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A B S T R A C T   

Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized 
by diminished immune response and chronic inflammation. Recent investigations have highlighted similar im-
mune alterations in patients with reduced kidney function. The immune system and kidney function have been 
found to be closely interconnected. Studies have shown that as kidney function declines, both innate and 
adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and 
regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research 
suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and 
heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD 
patients display shorter telomeres in both CD4+ and CD8+ T cells. 

Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and 
promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota 
can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to 
compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins 
exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the acti-
vation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and 
soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. 

In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing al-
terations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to 
immunosenescence.   

At a glance commentary 

Scientific background on the subject 

Immunosenescence, which becomes apparent in individuals aged 
50 and above, involves the manifestation of diminished immune 

responses and chronic inflammation. This phenomenon is also 
observed in patients with reduced kidney function. The growing 
recognition of the interconnectedness between immunity and 
kidney health underscores the importance of this field. 

What this study adds to the field 

In the present review, we delve into the fundamental mechanisms 
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underlying immunosenescence within chronic kidney disease 
(CKD). This examination comprehensively explores alterations in 
adaptive immunity, gut dysbiosis, and clinical observations. By 
unveiling the intricate interplay between immune decline and 
kidney function, this review sheds light on the complex relation-
ships. These insights pave the way for potential therapeutic stra-
tegies targeting both immune response and kidney inflammation.   

Introduction 

Immunosenescence usually refers to the phenomenon of defective 
immune response and chronic inflammation caused by changes in the 
immune system in healthy individuals aged 50 years or older. As in-
dividuals age, the process of autophagy in immune cells declines, 
impeding the breakdown of dysfunctional mitochondria. This results in 
the accumulation of reactive oxygen species and DNA damage. These 
physiological changes, along with aging, impair vaccine responses and 
increase susceptibility to infection, autoimmunity, and cancer [1]. 

Chronic kidney disease (CKD) is typically defined as kidney damage 
or a glomerular filtration rate (GFR) of <60 mL/min/1.73 m2 or pro-
teinuria/structural change for 3 months or more [2]. Previous studies 
have shown that as kidney function declines, CKD patients are predis-
posed to a higher cardiovascular risk, increased susceptibility to infec-
tion and certain types of cancers, and reduced response to immunization 
[3,4]. According to a study based on the US Renal Data System, from 
2001 to 2010, the mortality risk due to sepsis is approximately 250-fold 
higher among end stage kidney disease (ESKD, also known as kidney 
failure) patients than in the general population [5]. An international 
collaborative study revealed a significantly increased risk of certain 
cancers in patients under dialysis. This study reported that ESKD pa-
tients had a 1.6–4 standardized incidence ratio (SIR) of cervical cancer, 
which is usually secondary to papillomavirus, and a 1.2–1.5 SIR of liver 
cancer, which may be associated with hepatitis B and C viruses [6]. 

Currently, investigators have revealed the close and interactive 
connection between the immune system and kidney function, which is 
independent of the underlying disease of kidney insufficiency and may 
be one reason why patients with kidney insufficiency are more fragile. 
Previous studies have grouped CKD patients into the “inflamm-aging” 
condition, which shifts lymphocytes toward a senescent and exhausted 
phenotype, similar to the aging process [7,8]. Immunological aging in 
patients with ESKD is accelerated and increased by 20 years compared 
with age-matched healthy individuals [1]. Furthermore, kidney insuf-
ficiency alters the environment inside the intestinal lumen, leading to 
gut dysbiosis, which further affects intestinal immunity. Moreover, 
several factors have been observed to be associated with heightened 
systemic inflammation during the dialysis procedure. These include the 
transmembrane passage of bacterial lipopolysaccharide (LPS) from 
contaminated dialysate into the blood component [9], activation of 
mononuclear cells and the subsequent increase in production of proin-
flammatory cytokines upon contact with the dialysis membrane [10], 
activation of the complement system upon blood–membrane interaction 
[11], and an increase in reactive oxygen species (ROS) and depletion of 
antioxidants during hemodialysis [12]. In this review, we discuss the key 
mechanisms of immunosenescence in CKD, from changes in adaptive 
immunity to gut dysbiosis, and summarize the clinical results of 
immunosenescence. 

Altered innate and adaptive immunity in chronic kidney disease 

Change of innate immunity in chronic kidney disease 

The innate immunity is characterized by non-specific recognition of 
self and non-self stimuli through pattern recognition receptors (PRRs). 
These receptors are present in various myeloid cells, which serve as the 
first line of defense against pathogens. Activation of PRRs triggers 

immune cell activation, complement system activation, and coagulation 
system activation [13,14]. Multiple studies have reported increased 
expression of PRRs in different kidney diseases. For instance, TLR4 (TLR, 
toll-like receptor) expression is increased in lupus nephritis [15], anti-
neutrophil cytoplasmic antibody-associated vasculitis/nephritis [16], 
sepsis-associated kidney injury [17], ESKD [18], and aging kidney [19]. 
Xi et al. demonstrated through animal models that several components 
of innate immunity are overexpressed, including TLR1, 2, 3, 4, 5, 11, as 
well as heat-shock protein 70 (HSP70) and high mobility group box 1 
(HMGB1). It is proposed that TLR upregulation leads to the induction of 
proinflammatory cytokines, fibrosis, and progression of CKD [19]. Ac-
cording to this investigation, different kidney diseases or aging kidneys 
can activate innate immunity in the kidney, resulting in the progression 
of CKD [19]. 

Kidney disease can lead to increased local innate immunity in the 
kidney, as well as systemic activation and dysfunction of the innate 
immune system in various aspects [20]. Patients with ESKD exhibit 
expansion of the CD14+CD16+ subset in circulating monocytes, along 
with increased expression and activity of TLR4 in neutrophils and 
monocytes [18]. The production of pro-inflammatory cytokines tumor 
necrosis factor (TNF) and interleukin-6 (IL-6) by activated monocytes 
was also increased [18], which was associated with increased systemic 
inflammation. However, impaired phagocytic activity against pathogens 
has been observed in uremic patients [21]. Uremia is also associated 
with depletion of the plasmacytoid dendritic cell subset, and the he-
modialysis procedure significantly impairs the ability to produce tumor 
necrosis factor-α (TNF-α) in response to LPS [22]. Verkade et al. 
demonstrated impaired stimulation of allogeneic T-cells by dendritic 
cells in advanced kidney disease patients [23]. For short, uremia is 
associated with dysregulation of innate immunity, characterized by 
upregulation of chemokine/chemokine and ROS production [24], 
impaired phagocytosis, and impaired stimulation of T cells [20]. 

Change of adaptive immunity in chronic kidney disease 

The adaptive immune system generates immunological memory 
following an initial response to a specific pathogen, which can lead to an 
experienced and enhanced response when re-encountering that path-
ogen in the future. In patients with declining kidney function, nitroge-
nous compounds and cytokines that are usually cleared by the kidney 
accumulate in the body, a condition known as uremia. Uremia has a 
detrimental effect on the quantity and quality of the adaptive immune 
system [3]. The number of naive T cells, regular T cells, and both naive 
and memory B cells decrease, while memory T cells increase in number. 
By analyzing the profile of T cell subsets, Litjens et al. observed a 
decrease of 50% in naive CD4 T cells (CCR7+CD45RO-) and a corre-
sponding 34% rise in central memory CD4 T cells (CCR7+CD45RO+) 
among CKD stage 5 patients as compared to healthy individuals. A 
similar cellular shift was also observed in the group of CD8 T cells, with a 
reduction in naive CD8 T cells (CCR7+CD45RO-) and an increase in 
effector memory CD8 T cells (CCR7-CD45RO-). Litjens and colleagues 
attributed the change in the composition of T cell subsets in CKD pa-
tients to impaired cytokine production, especially interleukin-17 (IL-17) 
[25]. Similar conclusions were drawn by Yoon et al. [26]. 

Not only did investigators reveal the shift in CD4 and CD8 T cell 
composition, but they also reported that CKD and ESKD patients showed 
similar phenomena to the aging population: premature decline in thymic 
function. After reaching 40 years of age, the thymic output of new T cells 
(recent thymic emigrants) in the bloodstream significantly diminishes, 
and the maintenance of T-cell levels in circulation is sustained by ho-
meostatic proliferation [27]. Betjes et al. investigated ESKD patients and 
found that they had a decreased number of recent thymic emigrants and 
increased homeostatic proliferation of naive T cells. They also revealed 
that with increased homeostatic proliferation, naive T cells in ESKD 
patients are more susceptible to activation-induced apoptosis [28]. It is 
worth noting that thymic T cell output was significantly lower in the 
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CKD stage 5 population compared with the healthy, age-related popu-
lation, with shorter T cell telomeres in both CD4+ and CD8+ T cells 
[Fig. 1] [29]. Meijers et al. also confirmed the reduction of CD28 
expression in CD4 and CD8 subpopulations, which implies that both CD4 
and CD8 groups of cells tend to be more differentiated in patients with 
poor kidney function [29]. Kidney replacement therapy modalities do 
not affect the immunosenescence phenomenon in the CKD population. 
In a comparison of immunological changes between ESKD patients un-
dergoing hemodialysis and peritoneal dialysis, no significant variations 
in T cell counts and aging indicators were observed, indicating that 
immunosenescence is a universal occurrence in ESKD patients, irre-
spective of the treatment approach [29,30]. 

Although several studies have demonstrated an association between 
the upregulation of T follicular helper cells (TFH cells) and chronic 
inflammation in cardiovascular and autoimmune diseases, Hartzell and 
colleagues reported no difference in total TFH 
(CXCR5+PD1+CD4+CD8− ) levels among patients with ESKD, CKD and 
the healthy population. However, ESKD patients had significantly lower 
frequencies of TFH1 (CCR6− CXCR3+CXCR5+PD1+CD4+CD8− ) cells 
but more TFH2 (CCR6− CXCR3− CXCR5+PD1+CD4+CD8− ) and TFH17 
(CCR6+CXCR3− CXCR5+PD1+CD4+CD8− ) cells. A previous study 
suggested that TFH2 contributes to B cell maturation by aggravated B 
cells converting into plasma blasts in germinal centers [31], which may 
explain the significant increase in circulating plasmablasts observed in 
ESRD patients in the same study [32]. 

It is worth noting that uremic status also decreases TLR expression, 
and one of TLR’s function is involved in the maturation of dendritic cells 
[3,33,34]. Dendritic cells, as one of the antigen-presenting cells (APC), 
primarily function to present antigens to lymphocytes and induce their 
activation. By lowering TLR expression, lymphocyte activation is 

reduced in infection-prone CKD and ESKD patients, which increases 
their susceptibility to bacterial infections. 

Uremic status not only induces lymphocyte phenotype shifting and 
increased differentiation status, but also affects inflammatory cytokine 
patterns. In 2020, Hartzell and colleagues analyzed the inflammatory 
cytokine patterns of ESRD, CKD patients, and the healthy population, 
revealing that ESKD patients had significantly higher serum levels of 
interferon-gamma (IFN-γ), TNF-α, soluble CD40L (sCD40L), 
Granulocyte-macrophage colony-stimulating factor (GM-CSF), 
interleukin-4 (IL-4), interleukin-8 (IL-8), Monocyte chemoattractant 
protein-1 (MCP-1), and Macrophage inflammatory protein-1β (MIP-1β) 
than CKD and the healthy population. Following mitogen stimulation, 
CD4+ and CD8+ T cells in the ESRD group exhibited a pro-inflammatory 
phenotype with heightened levels of IFN-γ and TNF-α. On the other 
hand, both CKD and ESKD patients had elevated interleukin-2 (IL-2) 
levels [32]. Al-rawi et al. further reported a significant increase in IL-2 
and IL-17 levels, which were paralleled with an increase in serum 
creatinine, urea, and urinary albumin concentration in 2022 [35]. 

Uremia-associated dysregulation of APCs, T cells, and cytokine 
expression can lead to impaired vaccine responses [36,37], increased 
proinflammatory status [38], and a higher risk for infection [33] and 
cardiovascular events [39,40]. Decreased B cell activation and increased 
apoptosis can also diminish serologic responses against pathogens and 
immunogenicity after vaccination [3]. In summary, CKD and ESKD are 
associated with adaptive immunosenescence, which is manifested as a 
decreased capacity of T and B cells against new infections, decreased 
naive lymphocytes, increased differentiated lymphocyte strain, and 
increased inflammatory cytokines. 

Fig. 1. The shift of lymphocytes towards a senescent and exhausted phenotype, as well as a premature decline in thymic function, in patients with chronic kidney 
disease (CKD). 
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Chronic kidney disease induces gut dysbiosis 

The gut is the largest immune organ in the body, with a complex 
mucosal immune system. Intestinal epithelial cells directly participate in 
immunological surveillance and direction of host responses in the gut, 
and lymphocytes and innate immune cells are found throughout the 
epithelial layers [41]. Recent studies have revealed that not only does 
the complex immune system of the gut play an important role in human 
physiology and pathophysiology, but the trillions of microorganisms 
harbored by the gut also host a special role in physiological and 
immunological protection. Nowadays, gut microbiota is considered the 
bridge between aging, immune system, and kidneys. It plays a role in 
organ cross-talk via the gut–kidney axis and the gut–brain axis through 
immune regulation [42]. Gut microbiota could activate the bone 
marrow-derived immune cells, which could result in low-grade inflam-
mation [42]. Yang et al. demonstrated the significant role of gut 
microbiota in bone formation and health, highlighting their ability to 
induce insulin-like growth factor-1 (IGF-1), which promotes bone for-
mation [43]. They observed higher expression of IGF-1 in the bone 
marrow of mice colonized with microbiota compared to germ-free mice. 
Additionally, short-term colonization of microbiota led to increased 
expression of nuclear factor-kappaB ligand (RANKL), TNF-α, and 
interleukin-1 beta (IL-1β) in the colon, as well as increased RANKL 
expression in the bone marrow [43]. Another study by Josefsdottir et al. 
reported that depletion of the intestinal microbiome through 
broad-spectrum antibiotics resulted in the depletion of hematopoietic 
stem cells and impaired granulocyte maturation, which could be 
partially reversed by colon fecal microbiota transplantation [44]. Thus, 
both studies by Yang and Josefsdottir suggest that the gut microbiome 
plays a crucial role in bone formation, bone health, and the activity of 
bone marrow hematopoietic stem cells through hormone and cytokine 
production. In the CKD and ESKD population, several factors contribute 
to gut dysbiosis and increased intestinal permeability. These factors 
include metabolic acidosis, uremic toxins, congestion of the intestinal 
wall, vascular calcification associated with bowel ischemia, and 
frequent exposure to antibiotics [45]. The CKD diet also contributes to 
alterations in gut microbiota [45,46]. Animal models, as demonstrated 
by Andersen et al. have shown that uremia is associated with intestinal 
barrier disruption and translocation of intestinal bacteria, leading to 
increased systemic inflammation [47], which is consistent with the 
findings reported by Konrad [48] and Yang [49]. For short, uremia in 
CKD disrupts the composition of the colon microbiota and epithelial 
junction, leading to bacteria translocation, endotoxemia, and systemic 
inflammation. The translocation of bacteria has been demonstrated in 
early uremic animal models through direct culture methods [50], as well 
as through the detection of bacterial DNA from feces and circulation in 
animal model and patient with kidney function declined or on dialysis 
[51–53]. These phenomena have been proposed as leaky gut syndrome 
in CKD [45,54]. Although not in patients with declined kidney function, 
a recently published study by Bernard-Raichon provided some evidence 
linked between gut dysbiosis and bacteremia. By analyzing the blood 
culture result, they investigated paired microbiome data between gut 
microbiome dysbiosis and microbial bloodstream infections indicating 
that bacteria may translocate from the gut into the systemic circulation 
in coronavirus disease 2019 (COVID-19) patients [55]. 

Similar alterations in the adaptive immune system are observed in 
both the aging population and individuals with kidney failure. Addi-
tionally, these two populations also exhibit comparable changes in their 
gut environment. Age-related gut microbiota changes, including 
decreasing diversity and expansion in proteolytic bacteria, were re-
ported in a previous study [56]. Furthermore, old age also resulted in 
increased gut permeability. By investigating the biomarker of plasma 
intestinal permeability, zonulin, previous studies have demonstrated the 
disruption of the gut-blood barrier in aging individuals. These studies 
have reported that leaky gut syndrome may play a role in the age-related 
increase in inflammation and frailty [57–59]. With declining kidney 

function, the intestinal environment was modulated. Uremia influences 
metabolic derangements and promotes pathogen overgrowth. In 2012, 
Wang and colleagues reported that all the observed genera, including 
Klebsiella spp, Proteus spp, Escherichia spp, Enterobacter spp, and Pseu-
domonas spp, were overgrown in the guts of ESKD patients, and bacterial 
DNAs can be detected in the blood of 20% of ESKD patients [51]. Besides 
the overgrowth of microbiota, the change in diversity and enterotype 
shift was also observed in CKD and ESKD patients. Jiang et al. reported 
that the enterotypes change from Prevotella to Bacteroides in ESRD pa-
tients compared to the healthy individual [60]. Vaziri and colleagues 
analyzed the stools from ESKD patients and revealed that kidney failure 
status significantly modifies the composition of the gut microbiome. 
There is a decrease in the Lactobacillus family and an increase in the 
Enterobacteriaceae family under uremic status [61]. Hu et al. also 
revealed that patients with CKD exhibited a distinct gut microbial 
community compared to the healthy population. CKD patients displayed 
lower abundances of Candida, Bjerkandera, Rhodotorula, and Ganoderma, 
while exhibiting a higher abundance of Saccharomyces [62]. Asgharian 
and colleagues elucidated that alterations in the gut microbiome may 
contribute to uremic toxicity and inflammation in individuals with 
ESKD. They discovered a significant positive correlation between the 
Prevotellaceae family and total antioxidant capacity, Lactobacilli species 
and C-reactive protein as well as p-cresol, and Scardovia wiggsiae and 
indoxyl sulfate (IS) [63]. In the review authored by Huang et al. it was 
summarized that in CKD patients, there is a noteworthy decrease in the 
levels of Lactobacillus, Bifidobacterium, Bacteroides, Akkermansia, Rumi-
nococcaceae, and Prevotella, along with an elevation in Escherichia coli 
and Enterococcus. These findings indicate a reduction in probiotic mi-
croorganisms and an increase in the abundance of pathogenic bacteria in 
patients with kidney failure [64]. These studies have shown that gut 
dysbiosis could be one of the contributors to increased systemic 
inflammation in CKD or ESRD patients. D-lactate, high-sensitive 
C-reactive protein, and interleukin-6 levels were substantially higher 
in these patients, indicating the onset of systemic inflammation [51,60, 
62]. Based on their research, Andersen et al. deduced that uremia is 
linked to intestinal dysbiosis, intestinal barrier dysfunction, and bacte-
rial translocation, culminating in persistent systemic inflammation in 
CKD [47]. 

Not only can uremic status lead to gut dysbiosis, but gut dysbiosis can 
also affect kidney function. Two pathways through which gut dysbiosis 
can affect kidney function are metabolite and immune mediation [42, 
65]. Gut dysbiosis is linked to elevated production of intestinally derived 
metabolites, such as p-cresol, indole, and trimethylamine (TMA), which 
serve as precursors of uremic toxins [66,67]. In 2015, Xu and colleagues 
reported that the median plasma trimethylamine-N-oxide (TMAO) level 
was 30.33 μmol/L in CKD patients, nearly 15-fold higher compared to 
healthy controls [68]. Recent studies have revealed that alterations in 
TMAO levels are not only associated with uremia but also with dietary 
modifications in human trials [69,70], as well as changes in gut 
microbiota composition induced by metformin [71]. Uremia can lead to 
gut dysbiosis, characterized by an imbalance in gut bacteria, including 
an expansion of certain bacteria that possess uricase, p-cresyl-forming 
enzymes, and indole-forming enzymes [61,72]. Intestinal bacteria play a 
role in the generation of gut-derived uremic toxins, such as p-cresol 
sulfate (PCS) and indoxyl sulfate [73]. It is hypothesized that these 
gut-derived uremic toxins or their precursors may leak into the systemic 
circulation, contributing to kidney damage and increased cardiovascular 
risk [74]. Furthermore, in CKD, LPS from bacteria can enter the blood-
stream [65], and there may also be instances of bacterial translocation 
[51]. The presence of LPS or bacteria in the circulation can induce 
systemic inflammation, potentially leading to kidney damage. 
Immune-mediated kidney damage arises from the activation of immune 
cells in the intestine due to dysbiosis [75]. The activated immune cells 
increase the production of cytokines [42–44] and soluble urokinase-type 
plasminogen activator receptor (suPAR) [76–78], resulting in kidney 
inflammation. Hayek et al. also found that an increased level of suPAR 

T.H. Lee et al.                                                                                                                                                                                                                                   



Biomedical Journal 47 (2024) 100638

5

was independently linked to the development of CKD and a hastened 
decrease in estimated glomerular filtration rate (eGFR) [76]. 

Aside from CKD, it is worth noting that diet, alcohol, and various 
lifestyle-related factors, such as a Western diet, excessive alcohol con-
sumption, and psychological stress, have also been associated with the 
development of gut dysbiosis [79]. In order to address gut dysbiosis and 
identify potential treatment targets for CKD, researchers have explored 
multiple interventions. These interventions include dietary modifica-
tions, fecal microbial transplantation, inhibitors targeting TMAO syn-
thesis [80,81], as well as the supplementation of prebiotics or probiotics 
[82,83]. 

In brief, both age and CKD can result in gut dysbiosis and increased 
gut permeability, which are associated with activation of immune cells, 
increased production of cytokines and pro-inflammatory mediators, and 
local and systemic inflammation. The immune changes in aged-related 
gut dysbiosis and the chronic inflammation changes resulting from gut 
dysbiosis may also lead to CKD progression. 

The clinical results of inflamm-aging in chronic kidney disease 
(CKD) and end stage kidney disease (ESKD) patients 

The immune integrity of individuals with kidney function insuffi-
ciency is known to be compromised, and thus it is not surprising that 
patients with CKD and ESKD are highly susceptible to infections, exhibit 
reduced response to vaccination, and have an increased risk of cardio-
vascular events [Fig. 2] [3,4,39,84,85]. 

Advanced CKD is linked with an elevated risk of severe infections, 
such as urinary tract infections, lower respiratory tract infections, cen-
tral nervous system infections, and sepsis [86]. The heightened risk of 
infection in advanced CKD is linked with subsequent negative outcomes. 
Based on their investigation of the Canadian Prospective Cohort (Can-
PREDDICT), Hassan and colleagues found that infectious episodes were 
independently associated with an elevated risk of cardiovascular 
ischemia, congestive heart failure, end-stage kidney disease, or 

mortality [87]. As kidney function decreases, the premature alterations 
in the immune system, such as reduced production of new T cells from 
the thymus, decreased relative telomere length of T cells [29], and a 
more differentiated memory T-cell compartment [25,26], make patients 
highly vulnerable to infections. This decline in kidney function creates a 
vicious cycle in CKD patients. 

Moreover, vaccination seems to have little effect on breaking this 
vicious cycle. For instance, dialysis patients have been shown to have 
lower protective antibody titers and an inability to maintain adequate 
antibody titers over time after hepatitis B virus vaccination [84,88,89]. 
Therefore, the Centers for Disease Control and Prevention (CDC) rec-
ommends that CKD patients receive HBV vaccination early on in the 
course of kidney disease and receive higher doses and/or additional 
boosters to achieve adequate protection [88]. While annual influenza 
vaccination has been recommended for dialysis patients, Remschmidt 
et al.’s meta-analysis indicates that the protective benefits of influenza 
vaccination in individuals with ESKD are restricted and of poor quality 
[85]. 

During the COVID-19 pandemic, CKD has been identified as a key 
risk factor for mortality [90–92]. Gansevoort and colleagues reported a 
graded association between the level of kidney dysfunction and the risk 
of COVID-19 mortality [91]. Based on the OpenSAFELY project, which 
examined 17 million patients, dialysis, organ transplant, and stage 4 and 
5 CKD were three of the four comorbidities associated with the highest 
mortality risk from COVID-19 [90]. The higher risk of virus infection 
might be associated with the relative lowering level of TFH1 in CKD 
patients [32], which plays a pivotal role in response to viral infection 
[93,94]. Furthermore, studies have demonstrated that the immunoge-
nicity rate after vaccination is lower in CKD and ESKD patients [36,95, 
96]. Besides, a state of chronic systemic inflammation also increases 
morbidity and mortality in kidney insufficiency patients [97,98]. In 
brief, the phenomenon of inflamm-aging in individuals with kidney 
insufficiency renders this population susceptible to diminished immu-
nogenicity following vaccination, while the presence of chronic 

Fig. 2. The clinical outcomes of inflamm-aging in patients with chronic kidney disease (CKD) and end stage kidney disease (ESKD).  
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inflammation and inflamm-aging renders CKD patients prone to 
heightened morbidity and mortality throughout the COVID-19 
pandemic. 

Conclusion 

CKD and ESKD patients face an immunosenescence status nearly 20 
years earlier compared to age-matched healthy individuals [1]. The 
accumulation of uremic toxins influence the innate immunity via 
upregulation of chemokine/chemokine and ROS production [24], 
impaired phagocytosis, and impaired stimulation of T cells [20]. In 
adaptive immune system, uremic status shifts lymphocytes towards se-
nescent and exhausted phenotypes, lowers thymic T cell output, and 
decreases the relative telomere length of T cells [28], weakening the 
adaptive immune system in kidney insufficiency. In addition, Uremia is 
also associated with gut dysbiosis, which results in alterations in the 
diversity and abundance of gut microbiota. These changes further 
enhance the production of precursors of uremic toxins, ultimately 
exacerbating both local and systemic inflammation. Consequently, the 
accumulation of gut-derived uremic toxins contributes to an accelerated 
decline in kidney function [64–67,76]. The immunosenescence, which 
results in impaired vaccine responses, increased susceptibility to infec-
tion, autoimmunity, and cancer, as well as increased cardiovascular risk, 
may explain the fragility and premature mortality in CKD and ESKD 
patients [3,4,39,84,85]. 
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