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Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic
biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was
selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice
straw was first treated with 0.5M KOH to remove lignin followed by treatment with 0.1 N H

2
SO
4
for removal of hemicellulose.

The maximum carboxymethyl cellulase activity of 3.08U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v)
inoculum, pH 8.0 at 35∘C after 60 h of growth under stationary conditions, while the same was obtained as 4.15U/mL using 0.75%
(w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30∘C, under shaking conditions of growth for 48 h. For maximum
titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium
sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively.
The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from
pretreated rice straw.

1. Introduction

Lignocellulosic materials from agriculture and forest man-
agement are the largest sources of hexose (C-6) and pentose
(C-5) sugars with a potential for the production of biofuels,
chemicals, and other economic by-products [1]. Lignocellu-
losic biomass is mainly composed of plant cell walls, with
the structural carbohydrates cellulose and hemicellulose and
heterogeneous phenolic polymer lignin as its primary com-
ponents [2]. The lignocellulosic substrates include woody
substrates such as hardwood (birch and aspen, etc.), softwood
(spruce and pine, etc.), agroresidues (wheat straw, sugarcane
bagasse, corn stover, etc.), dedicated energy crops (switch
grass, miscanthus, etc.), weedy materials (Eicchornia cras-
sipes, Lantana camara, etc.), and municipal solid waste (food

and kitchen waste, etc.) [3]. Lignocellulosic biomass is
composed of cellulose, hemicellulose, and lignin, as well as
other minor components.The recalcitrance of lignocellulosic
biomass to enzyme such as the interaction between cellulose
and hemicellulose and degree of lignifications necessitates a
pretreatment process for increasing its enzymatic digestibil-
ity. Pretreatment of biomass plays a critical role in producing
materials with acceptable enzymatic digestibility and subse-
quent fermentability for the production of cellulosic ethanol
or other advanced biofuels such as butanol derived from
biomass.

Rice straw is an attractive lignocellulosic material for bio-
ethanol production since it is one of the most abundant
renewable resources [4] with annual productivity of around
800 million metric tonnes that corresponds with large
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production of rice straw [5]. For every ton of harvested grain,
about 1.35 tons of rice straw remain in the fieldwhich generate
huge amount of straw annually [6]. Disposal of rice straw is
a huge problem as usage of rice straw in biological process,
such as composting and biogas production, is limited by slow
degradation in bioconverting process [7].Moreover, it cannot
be used as animal feed due to its low digestibility, low protein,
and high lignin and silica content [8]. Rice straw is composed
of 40% cellulose, 24% hemicellulose, and 25% lignin [9] so
it requires a basic step of pretreatment for breakage of lignin
and exposure of cellulose and hemicellulose for enzymatic
saccharification. Several pretreatment processes includ-
ing organosolvent [4], ultrasonication [10], alkali [11], steam
explosion [12], microwave assisted alkali treatment [13],
microwave assisted organic acid treatment [14], hot compress
water [15], proton beam radiation [16], ammonia and ionic
liquid [17], and acid [18] have been reported for rice straw.

Cellulases are inducible enzymes which are synthesized
by microorganisms during their growth on cellulosic materi-
als [19].The complete enzymatic hydrolysis of cellulosicmate-
rials needs different types of cellulase, endoglucanase (1,4-
𝛽-d-glucan-4-glucanohydrolase; EC 3.2.1.4), exocellobiohy-
drolase (1,4-𝛽-d-glucan glucohydrolase; EC 3.2.1.74), and 𝛽-
glucosidase (𝛽-d-glucoside glucohydrolase; EC 3.2.1.21) [20].
Microorganisms are considered to be the main source of cel-
lulases with novel and high specific activities. Microbial
sources are the most economic and available sources because
microorganisms can grow on inexpensivemedia such as agri-
culture and food industries by-products [21]. Various bac-
teria, actinomycetes, and filamentous fungi produce extracel-
lular cellulases when grown on cellulosic substrates though
many actinomycetes have been reported to have less cellu-
lase activity than moulds [22]. Chaetomium, Fusarium, Tri-
choderma, Penicillium, and Aspergillus are some of the
reported fungal species andTrichonympha, Clostridium, Acti-
nomycetes, Bacteroides succinogenes, Butyrivibrio fibrisolvens,
and Ruminococcus albus are some of the reported bacterial
species responsible for cellulosic biomass hydrolysation [23].
Due to increasing demand for energy and the fast depleting
petroleum resources there is an increased interest in alter-
native fuels, especially liquid transportation fuels from lig-
nocelluloses, which led to a new dawn in cellulase research.
Various kinds of value added products such as ethanol,
organic acids, enzymes, and other chemicals can be made by
enzymic hydrolysis of cellulosics; of these processes, ethanol
has received the maximum attention as an alternative to gas-
oline in today’s environment [24]. The aim of the present
study was to optimize process parameters for alkali assisted
acid pretreatment of rice straw for carboxymethyl cellulase
enzyme production by Bacillus sp. 313SI under stationary and
shaking conditions.

2. Materials and Methods

2.1. Isolation of Bacterial Strain for CMCase Production. Bac-
terial strains having cellulolytic potential were screened from
the soil samples of different niches such as sugarcane field,

rice field, paper industry, cattle shed, rotten fruits and vegeta-
bles, and samples of cattle dung. Isolation was done by dilu-
tion plate method on a carboxymethyl cellulose agar (CMC)
medium (Himedia, India) (NaNO

3
-2.0 g/L, K

2
HPO
4
-1.0 g/L,

MgSO
4
⋅7H
2
O-0.5 g/L, KCl-0.5 g/L, CMC-5.0 g/L, Agar-2%,

pH 8.0). Screening for cellulolytic activity was followed by
visualizing the hydrolysis zone, when the plates were flooded
with an aqueous solution of 0.1% Congo red for 15min and
washed with 1M NaCl [25]. The isolated colonies on these
plates were maintained on CMC agar slants at 4∘C for further
analysis.

2.2. Enzyme Assay. Carboxymethyl cellulase activity was as-
sayed by the DNS (3, 5-dinitrosalicylic acid) method [26].
The reaction mixture contained 900𝜇L of substrate (car-
boxymethyl cellulose in 10mM Sodium phosphate buffer
pH 7.0) and 100 𝜇L of crude enzyme was incubated at 30∘C
for 60min. An appropriate control which contained 100 𝜇L
of distilled water instead of crude enzyme extract was also
run along with the test. The reaction was terminated by
adding 3mL of 3, 5-dinitrosalicylic acid reagent. The tubes
were incubated for 15min in a boiling water bath for color
development andwere cooled rapidly.The activity of reaction
mixture wasmeasured against a reagent blank at 540 nm.The
concentration of glucose released by enzyme was determined
by comparing against a standard curve constructed similarly
with known concentrations of glucose. One unit of enzyme
activity is defined as the amount of enzyme that liberates 1 𝜇g
of glucose per minute under the assay conditions.

2.3. Pretreatment of Rice Straw. Themain components of un-
treated rice straw were determined to be 38.40% cellulose,
24%hemicelluloses, and 19% lignin using standard procedure
[27]. The rice straw was first pretreated with 0.5M KOH for
4 h at room temperature at the ratio of 1 : 10 for substrate and
KOHsolution.Thepretreated solidwaswashedwithwater till
neutrality, filtered, and dried.The solid was further treated by
0.1 NH

2
SO
4
for 1 h at room temperature and then autoclave at

121∘C and 15 psi pressure for 15 minutes.The pulp was washed
with water till neutrality, filtered, dried, and stored at room
temperature for further use.

2.4. Optimization of CMCase Production under Stationary
and Shaking Conditions. Various physicochemical parame-
ters were analyzed under stationary and shaking conditions
for maximum carboxymethyl cellulase enzyme production
by Bacillus sp. 313SI. The various parameters that were
optimized were pretreated rice straw concentration (0.25–
2.0%w/v), inoculum concentration (0.25–1.0% v/v), incuba-
tion temperature (20–60∘C), incubation pH (5.0–9.0), and
various additives such as carbon sources (galactose, maltose,
carboxymethyl cellulose, starch,mannitol, and cellulose pow-
der) and nitrogen sources (ammonium nitrate, ammonium
sulphate, ammonium chloride, beef, tryptone, urea, and
potassium nitrate).

2.5. Statistical Analysis. Theoptimization results for different
parameters were analyzed using statistical packages system
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software (SPSS; 16.0).The ANOVAwith post hoc analysis was
applied for within-group comparison. The level of signifi-
cance was set at 0.05.

3. Result and Discussion

3.1. Isolation and Identification of Isolated Bacterial Strain.
The bacterial strain with maximum carboxymethyl cellulase
activity was isolated from cattle shed soil and identified as
Bacillus sp. 313SI by Xcelris Labs Ltd., Ahmadabad, India, and
has been given National Centre for Biotechnology Informa-
tion (NCBI) accession number JQ734551.1.

3.2. Alkali Assisted Acidic Pretreatment of Rice Straw. The
effect of alkali assisted acidic pretreatment on chemical com-
position of rice straw such as cellulose, hemicelluloses, and
lignin was analyzed. It was determined that cellulose, hemi-
celluloses, and lignin content of obtained alkali assisted acidic
pretreated rice straw was 59.5%, 8.26%, and 5.17%, respec-
tively. Taherzadeh and Karimi [28] have reported that effi-
cient delignifier should remove a maximum of lignin and
minimum of sugars. Pretreatment of lignocelluloses with
alkali overcomes the lignin barrier, by dissolving the lignin
caused by the breakdown of ether linkages [29]. Lu et al. [30]
have examined that hemicelluloses can effectively solubilise
and hydrolyze into monomeric sugars and soluble oligomers
by dilute sulphuric acid pretreatment. Chandel et al. [31]
reported NH

4
OH mediated delignification of sugarcane ba-

gasse which resulted in 41.51% lignin removal as compared
to untreated substrate which later improved the enzymatic
saccharification of substrate employing commercial cellulase.

3.3. Effect of Substrate Concentration. Alkali and acid pre-
treated rice straw was used to analyze the effect of substrate
concentration on carboxymethyl cellulase enzyme produc-
tion by Bacillus sp. 313SI. As shown in Figure 1 substrate
concentration at 1%w/v and 0.75%w/v was found to be opti-
mized for maximum cellulase activity of 2.12 ± 0.04U/mL
and 2.85 ± 0.06U/mL under stationary and shaking con-
ditions, respectively. The ANOVA for the data on CMCase
as a function of variation due to different concentrations of
substrate under stationary conditions (𝐹 = 327.91; 𝑃 <
0.0001) and shaking conditions (𝐹 = 325.55; 𝑃 < 0.0001)
is statistically significant. Immanuel et al. [32] reported the
maximum enzymatic activity with 1.5% pretreated coir fiber.

3.4. Inoculum Concentration. Effective inoculum concentra-
tion (0.25–1.0%w/v) for carboxymethyl cellulase enzyme
production by Bacillus sp. 313SI was evaluated for stationary
and shaking conditions. Maximum carboxymethyl cellulase
enzyme activity of 2.25 ± 0.06U/mL was obtained with
1%w/v inoculum concentration under stationary conditions
while under shaking conditions 0.4% inoculum concen-
tration had showed the maximum carboxymethyl cellulase
enzyme activity of 2.92±0.05U/mL as shown in Figure 2.The
ANOVA for the data on CMCase as a function of variation
due to different concentrations of inoculum under stationary
conditions (𝐹 = 475.68; 𝑃 < 0.0001) and shaking conditions
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Figure 1: Effect of substrate concentration on carboxymethyl
cellulase enzyme production by Bacillus sp. 313SI under stationary
and shaking conditions of growth.Values in figure aremeans of three
replicates with standard deviation.
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Figure 2: Effect of inoculum concentration on carboxymethyl
cellulase enzyme production by Bacillus sp. 313SI under stationary
and shaking conditions of growth.Values in figure aremeans of three
replicates with standard deviation.

(𝐹 = 584.09; 𝑃 < 0.0001) is statistically significant.
Bacillus subtilis and Bacillus circulans showed maximum
carboxymethyl cellulase enzyme production up to 3% inocu-
lum size [33]. Abou-Taleb et al. [34] also reported that B.
alcalophilus S39 and B. amyloliquefaciens C23 showed max-
imum carboxymethyl cellulase enzyme production at 3.0%
inoculum size. Das et al. [35] reported optimum inoculum
size of 7% for maximum carboxymethyl cellulase enzyme
production at 42∘C by Bacillus sp.

3.5. Incubation Time. To determine the optimum incubation
time for carboxymethyl cellulase enzyme production by Ba-
cillus sp. 313SI from pretreated rice straw time course of
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Figure 3: Effect of incubation time on carboxymethyl cellulase
enzyme production by Bacillus sp. 313SI under stationary and
shaking conditions of growth. Values in figure are means of three
replicates with standard deviation.

cultivation was recorded up to 84 h. Carboxymethyl cel-
lulase enzyme production was increased with increase in
incubation time and maximum CMCase activity of 2.40 ±
0.07U/mLwas optimized at 60 h under stationary conditions
and 2.97 ± 0.06U/mL at 48 h under shaking conditions as
shown in Figure 3. The ANOVA for the data on CMCase as
a function of variation due to different time of incubation
under stationary conditions (𝐹 = 890.75; 𝑃 < 0.0001)
and shaking conditions (𝐹 = 947.52; 𝑃 < 0.0001) is
statistically significant. Shabeb et al. [36] found maximum
carboxymethyl cellulase enzyme activity in Bacillus subtilis
KO strain after 24 h of incubation period. Heck et al. [37] and
Amritkar et al. [38] foundmaximum carboxymethyl cellulase
enzyme activity in Bacillus spp. B21, Bacillus pumilus, and
Bacillus subtilis after 72 h of incubation. Poorna and Prema
[39] reported the maximum carboxymethyl cellulase enzyme
activity in Bacillus pumilus after 120 h of incubation.

3.6. Initial pH. The initial pH of productionmediumplays an
important role in the production of carboxymethyl cellulase
enzyme. The effect of different pH range was optimized on
carboxymethyl cellulase enzyme production from Bacillus sp.
313SI from pretreated rice straw. Maximum CMCase activity
of 2.67 ± 0.06U/mL was obtained at pH 8.0 under stationary
conditions while under shaking conditions this is 3.50 ±
0.07U/mL as shown in Figure 4.The ANOVA for the data on
CMCase as a function of variation due to different pH under
stationary conditions (𝐹 = 627.75; 𝑃 < 0.0001) and shaking
conditions (𝐹 = 741.86; 𝑃 < 0.0001) is statistically sig-
nificant. These results are in agreement with those of Im-
manuel et al. [32] who found the cellulolytic enzyme, en-
doglucanase, obtained from Cellulomonas, Bacillus, and Mi-
crococcus spp. hydrolyzed substrate in the pH range of 4.0 to
9.0, withmaximum activity transpiring at pH 7. Ray et al. [33]
reported that pH 7–7.5 was more suitable for optimization
of cellulase production by Bacillus subtilis and B. circulans.
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Figure 4: Effect of pH on carboxymethyl cellulase enzyme produc-
tion by Bacillus sp. 313SI under stationary and shaking conditions of
growth. Values in figure are means of three replicates with standard
deviation.
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Figure 5: Effect of temperature on carboxymethyl cellulase enzyme
production by Bacillus sp. 313SI under stationary and shaking
conditions of growth. Values in figure are means of three replicates
with standard deviation.

Gautam et al. [40] found the optimumpHof 7.5 formaximum
carboxymethyl cellulase enzyme activity by Pseudomonas sp.

3.7. Incubation Temperature. The effect of temperature vary-
ing between 20∘C and 50∘C on production of carboxymethyl
cellulase enzyme was studied. Bacillus sp. 313SI showed
maximum carboxymethyl cellulase enzyme activity of 2.85 ±
0.05U/mL under stationary conditions at 35∘C and 3.70 ±
0.06U/mL under shaking conditions at 30∘C as shown in Fig-
ure 5. The ANOVA for the data on CMCase as a function of
variation due to different temperatures under stationary con-
ditions (𝐹 = 115.0; 𝑃 < 0.0001) and shaking conditions (𝐹 =
184.4; 𝑃 < 0.0001) is statistically significant.These results are
close to those of Kanmani et al. [21] who found that the
carboxymethyl cellulase enzymeproduced byBacillus pumilis
showed the optimum temperature of 35∘C. Rastogi et al. [41]
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Figure 6: Effect of different carbon sources on carboxymethyl
cellulase enzyme production by Bacillus sp. 313SI under stationary
and shaking conditions of growth.Values in figure aremeans of three
replicates with standard deviation.

reported two strains DUSELR7 andDUSELR13 asmesophilic
carboxymethyl cellulase enzyme producer at 37∘C.

3.8. Carbon and Nitrogen Sources. Supplementation of car-
bon and nitrogen sources inmedium showed a significant in-
crease in carboxymethyl cellulase enzyme production by Ba-
cillus sp. 313SI frompretreated rice strawunder stationary and
shaking conditions. Effect of different carbon sources (0.1%
w/v) on the production of carboxymethyl cellulase enzyme
was evaluated as shown in Figure 6.

Carboxymethyl cellulose was optimized as best carbon
source for both conditions. The maximum carboxymethyl
cellulase enzyme activity of 2.90 ± 0.13U/mL was recorded
under stationary conditions and 4.01 ± 0.06U/mL was
recorded under shaking conditions. The ANOVA for the
data on CMCase as a function of variation due to different
carbon sources under stationary conditions (𝐹 = 161.41; 𝑃 <
0.0001) and shaking conditions (𝐹 = 223.16; 𝑃 < 0.0001) is
statistically significant. Carboxymethyl cellulose wasmost ef-
fective as a sole carbon source for carboxymethyl cellulase
enzyme production by Bacillus alcalophilus S39 [34]. Car-
boxymethyl cellulose was the best carbon source followed by
cellulose for carboxymethyl cellulase enzyme production [42,
43]. 1% (w/v) carboxymethyl cellulose was found to be op-
timal for carboxymethyl cellulase enzyme production in
Bacillus sp. [44].

Similarly the influence of different nitrogen sources (0.1%
w/v) on carboxymethyl cellulase enzyme production was
evaluated as shown in Figure 7.The results showed that Bacil-
lus sp. 313SI gave maximum yield of carboxymethyl cellu-
lase enzyme by added ammonium sulphate, that is, 3.08 ±
0.07U/mL in medium for stationary conditions and 4.15 ±
0.06U/mL in medium for shaking conditions. The ANOVA
for the data on CMCase as a function of variation due to
different nitrogen sources under stationary conditions (𝐹 =
379.0; 𝑃 < 0.0001) and shaking conditions (𝐹 = 492.7; 𝑃 <
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Figure 7: Effect of different nitrogen sources on carboxymethyl
cellulase enzyme production by Bacillus sp. 313SI under stationary
and shaking conditions of growth.Values in figure aremeans of three
replicates with standard deviation.

0.0001) is statistically significant. Balamurugan et al. [45]
found that ammonium sulphate and ammonium nitrate are
optimum nitrogen sources for carboxymethyl cellulase en-
zyme in CDB7 and CDB13 isolates at 30∘C. Peptone was op-
timized as the best nitrogen source for carboxymethyl cellu-
lase enzyme production by Bacillus sp. at 42∘C [35].

4. Conclusion

Thedata gathered in this study provides evidence forCMCase
production by Bacillus sp. 313SI from alkali assisted acidic
pretreated rice straw. Qualitative effect of some carbon and
nitrogen sources, incubation time, pH, inoculum concentra-
tion, and incubation temperature was studied and optimized
for CMCase production by Bacillus sp. 313SI. High titre of
CMCase production by Bacillus sp. 313SI using pretreated
cost-effective agroresidue (rice straw) at pH 8.0 and 30∘C
made it as a potential producer of mesoalkalophilic cellulases
which can find wide applications involving saccharifica-
tion in various lignocellulosic based industries particularly
bioethanol industry.
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