SecretomeP [21], SignalP [38], TargetP [39] and
TMHMM [40]. SignalP is used for the prediction of
classical secretory proteins, while SecretomeP predicts
non-classical secretory proteins. TargetP is for the pre-
diction of mitochondrial proteins and TMHMM identi-
fies transmembrane proteins. Firstly, the proteins
generated from ESTScan are passed to SignalP for pre-
diction of classical secreted proteins. All the proteins,
which are predicted as non-secretory (proteins having D
score and signal peptide probability less than 0.5) are
then passed to SecretomeP for prediction of non-classi-
cal secretory proteins. Proteins which obtain neural net-
work (NN) score of greater than or equal to 0.9 are
considered as non-classical secretory proteins. All the
classical and non-classical secretory proteins are merged
together and then scanned by TargetP. Proteins pre-
dicted as mitochondrial proteins by TargetP are omitted
out from the set of predicted ES proteins and passed to
TMHMM. Finally the proteins which are predicted to
have no transmembrane helices are considered as ES
proteins.
In addition to standard computational approaches for

the prediction of ES proteins, we compiled a list of 1080
ES protein sequences of parasitic helminths (Brugia
malayi, Teladorsagia circumcinta, Schistosoma mansoni,
Ancylostoma caninum, Schistosoma japonicum, Clo-
norchis sinesis and Fasciola hepatica) from the literature
[22,41-49]. A homology-based search with BLASTP [50]
is used to further extract ES proteins from proteins
which are predicted to be non-secretory by SecretomeP.
The results from computational tools are combined

with those from BLAST searches, for functional annota-
tion and analysis in Phase III.
Phase III: annotation and comparative analysis of ES
proteins
All the predicted ES proteins are annotated using a
number of tools. We used Interproscan [51] for protein
domain and family classification. KAAS [26] is used for
mapping ES proteins to KEGG pathways and to KEGG
BRITE objects [52-54]. ES proteins are searched for

sequence similarity against the Wormpep database
(WS224) [55] for proteins similar to C. elegans. ES pro-
teins are also searched for sequence similarity against
rat (host) proteins and parasitic nematodes using
BLASTP algorithm, to identify parasite-specific proteins.
Comparative analysis of similarity of ES proteins with
rat, parasitic nematodes and C. elegans proteins are ana-
lyzed using Simitri [56]. Proteins not homologous to the
host (rat) proteome are further screened for RNAi phe-
notypes in C. elegans.

Hardware specifications
All the programs used in this study were installed on a
16 CPU Linux cluster (2.4 GHz, Intel(R)Xeon(R) E5530,
32 RAM) running on ubuntu server operating system.
The computer intensive steps are sequence assembly
(MIRA, CAP3) and protein functional annotation map-
ping (Interproscan). All other programs will run effi-
ciently on current desktop systems.

Results
A semi-automated computational approach, incorporat-
ing three key components, was constructed. The differ-
ent components of the workflow system (Figure 1) are
linked using Perl, Python and bash shell scripts. This
approach was applied to S. ratti 454 transcriptomic
dataset to show its efficacy and utility.

Extraction and assembly of S. ratti data sets
Initially 296231 short reads (69488625 bases) were
extracted from the sff file with 234±62 bases (average
length ± standard deviation), and a GC content of
39.7%. The de novo assembly from MIRA results in
33222 contigs, which were passed to CAP3 to get a
more robust assembly, with a minimum sequence over-
lap length of 40 bases and an identity threshold of 90%.
Using CAP3, we are able to achieve a maximum contig
length of 3620 bases as compared to maximum contig
length of 2607 bases by Newbler [34]. The CAP3 assem-
bly results in 3056 second order contigs and 25845
MIRA contigs (not assembled further by CAP3). The
difference in results using MIRA+CAP3 and Newbler
are shown in Table 1. We consider 25765 (99.6%) con-
tigs with a minimum length of 90 bases, discarding
sequences yielding peptides <30 amino acids, for further
secretory protein prediction and analyses. A total of
3056 second order contigs and 25765 contigs were con-
ceptually translated into 20877 proteins by ESTScan.

Prediction of ES proteins
ES protein prediction is carried out in Phase II of the
pipeline (Figure 1). Firstly, 407 (1.9%) proteins were pre-
dicted as classical secreted proteins using SignalP. The
remaining 20470 (98.05%) proteins, which were
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predicted as non secretory by SignalP were processed by
SecretomeP for prediction of non-classical secretory
proteins. A total of 923 (4.4%) proteins were predicted
as non-classical secretory proteins using SecretomeP.
The classical and non-classical secretory proteins (1330,
6.3%) from these two programs were analyzed by Tar-
getP for mitochondrial proteins. Only 18 proteins were
predicted as mitochondrial proteins using TargetP at
95% specificity. These 18 proteins were removed from
the set of 1330 secreted proteins while 1312 secretory
proteins were passed to TMHMM for the prediction of
transmembrane proteins. 256 proteins, predicted as
transmembrane proteins having one or more transmem-
brane helices, were removed from the secretory protein
dataset. A total of 1056 (5.05%) proteins were finally
predicted as ES proteins from the computational predic-
tion pipeline.
Proteins that were considered non-secretory by Secre-

tomeP were matched to our in-house dataset of 1080
non redundant experimentally determined parasitic hel-
minth proteins, using the BLASTP similarity search. We
found an additional 1516 (7.26%) proteins similar to
known ES proteins by this homology search approach.
Thus, for annotation and analyses in Phase III, we com-
piled a total of 2572 ES proteins, which is 12.3% of our
putative proteins. This dataset is a more comprehensive
collection of ES proteins of S. ratti, compared to those
reported by other S. ratti secretome studies [57,58].

Annotation of S. ratti ES proteins
ES proteins are annotated based on protein families and
domains using Interproscan and mapped to biochemical
pathways using KAAS. Out of 2572 ES proteins pre-
dicted, we were able to annotate 1591 (61.8%) proteins
with protein domains and families. The most repre-
sented Interpro terms are shown in Table 2 (complete
results available from Additional file 1). We established
pathway associations to 691 (26.8%) ES proteins. Among
the most represented pathways are metabolic pathways,
which are important for parasite survival inside the host.
Predicted ES proteins are associated with important bio-
logical molecules, like enzymes, peptidases and protein
kinases. The most represented KEGG BRITE objects
and KEGG pathways are shown in Table 3 (full annota-
tion available from Additional file 2) and Table 4 (full
annotation available from Additional file 3).

Comparative analysis of S. ratti ES proteins with other
organisms
2310 (89.8%) S. ratti ES proteins had homologues in the
free-living nematode, C. elegans. 2220 (86.3%) ES pro-
teins had homologues in parasitic nematodes. As S. ratti
infects rats, we checked the similarity of ES proteins with
the rat proteome. Similarity of S. ratti ES proteins to C.
elegans, parasitic nematodes and rat proteins is shown
using Simitri in Figure 2. We found 537 (20.8%) ES pro-
teins had no homologues present in rat and are therefore
preferred targets for parasite intervention strategies. 142
ES proteins are novel in the S. ratti dataset, with no
known homologues to the host or any other nematode.
233 (9%) ES proteins, which are not present in the host
(rat), have homologues present in C. elegans. Of these, 19
ES proteins (predicted from second order contigs from
CAP3 assembly), which have lethal RNAi phenotypes
present in C. elegans, (complete RNAi phenotype map-
ping available from Additional file 4) and represent
potential therapeutic targets (Additional file 5).

Discussion
We demonstrated the utility of our new computational
approach for the comprehensive prediction and analysis

Table 1 Comparison of results from different NGS assemblers

Assembler No. of second order contigs No. of contigs Largest contig Average length N50* N90* Number of bases

MIRA [8] + CAP3 [29] 3056 25845 3620 402.36 406 253 11628536

Newbler [26] 25127 2607 407.11 409 252 10229510

*N50 refers to the length of the shortest contig such that the sum of contigs of equal length or longer is at least 50% of the total assembly size. While N90
refers to the length of the shortest contig such that the sum of contigs of equal length or longer is at least 90% of the total assembly size.

Table 2 Top 15 most represented protein domains found
in ES proteins using Interproscan

InterPro description InterPro
code

Number of ES
proteins (%)

Protein Kinase like domain IPR011009 126 (4.90)

Protein kinase, catalytic domain IPR000719 114 (4.43)

Serine/threonine-protein kinase like
domain

IPR017442 99 (3.85)

Serine/threonine-protein kinase domain IPR002290 64 (2.49)

Serine/threonine-protein kinase active site IPR008271 52 (2.02)

WD40 repeat like domain IPR011046 40 (1.55)

WD40 repeat subgroup IPR019781 39 (1.52)

WD40/YVTN repeat like domain IPR015943 39 (1.52)

WD40 repeat IPR001680 39 (1.52)

WD40 repeat domain IPR017986 38 (1.47)

Tyrosine-protein kinase catalytic domain IPR020635 37 (1.44)

WD40 repeat 2 IPR019782 37 (1.44)

Helicase C IPR001650 35 (1.36)

NAD(P)-binding domain IPR016040 29 (1.13)

Immunoglobulin-like fold IPR013783 28 (1.09)

Garg and Ranganathan BMC Genomics 2011, 12(Suppl 3):S14
http://www.biomedcentral.com/1471-2164/12/S3/S14

Page 5 of 10



of ES proteins from transcriptomic data generated by
NGS. The protocol will be implemented in a web server,
in the future, after extensive testing of different assem-
bly programs, and considering the choice of specific
assemblers, based on the transcriptomic dataset, as pro-
posed by Kumar and Blaxter [10]. For this study, we
have selected programs that are freely available under
academic licence. All the programs used in our
approach are available with free academic licence, which
can be easily installed on Linux platforms. Our use of
MIRA followed by CAP3 for assembly of NGS data is

simpler than the assembler combinations proposed by
Kumar and Blaxter [10] and also used by studies on Fas-
ciola hepatica [12], Clonorchis sinensis [18] and
Opisthorchis viverrini[18] to generate second order con-
tigs by CAP3 from contigs generated by MIRA which
have open reading frames. The whole assembly for the
current dataset was performed in approximately 3 hours
CPU time using both MIRA and CAP3, whereas the use
of CAP3 alone was not possible due to memory over-
flow with the current dataset, using hardware specified
in the methods section. Although all the studies dis-
cussed here are more comprehensive in terms of tran-
scriptome coverage (more than 0.5M 454 reads were
generated), which is higher as compared to our current
dataset of ~0.3M, none of them have comprehensively
studied ES proteins. For example, the 454 transcrip-
tomic study on Fasciola hepatica [12] reported only
1812 ES proteins (only 4%) from 44597 putative protein
sequences generated from ESTScan, followed by ES pro-
tein predictions based on signal peptide identification by
SignalP.

Biological implications of the results
Millions of people globally suffer from Strongyloidiasis,
caused by the parasitic nematode, Strongyloides stercora-
lis. S. ratti is a common gastro-intestinal parasite of the
rat, which is used as a model to study Strongyloidiasis.
Here, we have analysed S. ratti transcriptomic data from
parasitic females, free-living males and free-living
females for the prediction and analysis of ES proteins.
Of the dataset of 2572 ES proteins 2310 (89.8%) had
homologues in the free-living nematode, C. elegans,
which is similar to earlier reported findings in Strongy-
loides EST analysis studies [59]. Many predicted ES pro-
teins map to protein kinase domains as shown in Table
2, which are reported to be essential for parasitic activity
in parasitic nematodes [60]. Protein kinases play a cen-
tral role in signal transduction and hence are considered
as drugabble targets. Another representative Interpro
protein domains among S. ratti ES proteins were WD40
repeat domains (7.5%), which are associated with signal-
ling transduction pathways [61]. These domains were
also found among the top 20 most represented Interpro
protein domains of O. dentatum putative proteins [14].
ES proteins also map to ribosomal protein interpro
domains such as IPR000589 (Ribosomal protein S15),
which is associated with ageing in S. ratti [62]. All the
most representative KEGG pathways mapped to ES pro-
teins shown in table 3 are required for parasite survival
inside the host, as the secretome of a parasite is repre-
sentative of its genome in the host environment. Major
ES proteins map to enzymes, which are essential for
metabolic pathways functioning and also very well
reflected in our protein domain mapping. Other KEGG

Table 3 Top 15 most represented KEGG pathways found
in ES proteins predicted by KAAS

Pathway name Number of ES proteins
represented (%)

Metabolic pathways 109 (4.24)

Protein processing in endoplasmic
reticulum

57 (2.22)

Ubiquitin mediated proteolysis 44 (1.71)

Wnt signalling pathway 29 (1.13)

Glycolysis / Gluconeogenesis 28 (1.08)

Spliceosome 28 (1.08)

Glutathione metabolism 26 (1.01)

Circadian rhythm - mammal 22 (0.85)

TGF- beta signalling pathway 22 (0.85)

RNA transport 20 (0.77)

Endocytosis 20 (0.77)

Purine metabolism 19 (0.74)

Phagosome 19 (0.74)

Proteasome 18 (0.70)

Drug metabolism 17 (0.66)

Table 4 Top 15 most represented KEGG BRITE objects
found in ES proteins predicted by KAAS

BRITE object Number of ES proteins
represented (%)

Enzymes 282 (10.96)

Spliceosome 49 (1.90)

Chaperons and folding catalysts 44 (1.71)

Peptidases 44 (1.71)

Protein kinases 43 (1.67)

Ubiquitin system 37 (1.44)

Chromosome 34 (1.32)

Cytoskeleton proteins 27 (1.05)

DNA repair and recombination
proteins

21 (0.82)

GTP-binding proteins 19 (0.74)

Proteasome 18 (0.70)

Transcription factors 17 (0.66)

Ribosome biogenesis 16 (0.62)

Translation factors 11 (0.43)

DNA replication proteins 9 (0.35)
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pathways like purine metabolism and glutathione meta-
bolism found in this study were also found in other
parasitic nematodes excretory/secretory proteins analysis
[23]. 22 (0.85%) ES proteins were mapped to the circa-
dian rhythm – mammal pathway in C. elegans. This
pathway is unexpected in the case of ES proteins of
nematodes, however three proteins S-phase kinase-asso-
ciated protein 1 (KO3094), cullin 1 (KO3347) and F-box
and WD-40 domain protein 1/11 (KO3362) which were
found in our ES proteins are common to Ubiquitin
mediated proteolysis in C. elegans. The common com-
ponents of several pathways have led to this unexpected
result. KEGG BRITE objects (representative objects
shown in Table 4) reflect the presence of essential pro-
teins such as protein kinases, peptidases and proteasome
among ES proteins for S. ratti survival inside the host
organism. 44 (1.71%) ES proteins map to chaperones,
which are responsible for host immune system

modulation, such as the recently characterised S. ratti
heat shock protein 10 [63]. Along with well known pro-
tein families found in ES proteins, we found some pro-
tein categories such as chromosome, DNA replication
proteins and DNA repair and recombination proteins
which are expected to be localized in the nucleus but
found in S. ratti ES proteins. This pattern of exporting
nuclear proteins to the secretome of a parasitic nema-
tode was also observed in Meloidogyne incognita [64].
66 secreted proteins were identified with putative
nuclear localization such as DNA and RNA binding pro-
teins including helicases in M. incognita, of which we
observed the presence of helicase C domain in 35
(1.36%) S. ratti ES proteins. Contig 1289 and Contig 428
map to the metalloproteinase precursor in S. stercoralis
[65], this is also well characterized protein in Trichinella
spirallis[66]. Expresssion of an S. stercoralis metallopro-
teinase homologue was also found in the recent

Figure 2 Comparison of S. ratti ES proteins with C. elegans, parasitic nematodes and rat (host) protein sequence databases using
SimiTri. The numbers at each vertex indicate the number of proteins matching only that specific database. The numbers on the edges indicate
the number of proteins matching the two databases linked by that edge. The number within the triangle indicates the number of S. ratti ES
proteins with matches to all three databases.
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transcript analysis of another intestinal nematode, Stron-
gyloides venezuelensis [67]. Many of these potential ther-
apeutic targets map to hypothetical proteins present in
C. elegans, C. briggsae and B. malayi and having lethal
phenotypes according to C. elegans RNAi phenotype
mapping and could be considered as parasitism central
genes [68] of S. ratti. Many of the putative proteins
from S. ratti could be examined further after the publi-
cation of S. ratti genome, which is expected soon [69].

Methodological limitations
Integrated approaches similar to the one discussed in
this paper have been applied to several socio-economic-
ally important parasites. These approaches are based on
data available on the reference organism of that taxo-
nomic order where limited data is available for the sub-
ject organism. For example, C. elegans is the most
studied organism among nematodes. C. elegans data was
used to create the translation matrix used by ESTScan,
to translate potential coding regions in the assembled
contigs into protein sequences. These translated coding
regions were then used for ES proteins prediction. The
use of a reference organism data for the translation
matrix instead of using actual organism information
may lead to false positives in peptides prediction as well
as in ES protein prediction. Another limiting factor is
that we are looking into the annotation of protein func-
tion in terms of primary sequence alone, rather than the
3D structure. Therefore, all the therapeutic targets pre-
dicted in this study are preliminary predictions which
need to be further validated by additional computation
analysis such as structural modelling and by experimen-
tal assays.

Conclusions
In this paper we demonstrate how different computa-
tional tools can be used together to extract the useful
information of ES proteins from transcriptomic data. All
the programs used in our approach are open source tools
that are freely available for academic purposes. With the
advent of NGS technologies, while there is a massive
increase in sequence data, this data is extremely fragmen-
ted and of no use for information extraction as output
from the sequencer. Our methodology will help in rapid
assembly, fast annotation and reliable prediction of ES
proteins. The approach is a generalized method which
can be applied to any organism, although its main appli-
cation is for neglected organisms whose genomes are not
yet sequenced, with limited functional knowledge.
Although we have used 454 transcriptomic data in this
study but this methodology can be applied to transcrip-
tomic data from other NGS platforms with slight modifi-
cations in terms of pre-processing, as data output
formats obtained from different NGS platforms are

different. Thus, this system will help us to carry out
secretome studies for other parasitic organisms in future.

Additional material

Additional file 1: Protein domain mapping of S. ratti ES proteins.
Represented Interpro domains found in S. ratti ES proteins using
Interproscan (sheet1). Protein domains mapping of S. ratti excretory/
secretory proteins (sheet2).

Additional file 2: KEGG pathways mapping of S. ratti ES proteins.
Represented KEGG pathways found in ES proteins predicted by KAAS
(Table S2).

Additional file 3: KEGG BRITE objects mapping of S. ratti ES
proteins. Represented KEGG BRITE objects found in ES proteins
predicted by KAAS (Table S3).

Additional file 4: RNAi Phenotype mapping of S. ratti ES proteins.
RNAi Phenotype mapping of S. ratti ES proteins against known C. elegans
known phenotypes (sheet1).

Additional file 5: Representative therapeutic targets set of S. ratti
ES proteins. Representative therapeutic targets set of S. ratti ES proteins,
homologous to C. elegans proteins with lethal RNAi phenotype and with
no homologue in the host, rat.
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