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Abstract
Purpose: The existence of multicontrast magnetic resonance (MR) images
increases the level of clinical information available for the diagnosis and treat-
ment of brain cancer patients. However, acquiring the complete set of multicon-
trast MR images is not always practically feasible. In this study, we developed
a state-of -the-art deep learning convolutional neural network (CNN) for image-
to-image translation across three standards MRI contrasts for the brain.
Methods: BRATS’2018 MRI dataset of 477 patients clinically diagnosed with
glioma brain cancer was used in this study,with each patient having T1-weighted
(T1), T2-weighted (T2), and FLAIR contrasts. It was randomly split into 64%,
16%, and 20% as training, validation, and test set, respectively. We developed
a U-Net model to learn the nonlinear mapping of a source image contrast to
a target image contrast across three MRI contrasts. The model was trained
and validated with 2D paired MR images using a mean-squared error (MSE)
cost function, Adam optimizer with 0.001 learning rate, and 120 epochs with a
batch size of 32. The generated synthetic-MR images were evaluated against
the ground-truth images by computing the MSE, mean absolute error (MAE),
peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM).
Results: The generated synthetic-MR images with our model were nearly indis-
tinguishable from the real images on the testing dataset for all translations,
except synthetic FLAIR images had slightly lower quality and exhibited loss of
details. The range of average PSNR, MSE, MAE, and SSIM values over the six
translations were 29.44–33.25 dB, 0.0005–0.0012, 0.0086–0.0149, and 0.932–
0.946, respectively. Our results were as good as the best-reported results by
other deep learning models on BRATS datasets.
Conclusions: Our U-Net model exhibited that it can accurately perform image-
to-image translation across brain MRI contrasts. It could hold great promise for
clinical use for improved clinical decision-making and better diagnosis of brain
cancer patients due to the availability of multicontrast MRIs.This approach may
be clinically relevant and setting a significant step to efficiently fill a gap of
absent MR sequences without additional scanning.
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1 INTRODUCTION AND RELATED
WORKS

1.1 Introduction

Magnetic resonance imaging (MRI) is recognized as
the preferred imaging modality for soft tissues. It has
widely been utilized in brain soft tissue imaging. Various
MR intramodality image contrasts can be acquired by
applying different imaging protocols. These sequences
are associated with diverse visualization and noise
mechanisms that capture unique characteristics of the
underlying anatomy. Multicontrast MR images provide
clinicians with comprehensive clinical information for
better diagnosis and treatment (e.g., accurate delin-
eation of brain structures on the MR images) of brain
cancer patients. Each image contrast provides a unique
view of intrinsic MR parameters. However, obtaining
multicontrast images for each patient is not always
achievable due to the unavailability of sophisticated
scanners in many centers and adding extra cost to the
patient. Consequently, these factors may contribute to
the loss of critical information due to missing comple-
mentary image contrast.

Intramodality and intermodality image synthesis is an
active area of research in radiation oncology and radi-
ology fields. The traditional model-based image syn-
thesis methods require predefined rules and tuning of
parameters for every case and cannot achieve satis-
factory results.1 The rapid growth of deep learning and
computer vision algorithms has inspired researchers to
investigate the data-driven methods for image synthesis
(also known as “adaptive domain”) due to their supe-
rior mapping capability of nonlinear relationships.1 Deep
learning-based image synthesis methods are an emerg-
ing field of research and are more generalizable than
conventional model-based methods. In other words, the
model of a given image-to-image translation modality
can be generalized to different image modalities.

1.2 Related works

Convolutional neural network (CNN) and its variant
architectures such as part-based CNNs,2 deep salient
object detectors without expert annotation,3 Eliminating
Indefiniteness Net,4 U-Net,5 and GANs6 can be imple-
mented for MR image synthesis with improved accuracy.
MR image synthesis task could be approached either
through image-to-image (single-input and single-output)
or multistream (multi-input and single-output) transla-
tions. Image-to-image translation approach (e.g., model
receives a single source contrast and learns the latent
representation sensitive to distinctive features of the
source) was studied by several investigators across MR
sequences using dilated CNN,7 U-Net,8–10 and variant
generative adversarial networks (GANs) including edge-

aware GAN,11,12 conditional-GAN,13–16,10 diamond-
GAN,17 cycle GAN,18,19 and unified-GAN.20,21 On the
other hand, the multistream translation approach (e.g.,
model receives multiple unique sources and learns the
shared latent representation more sensitive to gen-
eral features across sources) to generate a missing
or corrupted image contrast was studied using differ-
ent CNN architectures.7,15,22–26 These proposed models
for cross-sequence MR image synthesis have revealed
promising results for various applications in radiother-
apy and radiology including, improving the brain tumor
and healthy critical organs segmentation,19,27 tumor
characterization in neuro-oncology,10,22 and generating
MR angiography images.9

Even though cross-sequence MR synthesis was
widely studied either using a single image or multiple
images as input, a few of these studies provide com-
prehensive experimental results on a unified dataset.7,21

Only one study21 utilized a convolutional deep learn-
ing model for image-to-image translation across multiple
standard MRI contrasts for the brain using a relatively
large-scale open-source dataset from multi-institution.
Dai et al.21 studied a unified-GAN model for image-to-
image translation across four MRI sequences. Despite
the promising reported results, there is still a need for
exploring other methods with improved generalizabil-
ity for image-to-image translation across different MR
sequences.

U-Net architecture, a class of deep learning algo-
rithms that belongs to the fully CNNs, has been used
as a standard for semantic image segmentation where
it showed outstanding performance.5 Its training pro-
cedure is efficient when using limited computational
resources compared with GANs. Moreover, it can derive
local and global features from the input images to
generate pixel/voxel-wise predictions. Inspired by its
success in the image segmentation task, we studied an
end-to-end deep learning convolutional U-Net model
for image-to-image translations across three standards
MRI contrasts for the brain using a relatively large-scale
open-source dataset from multiple institutions. Among
the existing MR contrasts, each image contrast can be
translated to the rest contrasts using the appropriate
model. This is clinically helpful in situations where
multiple MRI contrasts are needed for diagnosis and
treatment planning, but only one MRI contrast could be
practically acquired. We also compared our results with
those achieved with state-of -the-art models in the liter-
ature that utilized the same dataset. Our end-to-end 2D
U-Net model proposed in this study for image-to-image
translation is developed by typically performing the
following modifications on the original 2D U-Net archi-
tecture proposed by Ronneberger et al.5: (a) replacing
the sigmoid activation function in the final layer with
tanh as we are treating the synthesis as a regres-
sion task, (b) adding dropout layers to prevent model
overfitting, (c) implementing zero-padding before every
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convolution operation to maintain the image size con-
stant, and (d) substituting the up-convolutional layers
with up-sampling. Despite its simplicity, our 2D U-Net
model provided accurate predictions by generating
synthetic images with encouraging quality. The model
can be used to produce a resembled 3D synthetic-MR
image slice-by-slice. As the computational expense
grows with extending the proposed 2D U-Net network in
this study to full 3D that requires more GPU memory,28

we will consider this in the future to account for adjacent
information between MR slices for better prediction
quality.

2 MATERIALS AND METHODS

2.1 Imaging dataset

The imaging dataset used in this study was obtained
from the BRATS’2018 Challenge for Brain Tumor
Segmentation.29–33 The BRATS dataset consists of four
multicontrast MRI scans of 477 patients with high-grade
or lower-grade glioma brain cancer. The multicontrast
MRI scans/subjects include T1-weighted gradient-echo
(T1), T1-weighted post-gadolinium contrast gradient-
echo (T1-Gd), T2-weighted gradient-echo (T2), and
T2-weighted fluid-attenuated inversion recovery (T2-
FLAIR) or simply “FLAIR”provided for each patient. The
datasets were collected from several institutions. The
images were acquired using two types of scanners, GE
and Siemens. Besides, the scans were obtained using
different magnetic fields (1.5 and 3 Tesla) and vari-
ous imaging protocols. All scans were acquired in axial
plane/acquisition with slice thicknesses ranging from 1
to 5 mm. The typical MRI subject/scan comprises 155
slices taken across the axial plane, with each slice hav-
ing a dimension of 240 × 240 pixels and a voxel size
of 1 mm3. The entire data were randomly divided into
80% as the development set and the remaining 20%
as the test set; the development set was further split
into 80% assigned as the training set and 20% as the
validation set. As we compare the results of multiple
image-to-image translation algorithms trained on the
same dataset pool, we used a random seed to produce
a predictable sequence of numbers to ensure that all
models use the same validation and testing data sets
for a fair evaluation.

2.2 Preprocessing

Data preprocessing is an essential step in any deep
learning framework, where the data are processed
before feeding into the network. BRATS’2018 data were
originally provided with initial preprocessing. Within the
patient subjects, the data of each MR contrast (T1, T2,
and FLAIR) were rigidly coregistered slice-by-slice to the

T1-Gd contrast. Then, they were resampled to 1 mm3

resolution and skull stripped.With regard to image regis-
tration for the brain region, precise aligning of the struc-
tures such as white and gray matters is critical for mon-
itoring brain disease.

We applied further preprocessing to the MRI data,
including null slices removal, image resizing, and inten-
sity normalization and scaling. First, we performed
dimensional reduction on the MRI subjects to remove
null slices.Each MRI subject in the original BRATS’2018
dataset had 155 slices with a dimension of 240 × 240
pixels. However, not all those slices contain anatomi-
cal information and are useful for network training. As
a result, we excluded those null slices and retained only
ones that contain brain tissue, yielding about 100 slices
per subject. Second, we applied an MRI intensity stan-
dardization approach to reducing the adverse impact of
signal variation across different scanners and using var-
ious clinical acquisition protocols. Following the z-score
(zero mean and unit variance) standardization method,
we computed the mean and the standard deviation (SD)
of the intensities over the brain volume. We normalized
the MR subject to having zero mean and unit SD; we
then shifted the normalized data across each subject to
have the pixel values within a [0, 1] scale. It has been
reported that applying intensity normalization before
training the model improves the MR image synthesis
results.34 Applying a normalization method would pre-
vent bias in quantitative assessments, ensuring optimal
model training and comparable intensity ranges across
subjects. And third, we resized the MR images to match
the U-Net network 2D input images. The provided MR
image slices were resized to 224 × 224 pixel size by
using cubic interpolation. All these preprocessing pro-
cedures were applied to the source and target MR sub-
jects of all contrasts before feeding them to the network
for training. We used Python (version 3.7; Python Soft-
ware Foundation, Wilmington, DE, USA) to perform this
preprocessing.

2.3 Network architecture

The U-Net architecture5 is a popular CNN structure that
was originally introduced for biomedical image segmen-
tation.It has a symmetric hierarchical structure that com-
poses an encoder and a decoder part with skip connec-
tions utilized for pixel-wise prediction.The encoder (con-
traction path) down-samples the input images to extract
larger sets of low- to high-level features. On the other
hand, the decoder (expansion path) takes the output of
the encoder and combines extracted image features in
multiscale resolution levels to generate targeted image
output through an up-sampling process. Skip connec-
tions are added between mirrored layers in the encoder-
decoder network to speed up information transmis-
sion between input and output image flows. They help
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F IGURE 1 Our U-Net architecture for MR image-to-image translations. Each blue box represents a set of feature maps. The number on top
of the box donates the extracted feature maps, and that at the left/right side of the box represents the size of feature maps. White boxes
represent copied feature maps. The arrows denote the different operations

to learn matching features for corresponding mirrored
layers.

The U-Net configuration implemented in this study
to perform cross-sequence MR image-to-image trans-
lation (Figure 1) was adapted from the standard
architecture.5 In total, our proposed U-Net architecture
consists of 19 convolutional layers. The input images
have a size of 224 × 224 pixels and one channel
(grayscale image). The encoder consists of a repeated
implementation of two 3 × 3 convolutions with 2 pixels
stride over five layer-blocks, except the last bock that is
made up of one convolutional layer. Zero padding was
used before convolution to maintain the resolution of
extracted deeper feature maps matching the resolution
of the input feature maps. The first convolutional layer
is followed by a rectified linear unit (ReLU) activation35

layer and a dropout operation,36 whereas the second
convolutional layer is followed by a ReLU activation layer
and a 2 × 2 max-pooling operation with a stride of 2 pix-
els. Using a ReLU nonlinear transfer function between
the hidden convolutional layers has the advantage of
computational simplicity and representational sparsity
providing capabilities for better solutions (it does not suf-
fer from the vanishing gradient issues). Dropout regu-
larization was implemented to reduce the likelihood of
model overfitting with an increasing rate from 10 to 30%
across the multiscale resolution levels in the network.
Applying a max-pooling operation after the activation
layer reduces the spatial size of the image feature map
by a factor of 2 which decreases the computational cost
and saves memory. The number of convolutional filters
(extracted feature maps) increases by a double from 16

in the first block to 256 in the last one. This permits the
network to learn the hierarchical relationships over a
large receptive field of the MR image. Because we do
not have a GPU memory leverage at our computational
architecture, we used this relatively smaller setting than
that in the standard U-Net (64 to 1024).

The decoder part is typically a mirror version of the
encoder network. The main exception is that the max-
pooling operations in the encoder part were replaced
with un-pooling/up-sampling operations in the decoding
part. The up-sampling process in the decoder part uses
a nearest-neighbor interpolation,which increases image
size by a factor of 2 through each layer. Up-sampling is
used instead of deconvolution because the latter suffers
from checkerboard artifacts caused by random initial-
ization problems and an unequaled kernel size of the
deconvolution concerning the stride. The encoder and
the decoder parts are connected through skip connec-
tions at multiscale resolution levels to help recover the
original spatial resolution of the input image at the out-
put. The features from each block in the encoder were
copied and concatenated with their corresponding ones
in the decoder. These concatenations enable both high-
and low-level features from the encoding part to be uti-
lized as additional inputs in the decoding part to provide
effective and stable image representation. The output
layer of our U-Net composes of a 1 × 1 convolutional
layer and a stride of 1 followed by a hyperbolic tangent
(tanh) activation function. Among the examined activa-
tions, for example, linear, ReLU, and tanh for image syn-
thesis task in this study, tanh was found to provide the
best result. The final layer reconstructs an output image
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from a 16-component vector of feature maps that has
the same size as the input image (224 × 224).

2.4 Training the network

The U-Net model proposed in this study implements 2D
convolutions and only supports 2D input images. After
preprocessing the data, the total number of 2D images
of all data sets was ∼47 700 (∼100 slices × 477 sub-
jects) slices for every MRI contrast. We trained our U-
Net model from scratch for each image translation. The
model trainable parameters (weights and biases) were
initialized using He et al.37 uniform distribution tech-
nique.This initialization method has shown better perfor-
mance than the Xavier technique for deep models with
ReLU layers. Adam stochastic optimization algorithm38

with a learning rate of 0.001 is applied to minimize
a mean-squared error (MSE) loss function in a step-
wise fashion and update the network’s trainable param-
eters at every training step progressively until the model
reaches the convergence. We chose the MSE as a cost
function because it is computationally inexpensive and
leads to a convex optimization problem with a stable gra-
dient. Other loss functions such as mean absolute error
(MAE) were also investigated; however, its performance
was inferior to MSE.The batch size,defined as the num-
ber of samples per gradient update, was set to 32 slices
to make the best use of our CPU memory and com-
putational power while does not negatively affect the
model performance. Generally, a batch size of 32 is a
good choice and works fine, smaller batch size is found
to hurt the performance (e.g.,model robustness/stability
or generalizability). The number of epochs to train the
network was set to 120, resulting in a total of 4320 itera-
tions.This number of epochs was enough to reach train-
ing loss convergence. At each iteration, a batch of 32
images was randomly chosen from the training dataset
for training the networks.

Our end-to-end 2D U-Net architecture for image-to-
image translation resulted in a total of ∼2.0 million train-
able parameters.These parameters were optimized dur-
ing the model training on the training data set to learn
mapping a source MR contrast to a target contrast. Dur-
ing the training, the fitness of the model was regularly
verified on the validation data set. To prevent the pos-
sibility of the model overfitting problem, we applied an
early-stopping method in addition to the dropout regu-
larization technique. The early-stopping technique ter-
minates the training process early when there is no
improvement in the model performance. We monitored
the validation loss by passing it to early-stopping where
we have set the patience parameter to 20. The patience
parameter is the number of epochs to check for improve-
ment. We repeated the training processes several times

to ensure that the best solution was obtained and avoid
the problem of the initial seed of the optimization proce-
dure. The model that exhibited the best performance on
the validation data set was selected. The training was
executed on a 64-bit Windows Operating System, with
an Intel Core i5 CPU and 8 GB RAM that took around
34 h.Once the model’s training is finalized,it can be used
for image-to-image translation on the test set to gen-
erate a resembled 224 × 224 × 155 volumetric image
slice-by-slice in <1 min. Individual 2D U-Net models
were trained to perform the possible translations across
the T1, T2, and FLAIR contrasts as follows: T1 → T2,
T2 → T1, T1 → FLAIR, FLAIR → T1, T2 → FLAIR, and
FLAIR → T2. The training of all models was performed
using Keras API (version 2.6) with Tensorflow (version
2.6) as the backend in Python (version 3.7; Python Soft-
ware Foundation).

2.5 Model evaluation

The quality of the generated MR images with U-Net
was evaluated against the ground-truth images using
four pixel-wise metrics: MAE, MSE, peak signal-to-noise
ratio (PSNR), and structural similarity index (SSIM)
metric.39 These metrics take into account the quan-
titative as well as qualitative differences that mimic
human perception. The formula of MAE is given as:
MAE (x, y) = 1

n

∑n
i = 1 |yi − xi|, where n is the total num-

ber of pixels or data points, xi and yi are the ground-
truth and predicted values, respectively. MSE metric is
strongly dependent on the scale of intensities; there-
fore, we followed similar intensity normalization proce-
dures for fair comparison. It is mathematically defined
as: MSE (x, y) = 1

n

∑n
i = 1 (yi − xi)2. PSNR measures

if the synthesized MR is an evenly or sparsely dis-
tributed prediction. This metric takes into account both
the MSE and the largest possible intensity value of
the image. The PSNR is defined as: PSNR (x, y) =
10 × log10(I2max∕MSE), where I2max is the maximum pixel
value of the image that depends on the datatype. SSIM
attempts to capture the human perceived quality of
images by comparing two images.Its formula is given as:

SSIM(x, y) =
(2𝜇x𝜇y+C1)(2𝜎xy+C2)

(𝜇2
x+𝜇

2
y+C1)(𝜎2

x+𝜎
2
y+C2)

, where 𝜇 is the mean

image intensity, 𝜎2 is the variance of the image, 𝜎xy is
the covariance of the ground-truth (x) and predicted (y)
images, and C1 and C2 are constants added to stabilize
the division with a weak denominator. PSNR and SSIM
serve as widely used measures to assess overall quality,
primarily capturing features dominated by lower spatial
frequencies. To visually inspect the difference between
the synthetic and real MR images, difference maps or
residuals were computed as: (xi, yi) = yi − xi . The eval-
uation was performed on the normalized images.
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F IGURE 2 The comparison of synthetic-MR images generated using a U-Net model for one subject on a test data set. From left to right:
input MR images (source image contrast); synthetic-MR images (target image contrast); ground-truth/real MR image (target image contrast);
difference map (predicted–real MR image); and SSIM map. Rows show image-to-image translations across T1, T2, and FLAIR MR contrasts

3 RESULTS

3.1 Image quality

The results of the synthetic-MR images generated using
a U-Net model are presented in this section for all trans-
lations. These cross-sequence translations involve syn-
thesizing T1 from T2, T1 from FLAIR, T2 from FLAIR,
and vice versa.The synthetic-MR images compared with
their corresponding ground-truth ones are shown in Fig-
ure 2 for one example patient on the testing dataset.
Visually inspecting the synthetic images shows that they
are nearly indistinguishable from their corresponding
real ones. As shown in the figure, our model can effec-
tively synthesize tumor regions.Synthetic FLAIR images
exhibited lower visual quality compared to other trans-
lated images, represented in a noticeable loss of details

in the brain tissue on the image. The difference map,
intensity difference between the synthetic and ground-
truth images,shows small residuals of image intensities.
Most of the anatomical structures were preserved in the
synthesized images. The SSIM metric, which measures
the degree of similarity to ground-truth MRI images,has
indicated high similarity between the ground-truth and
synthesized images with values above 0.93.

The quantitative results of synthetic-MR images com-
pared with the ground-truth images are presented in
Table 1 for each translation on the test data set using
the MSE,MAE,SSIM,and PSNR evaluation metrics.The
lower MAE/MSE and higher PSNR/SSIM values (shown
in Table 1 with arrows) exhibit better results. The aver-
age value of the SSIM was above 0.93 for all transla-
tions, indicating how the synthetic images were struc-
turally similar to the ground-truth images.
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TABLE 1 Quantitative results of synthetic-MR images using U-Net compared with the ground-truth images evaluated using PSNR, MSE,
MAE, and SSIM metrics on the test dataset for all translations

Translation PSNR ↑ (dB) MAE ↓ MSE ↓ SSIM ↑

T1 → T2 29.45 ± 1.72 0.0124 ± 0.0027 0.0012 ± 0.0004 0.932 ± 0.023

T2 → T1 29.44 ± 1.85 0.0149 ± 0.0050 0.0012 ± 0.0005 0.937 ± 0.020

T1 → FLAIR 33.25 ± 1.55 0.0086 ± 0.0020 0.0005 ± 0.0002 0.946 ± 0.013

FLAIR → T1 30.73 ± 1.81 0.0125 ± 0.0038 0.0009 ± 0.0004 0.946 ± 0.017

T2 → FLAIR 33.01 ± 1.66 0.0089 ± 0.0027 0.0005 ± 0.0002 0.944 ± 0.015

FLAIR → T2 29.57 ± 1.78 0.0120 ± 0.0036 0.0012 ± 0.0005 0.936 ± 0.022

The vertical arrow’s direction indicates the trend for better results and higher image qualities. Horizontal arrows indicate the direction of synthesis. Results reported
as the mean ± 1 SD.

F IGURE 3 A plot of the training loss versus validation loss over the number of epochs for all translations. (a) T1 to T2, (b) T2 to T1, (c) T1 to
FLAIR, (d) FLAIR to T1, (e) T2 to FLAIR, and (f) FLAIR to T2. The training learning curve shows the goodness of the model’s learning, whereas
the validation learning curve shows the goodness of the model’s generalization

3.2 Model performance

Visualizing the training loss versus validation loss over
the number of epochs is an effective way to deter-
mine whether the developed model has been sufficiently
trained. The learning curve of model performance on
the training and validation datasets is widely used as a
tool to diagnose the learning and generalization behav-
ior of models (e.g.,model exhibits underfitting,overfitting,
or just well-fitting performance). Underfitting happens
when the model cannot achieve a satisfactorily low error
value on the training set, whereas overfitting happens
when the model fits the training dataset too well includ-
ing the statistical noise or random fluctuations in the
dataset.A just well-fitting is recognized by a training and
validation loss that decreases to a point of stability with
a minimal gap between the two final loss values.Figure 3

shows the learning curves of our U-Net model for the six
translations. From the figure, we can notice that the U-
Net has comparable performance on both training and
validation data sets. The learning curves demonstrated
a continuous decreasing trend until reaching the sta-
bilization (convergence) with the selected 120 epochs.
The training loss is always lower than the validation loss
and the gap between them is minimal (both curves are
very similar), demonstrating good generalizability of our
model for all translations. This also reveals that all mod-
els were well-fit.

3.3 Comparison with other methods

To make the comparison meaningful, we compared our
U-Net results with all other models that used the BRATS
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dataset to develop their state-of -the-art deep learning
models for image-to-image MR translation. Comparison
of the quantitative MAE, PSNR, and SSIM metrics indi-
cated that our results were overall as good as the best-
reported results in the literature. We achieved the best
MAE in all translations over the compared methods,
which demonstrates the advantage of our model. More-
over, our PSNR and SSIM results were very similar to
the best-reported results with a maximum difference of
1.0 dB and 3.5% (0.035), respectively.

4 DISCUSSION

Taking a transition from a given MR image contrast
(source) to another image contrast (target) can be per-
formed through a cross-sequence translation frame-
work. Deep learning-based methods are capable to
learn this nonlinear mapping. In this study,we developed
a deep convolutional U-Net model to perform image-to-
image translation across T1, T2, and FLAIR MRI con-
trasts for the brain.

The BRATS’2018 MRI datasets used in this study
were obtained from different institutions (acquired on
1.5/3T MRI scanners and various acquisition proto-
cols) for patients with brain lesions. The diversity in
the collected datasets helps in developing a model
that is robust to scanner types and setup practices as
well as has a higher degree of generalizability. It has
been known that the performance of a deep learn-
ing model depends on the amount of training data.
Thus, the size of the entire dataset used in this study
(∼47 700 images) was adequate for training our model
for improved prediction accuracy. All MRI subjects used
in this study were included image slices with patholo-
gies (brain tumors/lesions) and healthy tissue struc-
tures, almost equally present in the dataset. Training a
model on datasets that contain a mixture of images
with normal and abnormal tissue structures enables pro-
ducing a more robust model for real-world applications.
The provided BRATS data were further preprocessed
before feeding the images to the network by removing
null slices, resizing the images, and applying intensity
normalization and scaling.The zero-mean/unit-variance
intensity normalization technique that was applied in this
study is less sensitive to high or low-intensity outliers
compared with others such as minimum/maximum nor-
malization procedures. It also preserves the distribution
of intensity values.

The proposed U-Net model architecture (Figure 1)
represents a complex mapping function that performs
image-to-image translation across MR contrasts. The
network architecture, optimization algorithm, hyper-
parameter selection, and the number of trainable
parameters affect the model performance. As a result,
we examined various parameter settings in developing
our U-Net model to determine the optimal possible

performance in the image-to-image translation task.
We assessed the impact of the inclusion of batch nor-
malization in our U-Net architecture on the prediction
results. Based on trial-and-errors testing, we found that
batch normalization does not affect the predicted results
as we normalized that input data before feeding it to
the network. Therefore, it was not included in our model.
Applying intensity normalization to the input data helps
in reducing the internal covariate shift of the training
datasets for improved robustness and faster conver-
gence. We also assessed replacing the up-sampling
operation in our U-Net with transposed convolutions (fil-
ter size of 2 × 2 and stride = 2).The results showed that
both operations provide almost similar results (PSNR
and SSIM values); as a result, we kept the up-sampling
since it offers fast computation. The dropout layer in our
network helps to reduce the risk of model overfitting
that results in poor generalization of the model. Also,
implementing a validation process on a hold-out data
set helps prevent the overfitting problem and improve
the network’s generalizability on unseen data during the
training. The choice of the Adam optimization algorithm
is because it offers faster convergence compared with
the standard stochastic gradient descent methods.

The experimental results (Figure 2) demonstrate the
capability of our model for accurately performing image-
to-image translation on the test set. Side-by-side visual
comparisons of the images revealed that the synthetic-
MR images were very similar to the real ones for all
translations. Tumor regions were successfully synthe-
sized by our model. Synthetic FLAIR MR images exhib-
ited loss of details, blurring, and other imperfections.
They had slightly lower quality compared with synthetic
T1 and T2 MR images. This issue may highlight that
there are limitations associated with generating this
image contrast. The difference maps show small resid-
uals; however, further improvement is required to have
clinical utility. We can observe that there is a slight
underestimation of the intensities as a trend across
all translations. The performance learning curves (Fig-
ure 3) demonstrate a good fit of our models for image-
to-image translation across different MR contrasts. In
addition, the models show high generalizability, robust-
ness, and stability. Compared with other state-of -the-art
deep learning models using BRATS datasets (Table 2),
the results achieved by our model were comparable
to the best results for MR image-to-image translations.
Our MAE results were superior to all reported results
achieved by other models7,11,13,21,14 for all translations.
For the PSNR metric, our results were as good as
the best results reported for T1 → T2 translation by
Chartsias et al.7 (29.45 vs. 30.96 dB), T2 → T1 by Dai
et al.21 (29.44 vs. 30.16 dB), T1 → FLAIR by Chart-
sias et al.7 (33.25 vs. 30.32 dB), FLAIR → T1 by Dai
et al.21 (30.73 vs. 30.16 dB), T2 → FLAIR by Dai et al.21

(33.01 vs. 28.98 dB), and FLAIR → T2 by Dai et al.21

(29.57 vs. 30.11 dB). Similarly for SSIM metric, our
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TABLE 2 Comparison of our U-Net model performance on the test data set with other state-of -the-art deep learning models trained on the
BRATS dataset

Translation Study (year) Network PSNR ↑(dB) MAE ↓ SSIM ↑

T1 → T2 Yang et al.14 Conditional-GAN 22.56 8.292 0.866

Dai et al.21 Conditional-GAN 30.02 0.041 0.969

Yu et al.11 Edge-aware-GAN 29.98 0.088 0.967

Dar et al.13 Conditional-GAN 27.19 —— 0.946

Chartsias et al.7 Dilated-CNN 30.96 0.333 0.929

This study U-Net 29.45 0.012 0.932

T2 → T1 Yang et al.14 Conditional-GAN 22.52 9.937 0.854

Dai et al.21 Conditional-GAN 30.16 0.058 0.950

Dar et al.13 Conditional-GAN 25.80 —— 0.940

This study U-Net 29.44 0.015 0.937

T1 → FLAIR Yang et al.14 Conditional-GAN 22.69 7.934 0.837

Dai et al.21 Conditional-GAN 29.09 0.041 0.959

Yu et al.11 Edge-aware-GAN 30.11 0.105 0.963

Chartsias et al.7 Dilated-CNN 30.32 0.283 0.897

This study U-Net 33.25 0.009 0.946

FLAIR → T1 Dai et al.21 Conditional-GAN 30.16 0.057 0.952

This study U-Net 30.73 0.012 0.946

T2 → FLAIR Dai et al.21 Conditional-GAN 28.98 0.042 0.958

Yang et al.14 Conditional-GAN 21.66 8.858 0.836

This study U-Net 33.01 0.009 0.944

FLAIR → T2 Dai et al.21 Conditional-GAN 30.11 0.040 0.970

This study U-Net 29.57 0.012 0.936

Bold indicates the best results. The vertical arrow’s direction indicates the trend for better results and higher image qualities. Horizontal arrows indicate the direction
of synthesis.

results were comparable to the best results that were
reported by Dai et al.21 (0.932 vs. 0.969) for T1 → T2,
Dai et al.21 (0.937 vs. 0.950) for T2 → T1, Yu et al.11

(0.946 vs. 0.963) for T1 → FLAIR, Dai et al.21 (0.946 vs.
0.952) for FLAIR → T1, Dai et al.21 (0.944 vs. 0.958)
for T2 → FLAIR, and Dai et al.21 (0.936 vs. 0.970) for
FLAIR → T2. The quality of the synthetic images pro-
duced by our model shows the potential for clinical use
and could be beneficial in reducing the cost to the patient
and shortening the acquisition time by reducing the
number of scans required.

While the proposed method in this study and Dai
et al.21 implemented an image-to-image translation
approach for comprehensive evaluation across multi-
ple MR sequences, there is also another alternative
approach based on multimodel image synthesis7 where
more than one sequence are used as inputs to synthe-
size a single output sequence. Each strategy has its
inherent weaknesses and strengths. For instance, the
image-to-image translation strategy requires only one
image sequence as input to synthesize multiple other
complementary sequences. However, the quality of the
synthesized images is relatively lower compared with

the multimodal methods. On the other hand, multimodal
strategy provides superior synthetic image sequence
quality as they could capture more feature information
for multiple distinctive sequences but gathering multi-
ple MR sequences are not always possible. The mul-
timodal strategy may be a useful complement to the
image-to-image translation strategy. Regarding the cur-
rent worldwide COVID-19 pandemic, MRI synthesis can
be utilized for eliminating the indefiniteness of the clini-
cal spectrum for better screening. Different MR imaging
modalities can be used for understanding the common
features of COVID-19 pneumonia for radiologists.40,41

In this direction, this is particularly crucial for patients
who require dynamic observation and for the examina-
tion of children and young people due to the ionizing
radiation-free nature of MR images.41 MR image syn-
thesis could also be applied to improve the brain tumor
structures contouring in radiotherapy treatment planning
by generating the missing MRI sequence information.27

Radiotherapy treatment of brain cancer patients often
requires more than one MR sequence for delineating the
structures. Studies27,19 have reported that brain lesions
could be delineated on the synthesized MR images with
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reasonable accuracy; dice similarity coefficient between
the synthesized and real brain MR images ranged from
0.71 to 0.97 for different sequences.

The developed model in this study only requires one
MR image contrast to perform different translations with
promising accuracy. Most importantly, our model uses
standard MR image contrasts (T1, T2, and FLAIR) that
are the most common general diagnostic MR sequences
and do not need special pulse sequences. There are a
few limitations that can be highlighted in this study as
well. First, our model was developed using a 2D deep
learning convolutional method for MR image synthe-
sis due to computer memory and computational power
restrictions. Future development may consider extend-
ing this work to a 3D approach to predict more accurate
interslice information. Second, U-Net performs pixel-
wise image synthesis based on paired data, requiring
perfect image coregistration for proper model training.
Thus, improper aligning of the paired MR images may
cause losing some information of brain structures in the
produced images.

5 CONCLUSION

We proposed a deep learning convolutional U-Net to
perform image-to-image translation across MRI con-
trasts for the brain.Our model exhibited competitive per-
formance to the best state-of -the-art developed models
for this task using the BRATS data; however, we should
highlight that the comparison with the state-of -the-art
methods was not performed based on the same test
set. It generates synthetic-MR images of remarkable
visual similarity to the ground-truth images on the test-
ing dataset.Our results could hold great promise for clin-
ical use for improved clinical decision-making and better
diagnosis of brain cancer patients due to the availabil-
ity of multicontrast MRIs. This approach may be clini-
cally relevant and setting a significant step to efficiently
fill a gap of absent MR sequences without additional
scanning.
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