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Abstract

Histone deacetylases (HDACs) are important regulators of gene expression. Specific structural features and distinct regulative mecha-
nisms rationalize the separation of the 18 different human HDACs into four classes. The class II comprises a heterogeneous group of
nuclear and cytosolic HDACs involved in the regulation of several cellular functions, not just limited to transcriptional repression. In par-
ticular, HDAC4, 5, 7 and 9 belong to the subclass IIa and share many transcriptional partners, including members of the MEF2 family.
Genetic studies in mice have disclosed the fundamental contribution of class IIa HDACs to specific developmental/differentiation path-
ways. In this review, we discuss about the recent literature, which hints a role of class IIa HDACs in the development, growth and aggres-
siveness of cancer cells.
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Introduction

Chromatin organization plays a key role in the control of gene
expression. In the nucleosome, DNA is wrapped around a core of
positively charged proteins: the histones [1]. Post-translational
modifications (PTM) of histones such as acetylation, phosphory-
lation, ubiquitination and methylation regulate chromatin architec-
ture in response to environmental fluctuations. These PTMs, by
locally influencing the accessibility to DNA of transcription factors,
link extracellular signals to changes in gene expression. The final
transcriptional landscape on a given enhancer/promoter is 

provided by the interplay between different PTMs of histones and
epigenetic changes on DNA itself [2].

Acetylation at �-amino groups of conserved lysine residues
influences the activity of several proteins including histones, tran-
scription factors and cytoskeletal elements. Lysines acetylation is
controlled by the antagonistic engagement of two families of
enzymes: the histone acetyltransferases (HATs) and the histone
deacetylases (HDACs). On histones, lysines acetylation weakens
the interaction of their positively charged tails with the negative
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backbone of DNA, thus augmenting chromatin accessibility. This
loosening favours the recruitment of transcription factors at the
promoter of specific genes. HDACs, on the opposite, by catalysing
the removal of acetyl groups promote chromatin condensation
and repress gene transcription [3].

The 18 human HDACs can be grouped into four different classes,
based on sequence homologies to the yeast orthologues Rpd3,
Hda1 and Sir2 (Fig. 1). Class I includes HDAC1, -2, -3 and -8, which
show homologies with Rpd3. Class II comprises HDAC4, -5, -6, -7,
-9, -10 and presents homology with Hda1. Class II HDACs is further
subdivided into classes IIa and IIb. HDAC4, -5, -7 and -9 belong to
class IIa whereas HDAC6 and 10 to class IIb. Class III groups Sirt1,

2, 3, 4, 5, 6 and 7, also known as silent information regulators (SIR)
and are homologous to Sir2 in yeast. Finally, because HDAC11
shares sequence similarities with both classes I and II it forms,
alone, the class IV [4–6]. Classes I, II and IV act with a zinc-dependent
mechanism, whereas class III activity is NAD� dependent and is not
affected by the classical HDAC inhibitors. Classes I and II HDACs
share homology in the catalytic motif, but diverge for the N-terminal
region, which is extended only in class II [7].

HDACs form high molecular weight complexes with different
corepressors, which cooperate in silencing the transcription of
several genes involved in various cancer-related functions, such
as proliferation, migration, angiogenesis and differentiation. In
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Fig. 1 The histone deacetylase family. The histone deacetylase family is subdivided into different subfamilies according to homologies to yeast proto-
types. Class I HDACs are mainly nuclear and display a zinc-dependent catalytic activity. Class II HDACs are localized both in the nucleus and in cyto-
plasm. The seven sirtuins in mammals are localized in different subcellular compartments including mitochondria. All sirtuins have a NAD�-dependent
catalytic core domain that may act preferentially as a mono-ADP-ribosyl transferase (ART) and/or NAD�-dependent deacetylase (DAC). SIRT7 exhibits
no DAC or ART activities [144]. The class IV HDACs includes HDAC11.
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addition to their chromatin-related functions, HDACs mediate also
the deacetylation of a growing list of non-histone proteins, includ-
ing transcription factors implicated in the control of cell growth,
differentiation and apoptosis.

In this review, we will discuss about class IIa HDACs, of clues
on their roles in the control of cell proliferation and of other
tumour-related functions.

General concepts on class IIa HDACs

Regulation of subcellular localization

To negatively influence the transcriptional process class IIa HDACs
need to be in the nucleus, where they associate in macromolecular
complexes [8,9]. An important strategy for restricting class IIa
repressive activities is fulfilled by monitoring their subcellular local-
ization. Class IIa HDACs carry both a nuclear localization signal
(NLS) and a nuclear export signal (NES) that, once properly
exposed, control the enzyme distribution in the two compartments
[10,11]. Inhibition of the Exportin 1 receptor (CRM-1) nuclear 
transporter by leptomycin B treatment determines the nuclear accu-
mulation of class IIa HDACs, suggesting that these proteins shuttle
continuously in and out the nucleus [12–14]. Several extracellular
stimuli, through the activation of different kinases, are able to alter
the balance between nuclear import and export of these repressors.
Phosphorylation takes place on different serine residues, located in
the amino-terminal region, which act as docking sites for 14-3-3
proteins binding [13–16]. Consequently, mutations of these
residues into alanines relieve class IIa HDACs from kinases control,
generating a super-repressive enzyme [12,17,18].

The interaction with 14-3-3 proteins influences class IIa sub-
cellular localization through different mechanisms [19–21].
Binding of 14-3-3 proteins can mask the NLS sequence and
thereby preventing the interaction with importin-� [13].
Alternatively, these interactions could promote a conformational
change and the consequent exposition of the NES in the carboxy-
terminal region that favours nuclear export [22].

In addition to the nuclear/cytoplasmic transport, further levels of
regulations can influence class IIa activities. For example, HDAC5
mutants carrying an inactive NES sequence cannot exit the nuclei,
but are unable to impact on muscle cell differentiation [11]. This
result suggests that also the discharge of class IIa from their tran-
scriptional partners could be an important step in the modulation of
their repressive ability. On the same context, FRAP experiments
have identified different nuclear pools of HDAC4. When HDAC4 is
forced to localize in the nucleus, after a block of nuclear export or
by mutations in the NES sequence, it binds chromatin for shorter
times and in lower percentage, compared to a mutant incompetent
for 14-3-3 proteins binding [21]. Hence, also within the nucleus,
class IIa HDACs could be subjected to additional regulations. Within
this scenario, the promotion of their cytoplasmic accumulation
could serve as a mechanism to obtain maximal gene expression.

In response to specific extracellular signals different
serine/threonine kinases regulate class IIa HDACs subcellular
localization. The first family of protein kinases discovered to play
this role was the calcium/calmodulin-dependent protein kinase
family (CaMK) and in particular CaMK I and CaMK IV [17,22–26].
In the muscle model, these kinases promote the nuclear export of
class IIa HDACs, expression of MEF2 target genes and, myogenic
differentiation. Although CaMK I and CaMK IV are promiscuous
class IIa HDACs kinases, CaMK II manifests a specific activity
against HDAC4 [27]. HDAC4 can subsequently integrate the export
signal by physically associating with HDAC5.

PKD, MARK1 and MARK2, which belong to the same CaMK
superfamily, are additional kinases involved in the regulation of
class IIa HDACs shuttling [28,29]. PKD is a downstream effector
of the PKC pathway [30,31]. It acts as an important regulator of
class IIa HDACs during angiogenesis, in B and T cells and during
muscle remodelling [32–38]. MARK1 and -2 are instead constitu-
tively active enzymes, which target the first serine residue of the
14-3-3 binding site placed in the amino-terminal region [19].

Additional kinases add further complexity to the regulation of
class IIa HDACs. The Salt inducible kinase 1 and Mirk/dyrk1B are
class IIa kinases able to affect myogenic differentiation [39,40]. This
surplus suggests that multiple pathways control the function of these
transcriptional repressors in a tight, quick and adequate manner.

Phosphorylation is a reversible PTM and phosphatases can
rapidly and efficiently counteract a kinase’s impact. This general
scheme holds true also in the case of class IIa HDACs. The phos-
phatase inhibitors calyculin A and okadaic acid cause the cytoplas-
mic accumulation of class IIa HDACs [13,21,41]. More detailed
studies have discovered that the phosphatases targeting these
transcriptional repressors are PP1�, MYPT1, as component of a
multiprotein complex [42] and PP2A, which is required for nuclear
import [21,43].

Compared to the mechanisms controlling class IIa nuclear
export, the nuclear import and retention pathways are less charac-
terized. Initial discoveries pointed out that association of MEF2
transcription factors with class IIa HDACs promotes their accumu-
lation in the nucleus [44]. Parathyroid hormone related peptide
(PTHrP) and Forskolin, which activate protein kinase A (PKA), can
promote class IIa HDACs nuclear retention [45]. An effect
explained by the increased activity of PP2A. Moreover, PKA can
also contribute to nuclear retention by phosphorylating a serine
residue in the NLS and thus blocking the association with 14-3-3
proteins [46]. This effect seems to be restricted to HDAC5,
because in other class IIa HDACs, such as HDAC7, the ‘RRXS’
motif is missing.

In cardiac myocytes another mechanism has been proposed to
participate in the control of nuclear export. Two cysteine residues in
the HDAC domain of HDAC4 are important for the formation of an
intramolecular bond, which could mask the NES sequence [47]. The
oxidation of the thiol groups or the mutation of one cysteine dis-
rupts this regulation and favours the cytoplasmic localization even
when Ser/Ala mutations are introduced in the 14-3-3 binding sites.

The control of class IIa activities is not limited to their subcel-
lular localization. Additional PTMs can act on these HDACs.

© 2011 The Authors
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Ubiquitin-dependent degradation and caspase processing can
influence class IIa HDACs behaviour. In muscle, degradation of
class IIa plays a pivotal role during fibre type switching from fast
and glycolytic to slow and oxidative [48]. Serum starvation can
also elicit poly-ubiquitination and degradation of HDAC4. In this
case, the kinase GSK3� seems to play an important role [49].

Apoptosis promotes cleavage of HDAC4 and HDAC7. In the
case of HDAC4, the caspase-dependent cleavage generates a
nuclear form of the enzyme with pro-apoptotic activity [50].
HDAC4 can be also sumoylated by RanBP2, at lysine 559 during
the passage through the nuclear pore, but how this PTM influence
HDAC4 repressive activity is presently unknown [51].

Finally, control of class IIa HDACs expression is an integrated
process [52]. In particular, translation control is exerted by the
action of specific microRNAs, and contributes to the tight regula-
tion of muscle differentiation [53,54].

Binding partners

To assert their repressive potential, class IIa HDACs must reside
on chromatin. The interaction with selected transcription factors is
the ‘conditio sine qua non’ for the chromatin recruitment of class
IIa HDACs. The best-characterized class IIa partners are members
of the MEF2 transcription factors family, which fine tune differen-
tiation, cell growth and survival [17,55–58]. Binding to MEF2
involves 12 well-conserved amino acids sited in the amino-termi-
nal part of the deacetylase [10]. The HDAC–MEF2 interaction is
dynamic and in differentiating myoblasts blocking the PI3K path-
way enhances the stability of the MEF2–HDAC complex, maintain-
ing chromatin in a repressive state [59]. Furthermore, this associ-
ation can also trigger the sumoylation of MEF2s, which decreases
the transcriptional potential [60].

MEF2 transcription factors are characterized by the presence of
a MADS box DNA-binding domain, which is common to the serum
response factor (SRF), another partner of class IIa HDACs [61].
SRF is required for cell differentiation in diverse contexts and class
IIa HDACs are important regulators of its function [25,53,62].
Runx2 is another transcription factor modulated by the associa-
tion with these repressors and, again, the interaction involves the
amino-terminal region of the deacetylases [63]. Binding to Runx2
has multiple outcomes. It favours the deacetylation of target pro-
moters and of the transcription factor, which is thus targeted for
degradation [64]. Besides, in a sort of ‘full service’, HDAC4 is also
capable of repressing transcription of RUNX2 gene [63].

MEF2, SRF and Runx2 are not the only transcriptional partners
of class IIa HDACs. GATA [65,66], Forkhead [67], Ying and Yang 1
[68,69] Hypoxia-inducible factors (HIFs), and several others are
proposed partners of class IIa HDACs. For many of these putative
partners, validation of the interaction would be desirable at the
level of endogenous proteins.

Class IIa HDACs can be recruited to chromatin also by the
association with nuclear hormone receptors. Estrogen receptor
can interact with HDAC4, HDAC5 and HDAC9 [70,71] and this
association requires the presence of the MEF2-binding sequence

[71]. Also androgen receptor (AR) can make complexes with class
IIa HDACs, specifically HDAC4 and HDAC7 [72,73]. In particular,
HDAC4 seems to negatively modulate AR promoting its sumoyla-
tion [73]. Furthermore, class IIa HDACs can combine with differ-
ent nuclear hormone corepressors such as REA, ARR19 or
RIP140, which negatively impact gene transcription [74–76].

The ability to interact with different partners, forming macro-
molecular structures is even important for the correct establish-
ment of chromatin modifications. In fact, class IIa HDACs associ-
ate with HDAC3 in high molecular weight complexes, which man-
ifest the deacetylating activity [9]. In this circumstance, the inter-
action involves the carboxy-terminal domain as a docking site for
the recruitment of the class I HDAC (Fig. 2).

Finally, class IIa can interact with H3K9 methyltransferase
SUV39H1 and HP1, structural components of heterochromatin
that are essential for compact DNA packaging [26]. These addi-
tional players with nucleosomal remodelling properties point to
the existence of complex molecular machineries devote to the
orchestration of the epigenetic changes.

An additional peculiar feature of the amino-terminal region of
class IIa HDACs is the presence of a glutamine rich domain (aa
62–129) [77]. This domain folds in straight �-helix that assemble
in tetramers. It has been proposed that glutamine-rich domain
could modulate dynamic protein–protein interactions thus possi-
bly justifying the long list of class IIa HDACs interactors.

Catalytic activity

Although in vertebrates HDACs class IIa display catalytic sites
similar to class I, surprisingly, they are inefficient enzymes and
only a weak deacetylase activity can be measured in vitro on acety-
lated lysines [9,78]. Classes I and IIa both present an active zinc
ion in their catalytic pocket, which is surrounded by two His-Asp
dyads [79]. The difference that accounts for the scant deacetylat-
ing activity of vertebrate class IIa HDACs lies in the substitution of
the conserved ‘catalytic’ tyrosine with a histidine. This tyrosine
acts as a transition-state stabilizer, a function that is not accom-
plished by the replaced histidine. In HDAC4, the mutation H976Y
results in a gain of function and restores the catalytic activity com-
parable to that of class I HDACs [78].

Two studies have revealed the crystal structure of HDAC7 and
HDAC4 catalytic domains. Both reported the presence of a class II
specific additional zinc-binding domain, next to the active site, that
coordinates four conserved amino acids and connects two seg-
ments of the protein. This site can conform differently according
to the presence of inhibitors and seems to be involved in substrate
specificity [80,81].

Class IIa HDAC orthologues in model organisms

Class IIa HDAC orthologues have been described in Drosophlia
melanogaster and Caenorhabditis elegans. These orthologues
conserve the critical tyrosine in the HDAC domain and possess an

© 2011 The Authors
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elevated deacetylase activity [7,82]. In C. elegans, the MEF2 ortho-
logue MEF-2 and the class II HDAC protein HDA-4 control the
expression of chemoreceptors in chemosensory neurons.
Expression of chemoreceptors is under the control of integrated
environmental signals such as food, pheromone and neuronal
activity. Phosphorylation, by KIN-29/SIK (salt-inducible kinase)
and 14-3-3 binding unlock HDA-4 repression [83]. Interestingly in
C. elegans HAD-4 is not subjected to nuclear-cytoplasmic shut-
tling, probably because of the lack of a nuclear export signal

[7,83]. Although some peculiarities can be observed in C. elegans
model, overall the principal mechanism keeping in check class IIa
HDAC is conserved through the evolution.

Sequence analysis of the D. melanogaster class IIa orthologue,
dHDAC4 confirms the presence of MEF-2 and 14-3-3 binding sites
[7]. Experimental data indicate an involvement of dHDAC4 in the
segmentation regulatory pathway and suggest that a complex
transcriptional network is involved in the regulation of dHDAC4
expression [82].

© 2011 The Authors
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Fig. 2 Class IIa HDACs domain organization and
shuttling regulation. (A) The amino-terminal
domain is subjected to different post-translational
modifications such as phosphorylation, sumoyla-
tion and caspase cleavage. CaMK, PDK and MARK
kinases phosphorylate several Ser residues in the
amino-terminal domain thereby promoting the
association with 14-3-3 proteins. Additional kinases
such as PKA and GSK� affect class IIa HDACs stim-
ulating nuclear retention and protein degradation
respectively. Different interactors associate with the
N-terminal domain of class IIa HDACs such as
CtBP, MEF2 or HP1, whereas the C-terminal domain
can recruit HDAC3-NCoR/SMRT complex to pro-
mote Lys deacetylation. In the chart are reported
aminoacidic residues involved in several post-
translational processes including phosphorylation,
sumoylation, caspase processing. (B) Extracellular
stimuli that are able to activate CaMK, PDK 
and MARK kinases trigger the phosphorylation of
class IIa HDACs and their association with 14-3-3
proteins, thereby promoting nuclear export.
Conversely, the removal of the phosphate groups
catalysed by PP1 or PP2A stimulates class IIa
HDACs nuclear accumulation and repression of
MEF2-dependent gene expression.
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HDAC4

HDAC4 and differentiation

HDAC4 expression is widespread in different tissues and organs,
by contrast the generation of knock-out mice has testified an
irreplaceable contribution of this repressor in the regulation of
the ossification process. The lack of HDAC4 determines the
appearance of numerous skeletal abnormalities because of pre-
mature endochondral ossification [63], which affected the devel-
opment of mice and caused problems to the skull, the breathing
and mobility. Initially, the phenotypic effect of HDAC4 mutant
mice was explained by the dysregulation of Runx2 transcrip-
tional activity. Runx2 is a central player in endochondral bone
ossification, by promoting chondrocyte hypertrophy [84]. A
careful examination of the role of MEF2 transcription factors in
bone development, using both a conditional knock-out and
transgenic mice bearing MEF2 mutant forms, discovered their
requirement for the correct bone development. In particular,
MEF2 family members promote the endochondral ossification
regulating the hypertrophic gene program in chondrocytes [55].
Moreover hemizygous deletion of MEF2C rescued the pheno-
typic abnormalities seen in HDAC4 null mice demonstrating the
need of a balance between HDAC4 and MEF2C for a correct ossi-
fication program. In adults, HDAC4 plays important role in the
control of neuro-muscolar homeostasis. HDAC4 can coordinate
the genetic response to denervation [85,86]. Moreover, during
reinnervation, HDAC4 is under the control miR-206 and this cir-
cuit can influence ALS progression [87].

HDAC4 and cancer

Several publications have underscored many roles played by
HDAC4 in cancer cells. Some results point to a pro-proliferative
role of HDAC4 whereas others sustain an anti-proliferative sig-
nalling of the deacetylase. For example, down-regulation of
HDAC4 or inhibition of its function reduces cancer cell viability
[88,89], but HDAC4 mutations have been found in human breast
carcinomas and melanomas [90,91]. A possible explanation for
these contradictory options could be found in the context-depend-
ent status of the PTMs operating on HDAC4 and/or in the context
dependent, multi-proteins complexes, recruiting HDAC4.

Initially, HDAC4 was described as a component of the p53
pathway that governs proliferation arrest [92]. Further studies
have demonstrate additional connections between HDAC4 and
p53, but unfortunately, a clear picture is not available at the
moment. HDAC4 can be recruited to G2/M promoters upon DNA
damage as the result of a complex formation with NF-Y and p53.
On these sites HDAC4 could exert its repressive influence [93,94].
HDAC4 was also reported to interact with p53BP and being
involved in the DNA repair after ionizing radiation [88]. Once a role
of HDAC4 in the regulation of DNA repair processes will be con-
firmed, developing specific ‘HDAC4 inhibitors’ capable of syner-

gizing with DNA damaging agents to impact on cancer cells death,
would be a promising option.

Among studies that support a proliferative function for HDAC4,
we can include its contribution to the growth of epithelial cancer
cells that do not express p53. In this context, down-regulation of
HDAC4 causes mitotic blockage because of impairment of chro-
matids segregation and promotes apoptotic cell death [95]. Pro-
growth functions are also suggested from its cellular subtype spe-
cific expression. HDAC4 is enriched in the proliferating zone of the
colon crypts and is required for the negative modulation of the
Cdk inhibitor p21 [96]. Its recruitment on p21 promoter does not
involve the p53 binding sites but the Sp1/Sp3 sites. HDAC4 silenc-
ing inhibits cancer cell growth in vitro and in vivo [96,97].
Deregulated expression of this enzyme was observed in hepato-
cellular carcinoma where its levels are increased because of the
lack of two different miRNAs: miR-1 and miR-22 [98,99]. Also in
this context the down-regulation of HDAC4 reduces the growth
rate [99]. miR-1 dysfunction and HDAC4 up-regulation, have been
reported also in lung cancer cells [100].

As explained earlier, HDAC4 levels are also under the control of
the ubiquitin–proteasome system. Growth factors can augment
HDAC4 levels by suppressing its poly-ubiquitination. In this case,
the molecular switch seems to be represented by GSK3� [49]. Not
surprisingly, cancer cells have lost this regulation and HDAC4 lev-
els are maintained elevated also in the absence of growth factors.

Surprisingly, whereas different mechanisms are described to
affect HDAC4 expression in cancer cells little is known about the
contribution of various oncogenic signalling pathways on its sub-
cellular localization. Although preliminary studies suggested that
oncogenic Ras could promote HDAC4 nuclear accumulation
[101], how this impact on Ras-mediated transformation is
unknown.

In addition, HDAC4 could contribute to cancer development
independently from its chromatin attitude. This enzyme is able to
associate with HIF1-�, a critical factor activated by hypoxia that
plays an important role in tumour progression [102,103]. The
binding of HDAC4 protects HIF1-� from degradation and the use
of HDACs inhibitors causes its acetylation and down-regulation
[102]. Interestingly, other class IIa HDACs are able to bind HIF1-�
and this binding seems to increase its transcriptional activity
[104,105]. Finally, HDAC4 is also a death substrate, cleaved by
caspase-3 during apoptotic cell death [50]. The cleavage gener-
ates an amino-terminal fragment that can elicit mitochondrial
apoptosis when ectopically expressed.

HDAC5

HDAC5 and differentiation

HDAC5 has been suggested to contribute in various cellular con-
texts to the regulation of differentiation-specific functions.
Surprisingly, the generation of the knock-out mouse for HDAC5

© 2011 The Authors
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did not revealed specific lethal abnormalities during development
[56]. In adults, similarly to knock-out mice for HDAC9, the
absence of HDAC5 favours the appearance of age-dependent,
spontaneous, cardiac hypertrophy [56]. Interestingly, the absence
of HDAC5 or HDAC9 protects female mice from myocardial infarc-
tion remodelling, possibly through the MEF2-dependent up-regu-
lation of vascular endothelial growth factor (VEGF), which, in
turns, promotes neo-angiogenesis [71].

Mice in which HDAC5 and HDAC9 have been contemporary
removed were prone to perinatal death for cardiac defects. These
defects are the consequence of abnormalities in growth and mat-
uration of cardiomyocytes. It is not yet fully defined at the molec-
ular level the origin of the proliferative/maturation deficit [56]. The
contemporary loss of HDAC5 and HDAC9 had also enlightened
their essential contribution in heart remodelling during pathologi-
cal hypertrophic stimulation such as pressure overload or consti-
tutive calcineurin activation [56].

Another context in which HDAC5 seems to carry out a regulatory
function is the skeletal muscle. This repressor acts by blocking the
differentiation of myoblasts to myotubes. The suppressive effect
was the result of the inhibitory activity against MEF2 transcription
factors [106]. Interestingly, the lack of a specific class IIa HDACs
does not affect the development of the skeletal muscle suggesting,
as in the heart, the possible redundant role for class IIa HDACs.

In addition, HDAC5 is also involved in controlling osteoblastic
differentiation. In this case its action is to tether RUNX2, a critical
transcription factor for osteoblast maturation [107]. In particular,
upon TGF-� stimulation, HDAC5 can exert its function by forming
a repressive complex with RUNX2 and SMAD3, which promotes
RUNX2 degradation [64,108]. Another piece of the complex puz-
zle controlling osteoblastic differentiation is provided by miR-
2861, which targets HDAC5 and promotes its down-regulation at
post-transcriptional level [109].

HDAC5 acts also as a central player in the regulation of the
angiogenetic process. Silencing of HDAC5 can increase sprout
length and endothelial migration, whereas the silencing of two
other class IIa HDACs such as HDAC7 and HDAC9 promoted the
opposite effect [110]. The anti-angiogenic behaviour of HDAC5 is
independent from MEF2 and affects the secretion of FGF2 and
Slit2. Moreover, VEGF stimulation of HUVEC cells promotes
HDAC5 phosphorylation and nuclear export thereby stimulating
MEF2 dependent transcription and in vitro angiogenesis [111].

HDAC5 and cancer

Although the contribution of HDAC5 to the control of angiogene-
sis is clearly a cancer-related process, there several other studies
pointing out specific contributions of this deacetylase in cell
growth and proliferation [112]. Initial observations based on over-
expression studies described HDAC5 as a negative regulator of
cell proliferation in different cancer cell lines [113]. Following this
initial report it has also been found that HDAC5 repressed cyclin
D3 promoter in fibroblast [114]. Conversely, HDAC5 could partic-

ipate in p14 repression through the association with TBX3 in
breast cancer cells, although detailed molecular data are lacking
[115]. Recently, it was observed that HDAC5 plays an important
role in neural stem cell proliferation [116,117]. Specifically, the
knock down of HDAC5 leads to increase expression of PTEN and
p21 in a TLX-dependent manner and decreased cell proliferation.
In pancreatic cancer, HDAC5 expression is indirectly stimulated by
oxysterol binding protein-related protein (ORP) 5, a marker related
to poor prognosis in this type of tumour [118]. Besides, the data
suggest that HDAC5 can regulate PTEN expression in pancreatic
cancer, although not in a TLX-dependent manner.

HDAC7

HDAC7 and vascular endothelium

HDAC7 is highly expressed in heart, lung, in CD4/CD8� thymo-
cytes, as well as in vascular endothelial cells during embryogene-
sis [14,119]. Genetic studies have testified the important role of
HDAC7 during early embryogenesis where it regulates angiogene-
sis and vascular cells homeostasis. Null mice for HDAC7 display
embryonic lethality, principally because of defects in mutual adhe-
sion of endothelial cells [57]. Both knock-out mice or mice bearing
a form of HDAC7 mutated in the MEF-2 binding motif, die during
embryogenesis with similar defects in endothelial cell–cell adhe-
sion and consequent blood vessels damage [57]. Concomitantly,
the matrix metalloproteinase 10 (MMP10) is up-regulated,
whereas its inhibitor tissue inhibitor of metalloproteinase 1
(TIMP1) is down-regulated. These findings suggest that HDAC7
represses MMP10 expression in a MEF2-dependent manner.
Within this scenario, loss of HDAC7 triggers MMP10 expression,
leading to alterations in vascular homeostasis and blood vessel
defects [57].

TNF-� can also modulate MMP10 expression in an HDAC7-
dependent manner. Interaction between HDAC7 and promyelocytic
leukaemia protein (PML) is mediated by TNF-�. This interaction
influences the localization of HDAC7 to the nuclear bodies and the
interaction with MEF2, releasing its repressive embrace and pro-
moting MMP10 transcription [120].

Silencing of HDAC7 in HUVEC cells inhibits their outgrowth
and the formation of capillary/tube-like structure, as well as their
migration rate. The reduced motility is at least partially caused by
altered levels of the growth factor PDGF-B and of its receptor
PDGFR-�. On the other hand, decreased levels of HDAC7 do not
seem to influence cell adhesion, proliferation or apoptosis in
HUVEC cells [121].

HDAC7 can also influence other differentiation pathways. For
example, HDAC7 is abundantly expressed in osteoblast-related cell
lines, where it associates with Runx2 (an essential regulator of bone
formation) thus repressing its transcriptional activity. This repres-
sive influence can be regulated by BMP2 signalling [122,123].

© 2011 The Authors
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Is HDAC7 a negative regulator of cell 
proliferation?

A recent study has denoted that HDAC7 is critical for endothelial
cells (EC) proliferation, through the modulation of �-catenin
[124]. Overexpression of HDAC7 prevents the G1/S phase transi-
tion, and elevated HDAC7 retains �-catenin in the cytoplasm of EC
by direct interaction, reducing the expression of its target genes
and leading to decreased proliferation. VEGF stimulation induces
proteasomal dependent degradation of HDAC7, thus allowing the
nuclear localization of �-catenin and proliferation of EC. This work
provides a new possible mechanism of gene expression control,
exerted by the cytosolic pool of class IIa HDACs.

In breast cancer cells HDAC7 is necessary for estrogen-
mediated repression of Reprimo (RPRM), a cell cycle inhibitor and
tumour suppressor gene [125]. Silencing of HDAC7 in the breast
cancer cell line MCF7 negatively influences 17-�-estradiol (E2)-
mediated repression of RPRM, as well as that of other E2-
repressed genes such as ENC1, NEDD9, OPG, CXCR4 and CERK.
Upon treatment with E2, the estrogen receptor ER-� interacts with
HDAC7 and mediates its recruitment to the RPRM promoter. The
repressive activity of HDAC7 on RPRM is independent from its
catalytic function. Also hormone binding to the AR induces stabi-
lization and nuclear transfer of HDAC7. Nuclear HDAC7 represses
AR-target genes transcription, and, here again, this function is
mostly independent from the catalytic domain [72].

HDAC7 and cancer

The involvement of HDAC7 in the control of proliferation and
angiogenesis is a smoking gun for its role in cancer. Not surpris-
ingly, emerging evidence implicate an association of HDAC7 with
cancer progression. High level of cytoplasmic HDAC7 was
reported in pancreatic cancer patients [126]. Similarly, in children
with acute lymphobastic leukaemia (ALL) high levels of HDAC7
and HDAC9 expression are associated with poor prognosis [127].
Interestingly, because in various cancer and normal cell lines
HDAC7 expression was found to be specifically down-regulated by
HDAC inhibitors (HDIs) [128,129], tumours with high levels of
HDAC7 could be more sensitive to HDIs treatment. For example,
in cancer cells the repressive influence of HDAC7 is required for
HIF-1–mediated cyclin D1 down-regulation [130]. In their study,
the authors suggested that chemoresistance associated to HIF-1
expression might be dependent on the HDAC7-mediated repres-
sion on cyclin D1 expression [130]. In this model, cotreatment
with HDIs and classical chemotherapeutics can overcome the
drug-resistance phenotype.

It is important to note that HDAC7 is also implicated in the con-
trol of apoptosis in T cells, via the repression of Nur77 expression
[119]. In cutaneous T cell lymphoma (CTCL), HDIs inhibit HDAC7
at multiple levels, including mRNA expression. HDAC7 inhibition
permits Nur77 expression and its translocation to the mitochon-
dria. Here, Nur77 triggers the intrinsic cell death pathway and syn-

ergizes with the Bcl-2/Bcl-xL antagonist ABT-737 to promote
CTCL apoptosis [131].

During apoptosis HDAC7 is under the control of caspase-8.
Processing by caspase-8 abolishes the transcription repression
activity of HDAC7 thus, promoting Nur77 expression [132].

Very recently, using a trasposon-mediated mutagenesis
approach in mice, HDAC7 has been identified as a cancer-related
gene [133]. In conclusion, HDAC7 seems to contribute at several
aspects of cancer, from its development up to drug resistance.
Understanding the details of its fine regulation/dysregulation is
pivotal to approach translation studies to develop new therapeutic
approaches.

HDAC9

HDAC9 and differentiation

HDAC9 undergoes alternative splicing that gives origin to multiple
isoforms, with putative distinct tissue-specific biological activities
[134,135]. MEF2-interacting transcription repressor/HDAC-
related protein (MITR/HDRP) was the first form of HDAC9 to be
characterized. This splice variant consists in the N-terminal part of
the protein, devoid of the catalytic domain [134,136]. HDAC9 tran-
scripts are expressed at high levels in brain and skeletal muscle.
HDAC9 and also MITR repress MEF2-mediated transcription,
arguing again for deacetylase-independent activities. Interestingly,
HDAC9 is also an MEF2 target, giving rise to a negative feedback
loop that controls its expression [137]. Deletion of HDAC9 in mice
leads to cardiac hypertrophy in advanced age and a concomitant
exaggerated MEF2-dependent activation [18]. HDAC9 is also
involved in the coordination of muscle homeostasis to electrical
activity. Neural activity controls HDAC9 expression in muscle cells
and HDAC9-null mice are supersensitive to changes in gene
expression, as elicited by denervation [138]. More recent studies
have unveiled a contribution of HDAC9 in the dendritic growth of
cortical neurons [139]. Finally, HDAC9 seems important in the
regulation of FOXP3, a transcription factor involved in Treg cells
functions [140].

HDAC9 and cancer

qRT-PCR studies on HDACs in brain tumours have revealed a
down-regulation of HDAC9 in glioblastoma, compared to low-
grade astrocytoma and normal brain [141]. By contrast, high lev-
els of HDAC5 and HDAC9 expression are associated with poor sur-
vival in medulloblastoma patients [112]. Both HDAC5 and 9 are
highly expressed in the group with poorer prognosis, whereas the
up-regulation of only one of the two genes gives an intermediate
probability of survival. Silencing of HDAC5 or HDAC9 in medul-
loblastoma cell lines decreased cell growth and induced apoptosis
after caspase activation [112]. High levels of mRNA expression for
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HDAC9 together with HDAC7 were observed also in bone marrow
of children with acute lymphoblastic leukaemia, associated with
bad tumour prognosis [127]. The high levels of expression and,
more importantly, the role of HDAC9 in cancer cells survival is a

strong impulse to investigate in more detail the relationships
between HDAC9 and cancer growth. These studies, once con-
firmed, would fully justify additional efforts to identify specific
HDAC9 antagonists.

© 2011 The Authors
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Fig. 3 Schematic representation of the different influences exerted by class IIa on cancer-related cellular functions. Class IIa HDACs can participate in
different cancer-related processes. According to the context they could behave as tumour promoter or tumour repressive players. In the chart are sum-
marized data on class IIa HDACs status in human cancer.
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