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Abstract

Tumor growth curves are classically modeled by means of ordinary differential equations. In

analyzing the Gompertz model several studies have reported a striking correlation between

the two parameters of the model, which could be used to reduce the dimensionality and

improve predictive power. We analyzed tumor growth kinetics within the statistical frame-

work of nonlinear mixed-effects (population approach). This allowed the simultaneous

modeling of tumor dynamics and inter-animal variability. Experimental data comprised three

animal models of breast and lung cancers, with 833 measurements in 94 animals. Candi-

date models of tumor growth included the exponential, logistic and Gompertz models. The

exponential and—more notably—logistic models failed to describe the experimental data

whereas the Gompertz model generated very good fits. The previously reported population-

level correlation between the Gompertz parameters was further confirmed in our analysis

(R2 > 0.92 in all groups). Combining this structural correlation with rigorous population

parameter estimation, we propose a reduced Gompertz function consisting of a single indi-

vidual parameter (and one population parameter). Leveraging the population approach

using Bayesian inference, we estimated times of tumor initiation using three late measure-

ment timepoints. The reduced Gompertz model was found to exhibit the best results, with

drastic improvements when using Bayesian inference as compared to likelihood maximiza-

tion alone, for both accuracy and precision. Specifically, mean accuracy (prediction error)

was 12.2% versus 78% and mean precision (width of the 95% prediction interval) was 15.6

days versus 210 days, for the breast cancer cell line. These results demonstrate the supe-

rior predictive power of the reduced Gompertz model, especially when combined with

Bayesian estimation. They offer possible clinical perspectives for personalized prediction of
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the age of a tumor from limited data at diagnosis. The code and data used in our analysis

are publicly available at https://github.com/cristinavaghi/plumky.

Author summary

Mathematical models for tumor growth kinetics have been widely used since several

decades but mostly fitted to individual or average growth curves. Here we compared three

classical models (exponential, logistic and Gompertz) using a population approach, which

accounts for inter-animal variability. The exponential and the logistic models failed to fit

the experimental data while the Gompertz model showed excellent descriptive power.

Moreover, the strong correlation between the two parameters of the Gompertz equation

motivated a simplification of the model, the reduced Gompertz model, with a single indi-

vidual parameter and equal descriptive power. Combining the mixed-effects approach

with Bayesian inference, we predicted the age of individual tumors with only few late mea-

surements. Thanks to its simplicity, the reduced Gompertz model showed superior pre-

dictive power. Although our method remains to be extended to clinical data, these results

are promising for the personalized estimation of the age of a tumor from limited measure-

ments at diagnosis.

Introduction

In the era of personalized oncology, mathematical modeling is a valuable tool for quantitative

description of physiopathological phenomena [1, 2]. It allows for a better understanding of

biological processes and generates useful individual clinical predictions, for instance for per-

sonalized dose adaptation in cancer therapeutic menagement [3]. Tumor growth kinetics have

been studied since several decades both clinically [4] and experimentally [5]. One of the main

findings of these early studies is that tumor growth is not entirely exponential, provided it is

observed over a long timeframe (100 to 1000 folds of increase) [6]. The specific growth rate

slows down and this deceleration can be particularly well captured by the Gompertz model [7,

6, 8]:

VðtÞ ¼ Vinje
a
b

1� e� btð Þ; ð1Þ

where Vinj is the initial tumor size at tinj = 0 and α and β are two parameters.

While the etiology of the Gompertz model has been long debated [9], several independent

studies have reported a strong and significant correlation between the parameters α and β in

either experimental systems [6, 10, 11], or human data [11, 12, 13]. While some authors sug-

gested this would imply a constant maximal tumor size (given by Vinje
a
b in (1)) across tumor

types within a given species [11], others argued that because of the presence of the exponential

function, this so called ‘carrying capacity’ could vary over several orders of magnitude [14].

Mathematical models for tumor growth have been previously studied and compared at the

level of individual kinetics and for prediction of future tumor growth [15, 16]. However,

detailed studies of statistical properties of tumor growth models using a population approach

(i.e. integrating structural dynamics with inter-subject variability [17]) are rare [18]. Nonlinear

mixed effects modeling of the Gompertz model has been applied to several fields in biology,

e.g. to model growth in Japanese quails [19] or broiler chicken growth [20]. In the field of
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tumor growth modeling, studies using a population approach have mostly been conducted for

perturbed tumor growth under the action of therapeutics (see e.g. [21] for a clinical study and

[22] for a review). In a previous publication, our group has used a mixed-effects framework to

compare the descriptive power of several unperturbed tumor growth models, yet without

reporting visual predictive checks, analysis of residuals nor values of the population parameters

(typical values and standard deviations of the random effects) [15]. Other related works

include the coupling of tumor growth models with metastatic spreading [23, 24], or an analysis

of tumor growth kinetics from different cell lines using the Simeoni model only [25, 18]. A cal-

ibrated model of lymphoma tumor growth has also been introduced and used for predictions

in [26]. More complex mechanistic models have been proposed to investigate the link between

biological processes and tumor growth dynamics and perform predictions, including angio-

genesis [27] and solid stress [28]. A model for tumor-immune interactions has been developed

and validated in [29, 30], demonstrating its ability to predict future prostate specific antigen

dynamics based on several pre- and post-treatment initiation data points. Mathematical mod-

els of tumor growth inhibition were presented to assess tumor size dynamics in colorectal

cancer [31] and adult diffuse low-grade gliomas [32]. Spatial models have also been widely pro-

posed in a theoretical context but few of them have been compared to data (see [33] for an

example on thyroidal lung nodules and [34, 35] for gliomas).

Here we provide a detailed and comparative analysis of statistical properties of multiple

classical tumor growth models within a population framework, applied to a data set of 94 ani-

mals, including three animal models and two methods of tumor size quantification (versus 54

animals in [15]). The main focus and novelty of the work reported here is to analyze the

above-mentioned correlation between Gompertz parameters using a population approach, in

order to improve model-derived predictions. This led us to a simplified model with only one

subject-specific parameter (and one population-specific), the “reduced Gompertz” model [11].

Using population distributions as priors allows to make predictions on new subjects by

means of Bayesian algorithms [36, 37, 38]. The added value of the latter method is that only

few measurements per individual are necessary to obtain reliable predictions. In contrast with

previous work focusing on the forward prediction of the size of a tumor [15], the present study

addresses the backward problem, i.e. the estimation of the age of a tumor [39]. This question is

of fundamental importance in the clinic since the age of a tumor can be used as a proxy for

determination of the invisible metastatic burden at diagnosis [24]. In turn, this estimation has

critical implications for decision of the extent of adjuvant therapy [40]. Since predictions of

the initiation time of clinical tumors are hardly possible to verify for clinical cases, we devel-

oped and validated our method using experimental data from multiple data sets in several ani-

mal models. This setting allowed to have enough measurements, on a large enough time frame

in order to assess the predictive power of the methods.

Materials and methods

The python code and the data used in our analysis are available at https://github.com/

cristinavaghi/plumky.

Ethics statement

Animal tumor model studies were performed in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Protocols used were approved by the Institutional Animal Care and Use Committee (IACUC)

at Tufts University School of Medicine for studies using murine Lewis lung carcinoma (LLC)

cells (Protocol: #P11-324) and at Roswell Park Cancer Institute (RPCI) for studies using
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human LM2-4LUC+ breast carcinoma cells (Protocol: 1227M). Institutions are AAALAC

accredited and every effort was made to minimize animal distress [15].

For the breast data measured by fluorescence, guidelines for animal welfare in experimental

oncology as recommended by European regulations (decree 2013-118 of February 1, 2013)

were followed. All animal experiments were approved by the Animal Ethic Committee of the

Aix-Marseille Université (CE14). The protocol was registered as #2017031717108767 at the

French Ministry of Research. Mice were monitored daily for signs of distress, pain, decreased

physical activity, or any behavioral change and weighted thrice a week. Water was supple-

mented with paracetamol (80 mg/kg/day) to prevent any metastasis-related pain [41].

Mice experiments

The experimental data comprised three data sets. Animal tumor model studies were per-

formed in strict accordance with guidelines for animal welfare in experimental oncology and

were approved by local ethics committees. Precise description of experimental protocols was

reported elsewhere (see [15] for the volume measurements and [41] for the fluorescence

measurements).

Breast data measured by volume (N = 66). This dataset is publicly available at the follow-

ing repository [42]. It consisted of human LM2-4LUC+ triple negative breast carcinoma cells

originally derived from MDA-MB-231 cells. Animal studies were performed as described pre-

viously under Roswell Park Comprehensive Cancer Center (RPCCC) Institutional Animal

Care and Use Committee (IACUC) protocol number 1227M [15, 24]. Briefly, animals were

orthotopically implanted with LM2-4LUC+ cells (106 cells at injection) into the right inguinal

mammary fat pads of 6- to 8-week-old female severe combined immunodeficient (SCID)

mice. Tumor size was measured regularly with calipers to a maximum volume of 2 cm3, calcu-

lated by the formula V = π/6w2 L (ellipsoid) where L is the largest and w is the smallest tumor

diameter. The data were pooled from eight experiments conducted with a total of 581 observa-

tions. All LM2-4LUC+ implanted animals used in this study are vehicle-treated animals from

published studies [15, 24]. Vehicle formulation was carboxymethylcellulose sodium (USP,

0.5% w/v), NaCl (USP, 1.8% w/v), Tween-80 (NF, 0.4% w/v), benzyl alcohol (NF, 0.9% w/v),

and reverse osmosis deionized water (added to final volume) and adjusted to pH 6 (see [43])

and was given at 10ml/kg/day for 7-14 days prior tumor resection.

Breast data measured by fluorescence (N = 8). This dataset is publicly available at the

following repository [44]. It consisted of human MDA-MB-231 cells stably transfected with

dTomato lentivirus. Animals were orthotopically implanted (80,000 cells at injection) into

the mammary fat pads of 6-week-old female nude mice. Tumor size was monitored regularly

with fluorescence imaging. The data comprised a total of 64 observations. To recover the

fluorescence value corresponding to the injected cells, we computed the ratio between the

fluorescence signal and the volume measured in mm3. We used linear regression consider-

ing the volume data of a different data set with same experimental setup (mice, tumor type

and number of injected cells). The estimated ratio was 1.52 � 109 photons/(s �mm3) with rel-

ative standard error of 11.3%, therefore the initial fluorescence signal was 1.22 � 107 pho-

tons/s.

Lung data measured by volume (N = 20). This dataset is publicly available at the follow-

ing repository [45]. It consisted of murine Lewis lung carcinoma cells originally derived from

a spontaneous tumor in a C57BL/6 mouse [46]. Animals were implanted subcutaneously (106

cells at injection) on the caudal half of the back in anesthetized 6- to 8-week-old C57BL/6

mice. Tumor size was measured as described for the breast data to a maximum volume of 1.5

cm3. The data was pooled from two experiments with a total of 188 observations.

A reduced Gompertz model for tumor growth
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Tumor growth models

We denote by tI and VI the initial conditions of the equation. At time of injection (t = 0), we

assumed that all tumors within a group had the same size/volume Vinj (equal to the number of

injected cells converted into the appropriate unit) and denoted by α the specific growth rate

(i.e. 1

V
dV
dt ) at this time and size.

We considered the exponential, logistic and Gompertz models [15]. The first two are

respectively defined by the following equations

dV
dt
¼ aV;

VðtIÞ ¼ VI;

8
><

>:
and

dV
dt
¼ r 1 �

V
K

� �

V;

VðtIÞ ¼ VI:

8
><

>:
ð2Þ

In the logistic equation, K is a carrying capacity parameter. It expresses a maximal reach-

able size due to competition between the cells (e.g. for space or nutrients). The quantity

r ¼ a K
K� Vinj

� �
is a coefficient related to the growth rate. For small values of Vinj, ρ tends to α.

The Gompertz model is characterized by an exponential decrease of the specific growth rate

with rate denoted here by β. Although multiple expressions and parameterizations coexist in

the literature, the definition we adopted here reads as follows:

dV
dt
¼ a � b log

V
Vinj

 ! !

V;

VðtIÞ ¼ VI:

8
>><

>>:

ð3Þ

Note that the injected volume Vinj appears in the differential equation defining V. This is

a natural consequence of our assumption of α as being the specific growth rate at V = Vinj.

This model exhibits sigmoidal growth up to a saturating value given by K ¼ Vinje
a
b. Note also

that the value of K in the Gompertz model is independent of the initial data (tI, VI). The lat-

ter was considered to be (0, Vinj) when performing population analysis, while it was set equal

to the observation yini � 2
of an animal i for backward prediction (see section Individual

predictions).

Population approach

Let N be the number of subjects within a population (group) and Y i ¼ fyi
1
; :::; yinig the vector

of longitudinal measurements in animal i, where yij is the observation of subject i at time tij for

i = 1, . . ., N and j = 1, . . ., ni (ni is the number of measurements of individual i). We assumed

the following observation model

yij ¼ f ðtij; θ
i
Þ þ eij; j ¼ 1; :::; ni; i ¼ 1; :::;N; ð4Þ

where f ðtij ; θ
i
Þ is the evaluation of the tumor growth model at time tij , θ

i
2 Rp is the vector of

the parameters relative to the individual i and eij the residual error model, to be defined later.

An individual parameter vector θi depends on fixed effects μ, identical within the population,

and on a random effect ηi, specific to each animal. Random effects follow a normal distribution

with mean zero and variance matrix ω. Specifically:

log ðθiÞ ¼ log ðμÞ þ ηi; ηi � N ð0;ωÞ:

A reduced Gompertz model for tumor growth
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The choice of a log-normal distribution ensured the positivity of the parameters without

adding any constraint. Moreover, the ratio of two log-normal distributions is a log-normal

distribution.

We considered a combined residual error model eij, defined as

eij ¼ ðs1 þ s2f ðtij ; θ
i
ÞÞεij;

where εij � N ð0; 1Þ are the residual errors and σ = [σ1, σ2] is the vector of the residual error

model parameters.

In order to compute the population parameters, we maximized the population likelihood,

obtained by pooling all the data together. Usually, this likelihood cannot be computed explic-

itly for nonlinear mixed-effect models. We used the stochastic approximation expectation

minimization algorithm (SAEM) [17], implemented in the Monolix 2018 R2 software

[47]. This algorithm is a variation of the EM algorithm, where the expectation step is replaced

by a stochastic approximation of the likelihood function [48]. This method has been proven to

efficiently converge to the maximum likelihood estimator for nonlinear mixed effects models

[17].

In the remainder of the manuscript we will denote by ϕ = {μ, ω, σ} the set of the population

parameters containing the fixed effects μ, the covariance of the random effects ω and the error

model parameters σ.

Individual predictions

For a given animal i, the backward prediction problem we considered was to predict the age of

the tumor based on the three last measurements yi ¼ fyini � 2
; yini � 1

; yinig. Since we were in an

experimental setting, we considered the injection time as the initiation time and thus the age

was given by ai ¼ tini � 2
. Then, we considered as model f(t;θi) the solution of the Cauchy prob-

lem (3) endowed with initial conditions ðtiI ¼ tini � 2
;Vi

I ¼ yini � 2
Þ. For estimation of the parame-

ters (estimate θ̂ i), we applied two different methods: likelihood maximization alone (no use of

prior population information) and Bayesian inference (use of prior). The predicted age âi was

then defined by

f ðtini � 2
� âi; θ̂ iÞ ¼ Vinj;

that is:

âi ¼
1

b̂i
log

â i

b̂ i

 !

� log
â i

b̂i
� log

Vi
I

Vinj

 ! ! !

ð5Þ

in case of the Gompertz model.

Likelihood maximization. For individual predictions with likelihood maximization, no

prior information on the distribution of the parameters was used. Parameters of the error

model were not re-estimated: values from the population analysis were used. The log-
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007178 February 25, 2020 6 / 24

https://doi.org/10.1371/journal.pcbi.1007178


likelihood can be derived from (4):

lðθi
Þ ¼ ln

Yni

j¼ni � 2

Pðyijjθ
i
Þ

 !

¼ �
3

2
log 2pð Þ �

1

2

Xni

j¼ni � 2

log s1 þ s2f tij ; θ
i

� �� �
þ

yij � f ðt
i
j ; θ

i
Þ

s1 þ s2f ðtij ; θ
i
Þ

 !2 !

;

ð6Þ

where Pðyijjθ
i
Þ is the likelihood of the observation of the animal i at time tij .

In order to guarantee the positivity of the parameters, we introduced the relation

θi ¼ gðγiÞ ¼ eγi and substituted this in Eq (6). The negative of Eq (6) was minimized with

respect to γi (yielding the maximum likelihood estimate γ̂ i) with the function minimize of

the python module scipy.optimize, for which the Nelder-Mead algorithm was applied.

Thanks to the invariance property, the maximum likelihood estimator of θi was determined as

θ̂ i ¼ eγ̂ i . Individual prediction intervals were computed by sampling the parameters θi from a

gaussian distribution with variance-covariance matrix of the estimate defined asrgðγ̂ iÞ
T
�

ðŝ2;iðI � 1ðγ̂ iÞÞÞ � rgðγ̂ iÞ where ŝ2;i ¼ 1

3� p

Pni

j¼ni � 2

yij � f ðt
i
j ;θ̂

iÞ

s1þs2 f ðtij ;θ̂
iÞ

� �2

, with p the number of parameters

(and the factor 3 in the denominator because this is the number of observations), Iðγ̂ iÞ the

Fisher information matrix andrgðγ̂ iÞ the gradient of the function g(γ) evaluated in the esti-

mate γ̂ i. Denoting by f ðγÞ ¼ ½f ðtij ; e
γÞ�

ni

j¼ni � 2
and by ΩðγÞ ¼ diagðs1 þ s2½f ðtij ; e

γÞ�
ni

j¼ni� 2
Þ, the

Fisher information matrix was defined by [49]:

½IðγÞ�l;m ¼
@f ðγÞ
@γl

� �T

Ω� 1ðγÞ
@f ðγÞ
@γm

� �

þ
1

2
tr Ω� 1ðγÞ

@ΩðγÞ
@γl

Ω� 1ðγÞ
@ΩðγÞ
@γm

� �

: ð7Þ

Bayesian inference. When applying the Bayesian method, we considered training sets to

learn the distribution of the parameters ϕ and test sets to derive individual predictions. For

a given animal i of a test set, we predicted the age of the tumor based on the combination of:

1) population parameters ϕ identified on the training set using the population approach

and 2) the three last measurements of animal i. We set as initial conditions tI = 0 and

Vi
I � N ðyini � 2

; s1 þ s2yini � 2
Þ. We considered the initial volume VI to be a random variable to

account for measurement uncertainty on yini � 2
. We then estimated the posterior distribution

PðθijyiÞ of the parameters θi using a Bayesian approach [37]:

P θijyi
� �

¼
PðyijθiÞPðθiÞ
PðyiÞ

; ð8Þ

where PðθiÞ is the prior distribution of the parameters estimated through nonlinear mixed-

effects modeling (i.e., the population parameters ϕ), PðyijθiÞ ¼
R

RPðV
i
IÞPðyijθ

i
;Vi

IÞdV
i
I is the

likelihood, defined from Eq (4), and PðyiÞ ¼
R

RpPðθ
i
ÞPðyijθiÞdθi

is a normalization factor.

The predicted distributions of extrapolated growth curves and subsequent âi were computed

by sampling θi from its posterior distribution (8) using Pystan, a Python interface to the soft-

ware Stan [38] for Bayesian inference based on the No-U-Turn sampler, a variant of Hamil-

tonian Monte Carlo [36]. The sampling procedure depends on the evaluation of the likelihood

PðyijθiÞ, which relies itself on Vi
I . Therefore, Vi

I was sampled from its distribution for each
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realization of the posterior distribution. Predictions of âi were then obtained from (5), consid-

ering the median value of the distribution.

Different data sets were used for learning the priors (training sets) and prediction (test sets)
by means of k-fold cross validation, with k equal to the total number of animals of the dataset

(k = N, i.e. leave-one-out strategy). At each iteration we computed the parameters distribution

of the population composed by N − 1 individuals and used this as prior to predict the initiation

time of the excluded subject i. The Stan software was used to draw 2000 realizations from the

posterior distribution of the parameters of the individual i.

Results

Results were similar for the three data sets presented in the materials and methods. For con-

ciseness, the results presented below are related to the largest dataset (breast cancer data mea-

sured by volume). Results relative to the other datasets are reported in S1–S10 Figs and S1–S4

Tables.

Population analysis of tumor growth curves

The population approach was applied to test the descriptive power of the exponential, logistic

and Gompertz models for tumor growth kinetics. The number of injected cells at time tinj = 0

was 106, therefore we fixed the initial volume Vinj = 1 mm3 in the whole dataset [15]. We set

(tI, VI) = (tinj, Vinj) as initial condition of the equations.

We ran the SAEM algorithm with the Monolix software to estimate the fixed and random

effects [47]. Moreover, we evaluated different statistical indices in order to compare the differ-

ent tumor growth models. This also allowed learning of the parameter population distributions

that were used later as priors for individual predictions. Results are reported in Table 1, where

the models are ranked according to their AIC (Akaike Information Criterion), a metrics com-

bining parsimony and goodness-of-fit. The Gompertz model was the one with the lowest val-

ues, indicating superior goodness-of-fit. This was confirmed by diagnostic plots (Fig 1). The

visual predictive checks (VPCs) in Fig 1A compare the empirical percentiles with the theoreti-

cal percentiles, i.e. those obtained from simulations of the calibrated models. The VPC of the

exponential and logistic models showed clear model misspecification. On the other hand, the

VPC of the Gompertz model was excellent, with observed percentiles close to the predicted

ones and small prediction intervals (indicative of correct identifiability of the parameters). Fig

1B shows the prediction distributions of the three models. This allowed to compare the obser-

vations with the theoretical distribution of the predictions. Only the prediction distribution of

the Gompertz model covered the entire dataset. The logistic model exhibited a saturation of

tumor dynamics at lower values than compatible with the data.

Moreover, the distribution of the residuals was symmetrical around a mean value of zero

with the Gompertz model (Fig 1C), strengthening its good descriptive power, while the

Table 1. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices are the

log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC). �The reduced Gompertz model is intro-

duced below.

Model -2LL AIC BIC

Gompertz 7129 7143 7158

Reduced Gompertz� 7259 7269 7280

Logistic 7584 7596 7609

Exponential 8652 8660 8669

https://doi.org/10.1371/journal.pcbi.1007178.t001
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Fig 1. Population analysis of experimental tumor growth kinetics. (A) Visual predictive checks assess goodness-of-fit for both structural dynamics

and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction intervals (P.I) in comparison to empirical

ones. They were obtained by multiple simulations of each model. The time axis was then split into bins and in each interval the empirical percentiles of

the observed data were compared with the respective predicted medians and intervals of the simulated data [47]. (B) Prediction distributions. They were

obtained by multiple simulations of all individuals in the dataset, excluding the residual error [47]. (C) Individual weighted residuals (IWRES) with

respect to time. (D) Observations vs predictions Left: exponential, Center: logistic, Right: Gompertz models.

https://doi.org/10.1371/journal.pcbi.1007178.g001
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exponential and logistic models exhibited clear skewed distributions. The observations vs indi-

vidual predictions in Fig 1D further confirmed these findings.

These observations at the population level were confirmed by individual fits, computed

from the mode of the posterior conditional parameter distribution for each individual (Fig 2).

Confirming previous results [15], the optimal fits of the exponential and logistic models were

unable to give appropriate description of the data, suggesting that these models should not be

used to describe tumor growth, at least in similar settings to ours. Fitting of late timepoints

data forced the proliferation parameter of the exponential model to converge towards a rather

low estimate, preventing reliable description of the early datapoints. The converse occurred for

the logistic. Constrained by the early data points imposing to the model the pace of the growth

deceleration, the resulting estimation of the carrying capacity K was biologically irrelevant

(much too small, typical value 1303 mm3, see Table 2), preventing the model to give a good

description of the late growth.

Table 2 provides the values of the population parameters. The relative standard error esti-

mates associated to population parameters were all rather low (<3.81%), indicating good prac-

tical identifiability of the model parameters. Standard error estimates of the constant error

model parameters were found to be slightly larger (<19.3%), suggesting that for some models

Fig 2. Individual fits from population analysis. Three representative examples of individual fits (animal (A), animal (B) and animal (C)) computed

with the population approach relative to the exponential (left), the logistic (center) and the Gompertz (right) models.

https://doi.org/10.1371/journal.pcbi.1007178.g002
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a proportional error model might have been more appropriate—but not in case of the expo-

nential model. Since our aim was to compare different tumor growth equations, we established

a common error model parameter, i.e. a combined error model. Relative standard errors of the

standard deviations of the random effects ω were all smaller than 9.6% (not shown).

These model findings in the breast cancer cell line were further validated with the other cell

lines. For both the lung cancer and the fluorescence-breast cancer cell lines, the Gompertz

model outperformed the other competing models (see S1 and S2 Tables for goodness-of-fit

metrics, and S3 and S4 Tables for parameter values), as also shown by the diagnostic plots (S1

and S2 Figs). Individual plots confirmed these observations and are provided in S3 and S4

Figs. For the fluorescence-breast cancer cell line the constant part of the error model was

found negligible and we used a proportional error model (i.e., we fixed σ1 = 0). Value of σ2 was

found particularly high for the Exponential model (S4 Table), which resulted in inappropriate

fits (S2 and S4 Figs), further supporting rejection of this model. Estimated inter-individual var-

iability for the other models was found small. This was probably due to the small number of

animals in the data set.

Together, these results confirmed that the exponential and logistic models are not appropri-

ate models of tumor growth while the Gompertz model has excellent descriptive properties,

for both goodness-of-fit and parameter identifiability purposes.

The reduced Gompertz model

Correlation between the Gompertz parameters. During the estimation process of the

Gompertz parameters, we found a high correlation between α and β within the population.

At the population level, the SAEM algorithm estimated a correlation of the random effects

equal to 0.981. At the individual level, αi and βi were also highly linearly correlated (Fig 3A,

R2 = 0.968), confirming previous results [6, 11, 10, 12, 50]. This motivated the reformulation of

the alpha parameter as follows:

ai ¼ kbi þ c; ð9Þ

where k and c are representing the slope and the intercept of the regression line, respectively.

In our analysis we found c to be small (c = 0.14), thus we further assumed this term to be negli-

gible and fixed it to 0. This suggests k as a constant of tumor growth within a given animal

model with similar characteristics (note however that from (3), k depends on Vinj) [11, 51]. In

Table 2. Fixed effects (typical values) of the parameters of the different models. Par. = parameter. ω = standard deviation of the random effects. R.S.E. = relative stan-

dard errors of the estimates. σ = residual error model parameters. �The reduced Gompertz model is introduced below.

Model Par. Unit Fixed effects ω R.S.E. (%)

Gompertz α day−1 0.58 0.19 2.51

β day−1 0.072 0.26 3.42

σ - [20.5, 0.11] - [16.9, 7.53]

Reduced Gompertz� β day−1 0.075 0.13 1.74

k - 7.87 - 0.21

σ - [14.8, 0.17] - [19.3, 5.32]

Logistic ρ day−1 0.325 0.138 1.82

K mm3 1303 0.25 3.81

σ - [58.9, 0.12] - [8.97, 9.14]

Exponential α day−1 0.231 0.08 1.38

σ - [272, 0.26] - [6.10, 15.1]

https://doi.org/10.1371/journal.pcbi.1007178.t002
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turn, this implies an approximately constant limiting size

Ki ¼ Vinje
ai
bi ’ Vinjek ’ 2600 mm3; 8i:

The other data sets gave analogous results in terms of goodness of fit and correlation

between α and β, even if the constant limiting size was found different in the three cell lines.

Fig 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz model from population analysis. Correlation

between the individual parameters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive

check (B), scatter plots of the residuals (C), prediction distribution (D) and examples of individual fits (E).

https://doi.org/10.1371/journal.pcbi.1007178.g003
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The estimated correlations of the random effects were 0.967 and 0.998 for the lung cancer and

for the fluorescence-breast cancer, respectively. The correlation between the parameters was

also confirmed at the individual level (see S5A and S6A Figs, R2 was 0.923 and 0.99 for the two

data sets, respectively).

Biological interpretation in terms of the proliferation rate. By definition, the parameter

αi is the specific growth rate (SGR) at the volume Vinj, simply assumed to be the volume corre-

sponding to the number of injected cells within a given animal model (e.g. Vinj = 1 for the

breast data measured by volume). Assuming that the cells don’t change their proliferation

kinetics when implanted, this value should thus in theory be equal to the in vitro proliferation

rate (supposed to be the same for all the cells of the same cell line), denoted here by λ. The

value of this biological parameter was assessed in vitro and estimated at 0.837 [24]. In support

to our quantitative assumptions, we indeed found estimated values of αi close to λ (fixed effects

of 0.58, see Table 2).

However, most of the values of αi were smaller than λ in the majority of the cases (Fig 3A).

We postulated that this difference could be explained by the fact that not all the cells will

be successfully grafted when injected in an animal. Under such assumption the SGR at the ini-

tial time, to be compared with λ, would not be given by αi anymore. Instead, denoting by

V̂ i
inj < Vinj the (unknown) volume of the successfully grafted cells, and assuming further that

the SGR at initiation would be fixed and given by λ leads to the following reformulation of the

Gompertz model

dVi

dt
¼ l � b

i log
Vi

V̂ i
inj

 ! !

Vi

ViðtI ¼ 0Þ ¼ V̂ i
inj

8
>><

>>:

In turn, fitting this model to the data provides estimates of the percentage of successful

engraftment of 7% ± 12.5% (mean ± standard deviation).

Alternatively, these results might also be explained by a time lag between the cell implanta-

tion and the initiation of tumor growth, due to the time needed by the cells to adapt to the new

environment [52]. However, the two interpretations are indistinguishable in our case and

might require a more elaborate analysis with specific data.

Population analysis of the reduced Gompertz model. The high correlation among the

Gompertz parameters, suggested that a reduction of the degrees of freedom (number of

parameters) in the Gompertz model could improve identifiability and yield a more parsimoni-

ous model. We considered the expression (9), assuming c to be negligible. We therefore pro-

pose the following reduced Gompertz model:

dVi

dt
¼ b

ik � bi log
Vi

Vinj

 ! !

Vi

ViðtiIÞ ¼ Vi
I

log ðbiÞ ¼ log ðbpopÞ þ Zib; Zi
b
� N ð0;obÞ

k ¼ kpop

8
>>>>>>>>>><

>>>>>>>>>>:

; ð10Þ

where β has mixed effects, while k has only fixed effects, i.e., is constant within the population.

Fig 3 shows the results relative to the population analysis of this reduced Gompertz model.

Results of the diagnostic plots indicated no deterioration of the goodness-of-fit as compared
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007178 February 25, 2020 13 / 24

https://doi.org/10.1371/journal.pcbi.1007178


with the Gompertz model (Fig 3B–3D). Only on the last timepoint was the model slightly

underestimating the data (Fig 3D), which might explain why the model performs slightly

worse than the two-parameters Gompertz model in terms of strictly quantitative statistical

indices (but still better than the logistic or exponential models, Table 1). Individual dynamics

were also accurately described (Fig 3E). Parameter identifiability was also excellent (Table 2).

The other two data sets gave similar results (see S5 and S6 Figs).

Together, these results demonstrated the accuracy of the reduced Gompertz model, with

improved robustness as compared to previous models.

Prediction of the age of a tumor

Considering the increased robustness of the reduced Gompertz model (one individual param-

eter less than the Gompertz model), we further investigated its potential for improvement of

predictive power. We considered the problem of estimating the age of a tumor, that is, the

time elapsed between initiation (here the time of injection) and detection occurring at larger

tumor size (Fig 4). For a given animal i, we considered as first observation yini � 2
and aimed to

predict its age ai ¼ tini� 2
(see Methods). We compared the results given by the Bayesian infer-

ence with the ones computed with standard likelihood maximization method (see Methods).

To that end, we did not consider any information on the distribution of the parameters. For

the reduced Gompertz model however (likelihood maximization case), we used the value of k
calculated in the previous section (Table 2), thus using information on the entire population.

Importantly, for both prediction approaches, our methods allowed not only to generate a pre-

diction of ai for estimation of the model accuracy (i.e. absolute relative error of prediction),

but also to estimate the uncertainty of the predictions (i.e. precision, measured by the width of

the 95% prediction interval (PI)).

Fig 4 presents a few examples of prediction of three individuals without (LM) and with

(Bayesian inference) priors relative to the breast cancer measured by volume. The reduced

Gompertz model combined to Bayesian inference (bottom row) was found to have the best

accuracy in predicting the initiation time (mean error = 12.2%, 8.8% and 12.3% for the vol-

ume-breast cancer, lung cancer and fluorescence-breast cancer respectively) and to have the

smallest uncertainty (precision = 15.6, 7.79 and 23.6 days for the three data sets, respectively).

Table 3 gathers results of accuracy and precision for the Gompertz and reduced Gompertz

models under LM and Bayesian inference relative to the three data sets. With only local infor-

mation of the three last data points, the Gompertz model predictions were very inaccurate

(mean error = 156%, 178% and 236%) and the Fisher information matrix was often singular,

preventing standard errors to be adequately computed. With one degree of freedom less, the

reduced Gompertz model had better performances with LM estimation but still large uncer-

tainty (mean precision under LM = 210, 103 and 368 days) and poor accuracy using LM

(mean error = 79%, 68.9% and 91.7%). Examples shown in Fig 4 were representative of the

entire population relative to the breast cancer measured by volume. Eventually, for 97%, 95%

and 87.5% of the individuals of the three data sets the actual value of the age fell in the respec-

tive prediction interval when Bayesian inference was applied in combination with the reduced

Gompertz models. This means a good coverage of the prediction interval and indicates that

our precision estimates were correct. On the other hand, this observation was not valid in case

of likelihood maximization, where the actual value fell in the respective prediction interval for

only 42.4%, 35% and 75% of the animals when the reduced Gompertz model was used.

Addition of a priori population information by means of Bayesian estimation resulted in

drastic improvement of the prediction performances (Fig 5). This result was confirmed in the

the other data sets (see S7 and S8 Figs for the lung cell line and S9 and S10 Figs for the breast
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007178 February 25, 2020 14 / 24

https://doi.org/10.1371/journal.pcbi.1007178


cell line measured by fluorescence). For the breast and lung cancer cell lines measured by vol-

ume, a Wilcoxon test was performed to analyze the different error distributions shown in Fig-

ures Fig 5C and S8C Fig. For the fluorescence-breast cancer cell line we could not report a

significant difference in terms of accuracy between the Gompertz and the reduced Gompertz

when applying Bayesian inference. This can be explained by the low number of individuals

included in the data set.

Overall, the combination of the reduced Gompertz model with Bayesian inference clearly

outperformed the other methods for prediction of the age of experimental tumors.

Discussion

We have analyzed tumor growth curves from multiple animal models and experimental tech-

niques, using a population framework. This approach is ideally suited for experimental or

Fig 4. Backward predictions computed with likelihood maximization and with Bayesian inference. Examples of backward

predictions of three individuals (A), (B) and (C) computed with likelihood maximization (LM) and Bayesian inference: Gompertz

model with likelihood maximization (first row); reduced Gompertz with likelihood maximization (second row); Gompertz with

Bayesian inference (third row) and reduced Gompertz with Bayesian inference (fourth row). Only the last three points are

considered to estimate the parameters. The grey area is the 95% prediction interval (P.I) and the dotted blue line is the median of the

posterior predictive distribution. The red line is the predicted initiation time and the black vertical line the actual initiation time.

https://doi.org/10.1371/journal.pcbi.1007178.g004
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clinical data of the same tumor type within a given group of subjects. Indeed, it allows for a

description of the inter-subject variability that is impossible to obtain when fitting models to

averaged data (as often done for tumor growth kinetics [53]), while enabling a robust popula-

tion-level description that is strictly more informative than individual fits alone. As expected

from the classical observation of decreasing specific growth rates [6, 54, 8, 55, 56], the expo-

nential model generated very poor fits. More surprisingly given its popularity in the theoretical

community (probably due to its ecological ground), the logistic model was also rejected, due to

unrealistically small inferred value of the carrying capacity K. This finding confirms at the pop-

ulation level previous results obtained from individual fits [15, 57]. It suggests that the underly-

ing theory (competition between the tumor cells for space or nutrients) is unable—at least

when considered alone—to explain the decrease of the specific growth rate, suggesting that

additional mechanisms need to be accounted for. Indeed, the logistic model relies on space-

independent cellular interactions, which might be biologically unrealistic [58]. Few studies

have previously compared the descriptive performances of growth models on the same data

sets [15, 59, 16]. In contrast to our results, Vaidya and Alexandro [16] found admissible

description of tumor growth data employing the logistic model. Beyond the difference of ani-

mal model, we believe that the major reason explaining this discrepancy is the type of error

model that was employed, as also noticed by others [57]. Here we used a combined error

model, in accordance to our previous study [15] that had examined repeated measurements of

tumor size and concluded to rejection of a constant error model (used in [16]). Moreover, sta-

tistical goodness-of-fit metrics were substantially worse when using a constant error model

(e.g AIC of 7362 versus 7129, for the Gompertz model, results not shown). To avoid overfit-

ting, we also made the assumption to keep the initial value VI fixed to Vinj. As noted before

[15], releasing this constraint leads to acceptable fits by either the exponential or logistic mod-

els (to the price of deteriorated identifiability). However, the estimated values of VI are in this

case biologically inconsistent.

On the other hand, the Gompertz model demonstrated excellent goodness-of-fit in all the

experimental systems that we investigated. This is in agreement with a large body of previous

experimental and clinical research works using the Gompertz model to describe unaltered

tumor growth in syngeneic [60, 6, 10, 57] and xenograft [61, 62] preclinical models, as well as

human data [55, 13, 12, 8]. The poor performances of the logistic model compared to the

Table 3. Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell lines. Accuracy was defined as the absolute value of the

relative error (in percent). Precision was defined as the width of the 95% prediction interval (PI column, in days). Reported are the means and standard errors (in parenthe-

sis). LM = likelihood maximization.

Cell line Model Estimation method Error PI

Breast, volume Reduced Gompertz Bayesian 12.2 (1.05) 15.6 (0.509)

Reduced Gompertz LM 79 (13.2) 210 (58.6)

Gompertz Bayesian 16.4 (1.65) 41.1 (1.63)

Gompertz LM 156 (21.7) -

Lung, volume Reduced Gompertz Bayesian 8.78 (1.43) 7.79 (0.275)

Reduced Gompertz LM 68.9 (33.1) 103 (92.6)

Gompertz Bayesian 18.9 (2.87) 19.7 (1.89)

Gompertz LM 178 (71.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)

Reduced Gompertz LM 91.7 (21.1) 368 (223)

Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)

Gompertz LM 236 (150) -

https://doi.org/10.1371/journal.pcbi.1007178.t003
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Gompertz model can be related to the structural properties of the models. The two sigmoid

functions lie between two asymptotes (V = 0 and V = K) and are characterized by an initial

period of fast growth followed by a phase of decreasing growth. These two phases are symmet-

rical in the logistic model, which is characterized by a decrease of the specific growth rate 1

V
dV
dt

at constant speed. On the other hand, the Gompertz model exhibits a faster decrease of the spe-

cific growth rate, at speed � b

V, or e−βt as a function of t, and the sigmoidal curve is not symmet-

ric around its inflexion point. The logistic and Gompertz models belong to the same family of

tumor growth equations and can be seen as specific cases of the generalized logistic model
dV
dt ¼ rV 1 � V

K

� �n� �
[56, 15]. We also analyzed the latter model, which demonstrated good

descriptive power but lacked robustness of convergence. Indeed, the SAEM algorithm con-

verged to different estimates starting from different initial guesses of the parameters. This

might be explained by the larger number of parameters (3) that led to identifiability problems.

In addition, we found that values of ν able to describe the data were often very small (< 10−3),

thus suggesting convergence to the Gompertz model.

Fig 5. Accuracy of the prediction models. Swarmplots of relative errors obtained under likelihood maximization (A)

or Bayesian inference (B) (� p-value< 0.05, �� p-value< 0.01, Levene’s test). (C) Absolute errors: comparison between

the different distributions (� p-value< 0.05, �� p-value< 0.01, Wilcoxon test). In (A) three extreme outliers were

omitted (values of the relative error were greater than 20) for both the Gompertz and the reduced Gompertz in order

to ensure readability. LM = Likelihood Maximization.

https://doi.org/10.1371/journal.pcbi.1007178.g005
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Similarly to previous reports [6, 11, 12, 13], we also found a very strong linear correlation

between the two parameters of the Gompertz model, i.e. α the proliferation rate at injection

and β the rate of decrease of the specific growth rate. Importantly, this correlation is not due to

a lack of identifiability of the parameters at the individual level, which we investigated and

found to be excellent. Such finding motivated our choice to use a reduced Gompertz model,

with only one individual-specific parameter, and one population-specific parameter. This

model has been proposed before in the context of individual tumor growth curves [11, 51] but

here we leveraged the population approach to ensure reliable estimation of the population-

level parameter and statistical distribution of the individual-level parameter. Importantly,

while previous studies had only investigated the resulting predictive power in only one animal

[10] or using simulation data [51], here we rigorously demonstrated how the reduced Gom-

pertz allows better backward (or forward, although not reported here) prediction of tumor size

and time of initiation. This analysis was performed using state-of-the art techniques from pre-

dictive modeling (e.g. cross-validation), on a large number of animals.

The descriptive power of the reduced Gompertz model was found similar to the two-

parameters Gompertz model. Critically, while previous work had demonstrated that two indi-

vidual parameters were sufficient to describe tumor growth curves [15], these results now

show that this number can be reduced to one. Interestingly, we found different values of the

carrying capacity K for the breast and the lung cancer cell lines measured by volume (K = 2600

mm3 and 12300 mm3, respectively), in contrast with previous claims [11]. This suggests that

there might not be a characteristic saturation point within a species [51] but the carrying

capacity could be a typical feature of a tumor type in an animal model. From (10), the popula-

tion constant k depends on the value of the parameter Vinj, therefore it cannot be viewed as a

universal constant of tumor growth. However, it can be considered as a common trait within a

species with similar characteristics (such as tumor type and value of Vinj). We used the formu-

lations of the Gompertz (3) and reduced Gompertz (10) in order to define α as the specific

growth rate at injection, which could be compared to the in vitro proliferation rate λ. This

could be leveraged clinically to predict past or future tumor growth kinetics based on prolifera-

tion assays, derived from a patient’s tumor sample.

The reduced Gompertz model, combined to Bayesian estimation from the population

prior, allowed to reach good levels of accuracy and precision of the time elapsed between the

injection of the tumor cells and late measurements, used as an experimental surrogate of the

age of a given tumor. Importantly, performances obtained without using a prior were substan-

tially worse. The method proposed herein remains to be extended to clinical data, although it

will not be possible to have a firm confirmation since the natural history of neoplasms from

their inception cannot be reported in a clinical setting. Nevertheless, the encouraging results

obtained here could allow to give informative estimates, even if approximative. Importantly,

the methods we developed also provide a measure of precision, which would give a quantita-

tive assessment of the reliability of the predictions. For clinical translation, Vinj should be

replaced by the volume of one cell Vc = 10−6 mm3. Moreover, because the Gompertz model

has a specific growth rate that tends to infinity when V gets arbitrarily small, our results might

have to be adapted with the Gomp-Exp model [63, 24].

Our methodology might face multiple challenges for future clinical applications. First, it is

difficult to fully characterize unperturbed tumor kinetics in humans and only few studies sup-

port the evidence that it follows a gompertzian growth [8]. This is due to the limited number

of available observations in the clinic and to the fact that saturation of human tumors is almost

never reached, since it coincides with an advanced stage of the cancer where patients usually

receive a treatment. Moreover, human tumor growth curves, even if limited to the same organ

and histological type, exhibit a substantially larger variability than in in vivo experimental
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settings where immortalized cancer cell lines are injected in genetically identical mice. Here,

we have proven that a given animal model (i.e. same mice, tumor type and number of injected

cells) is characterized by a common tumor growth constant, that defines the saturation point.

In the human setting, it could be interesting to analyze this constant as a function of some

covariates (such as weight, sex, tumor type). Eventually, in the Gompertz model we haven’t

considered that the initial phase of tumor growth might be affected by intrinsic stochasticity.

Our choice was motivated by the large number of injected cells (of the order of 106) that

allowed us to consider the initial variability to be negligible. For accurate clinical translation,

stochasticity should ideally be taken into account to model the initial stages of tumor growth.

Personalized estimations of the age of a given patient’s tumor would yield important

epidemiological insights and could also be informative for routine clinical practice [39]. By

estimating the period at which the cancer initiated, it could give clues on the possible causes

(environmental or behavioral) of neoplastic formation. Moreover, reconstruction of the natu-

ral history of the pre-diagnosis tumor growth might inform the presence and extent of invisi-

ble metastasis at diagnosis. Indeed, an older tumor has a greater probability of having already

spread than a younger one. Altogether, the present findings could contribute to the develop-

ment of personalized computational models of metastasis [24, 64, 65].

Supporting information

S1 Table. Statistical indices of the tumor growth models (lung, volume). Models ranked in

ascending order of AIC (Akaike information criterion). Other statistical indices are the log-

likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

(PDF)

S2 Table. Statistical indices of the tumor growth models (breast, fluorescence). Models

ranked in ascending order of AIC (Akaike information criterion). Other statistical indices are

the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

(PDF)

S3 Table. Parameter values estimated with the SAEM algorithm (lung, volume). Fixed

effects (typical values) of the parameters of the different models. ω is the standard deviation of

the random effects. σ is vector of the residual error model parameters. Last column shows the

relative standard errors (R.S.E.) of the estimates.

(PDF)

S4 Table. Parameter values estimated with the SAEM algorithm (breast, fluorescence).

Fixed effects (typical values) of the parameters of the different models. ω is the standard devia-

tion of the random effects. σ is vector of the residual error model parameters. Last column

shows the relative standard errors (R.S.E.) of the estimates.

(PDF)

S1 Fig. Diagnostic plots from population analysis (lung, volume). Population analysis of

experimental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for

both structural dynamics and inter-animal variability by reporting model-predicted percen-

tiles (together with confidence prediction intervals (P.I) in comparison to empirical ones.

B) Prediction distributions. C) Individual weighted residuals (IWRES) with respect to time.

D) Observations vs predictions Left: exponential, Center: logistic, Right: Gompertz models.

(TIF)

S2 Fig. Diagnostic plots from population analysis (breast, fluorescence). Population analy-

sis of experimental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit
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for both structural dynamics and inter-animal variability by reporting model-predicted

percentiles (together with confidence prediction intervals (P.I) in comparison to empirical

ones. B) Prediction distributions. C) Individual weighted residuals (IWRES) with respect to

time. D) Observations vs predictions Left: exponential, Center: logistic, Right: Gompertz

models.

(TIF)

S3 Fig. Individual fits from population analysis (lung, volume). Three representative exam-

ples of individual fits (animal A, animal B and animal C) computed with the population

approach relative to the exponential (left), the logistic (center) and the Gompertz (right) mod-

els.

(TIF)

S4 Fig. Individual fits from population analysis (breast, fluorescence). Three representative

examples of individual fits (animal A, animal B and animal C) computed with the population

approach relative to the exponential (left), the logistic (center) and the Gompertz (right) mod-

els.

(TIF)

S5 Fig. Correlation between the Gompertz parameters and diagnostic plots of the reduced

Gompertz model with the population approach (lung, volume). Correlation between the

individual parameters of the Gompertz model (A) and results of the population analysis of the

reduced Gompertz model: visual predictive check (B), scatter plots of the residuals (C), predic-

tion distribution (D) and examples of individual fits (E).

(TIF)

S6 Fig. Correlation between the Gompertz parameters and diagnostic plots of the reduced

Gompertz model with the population approach (breast, fluorescence). Correlation between

the individual parameters of the Gompertz model (A) and results of the population analysis of

the reduced Gompertz model: visual predictive check (B), scatter plots of the residuals (C),

prediction distribution (D) and examples of individual fits (E).

(TIF)

S7 Fig. Backward predictions computed with likelihood maximization (LM) and with

Bayesian inference (lung, volume). Three examples of backward predictions of individuals A,

B and C computed with likelihood maximization (LM) and Bayesian inference: Gompertz

model with likelihood maximization (first row); reduced Gompertz with likelihood maximiza-

tion (second row); Gompertz with Bayesian inference (third row) and reduced Gompertz with

Bayesian inference (fourth row). Only the last three points are considered to estimate the

parameters. The grey area is the 95% prediction interval (P.I) and the dotted blue line is the

median of the posterior predictive distribution. The red line is the predicted initiation time

and the black vertical line the actual initiation time.

(TIF)

S8 Fig. Error analysis of the predicted initiation time (lung, volume). Accuracy of the pre-

diction models. Swarmplots of relative errors obtained under likelihood maximization (A) or

Bayesian inference (B). (C) Absolute errors: comparison between the different distributions

(� p-value < 0.05, �� p-value< 0.01).

(TIF)

S9 Fig. Backward predictions computed with likelihood maximization (LM) and with

Bayesian inference (breast, fluorescence). Three examples of backward predictions of
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individuals A, B and C computed with likelihood maximization (LM) and Bayesian inference:

Gompertz model with likelihood maximization (first row); reduced Gompertz with likelihood

maximization (second row); Gompertz with Bayesian inference (third row) and reduced Gom-

pertz with Bayesian inference (fourth row). Only the last three points are considered to esti-

mate the parameters. The grey area is the 95% prediction interval (P.I) and the dotted blue line

is the median of the posterior predictive distribution. The red line is the predicted initiation

time and the black vertical line the actual initiation time.

(TIF)

S10 Fig. Error analysis of the predicted initiation time (breast, fluorescence). Accuracy of

the prediction models. Swarmplots of relative errors obtained under likelihood maximization

(A) or Bayesian inference (B). (C) Absolute errors: comparison between the different distribu-

tions (� p-value< 0.05, �� p-value < 0.01).

(TIF)
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Michalis Mastri, John M. L. Ebos.

Formal analysis: Cristina Vaghi, Jonathan P. Mochel, Clair Poignard, Sébastien Benzekry.
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Resources: Anne Rodallec, Raphaëlle Fanciullino, Joseph Ciccolini, Michalis Mastri, John M.

L. Ebos.

Software: Cristina Vaghi.
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Validation: Sébastien Benzekry.

Visualization: Cristina Vaghi.

Writing – original draft: Cristina Vaghi, Sébastien Benzekry.
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