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ABSTRACT

Transcriptomic profiling is critical to uncovering
functional elements from transcriptional and post-
transcriptional aspects. Here, we present Gene
Expression Nebulas (GEN, https://ngdc.cncb.ac.cn/
gen/), an open-access data portal integrating tran-
scriptomic profiles under various biological con-
texts. GEN features a curated collection of high-
quality bulk and single-cell RNA sequencing datasets
by using standardized data processing pipelines and
a structured curation model. Currently, GEN houses
a large number of gene expression profiles from 323
datasets (157 bulk and 166 single-cell), covering 50
500 samples and 15 540 169 cells across 30 species,
which are further categorized into six biological con-
texts. Moreover, GEN integrates a full range of tran-
scriptomic profiles on expression, RNA editing and
alternative splicing for 10 bulk datasets, providing
opportunities for users to conduct integrative anal-
ysis at both transcriptional and post-transcriptional
levels. In addition, GEN provides abundant gene an-
notations based on value-added curation of tran-
scriptomic profiles and delivers online services for
data analysis and visualization. Collectively, GEN
presents a comprehensive collection of transcrip-
tomic profiles across multiple species, thus serving
as a fundamental resource for better understanding

genetic regulatory architecture and functional mech-
anisms from tissues to cells.

INTRODUCTION

Transcriptomic profiling, involving both transcriptional
and post-transcriptional modifications or events at whole-
genome level, is of great importance for uncovering func-
tional elements across the three domains of life, including
‘Bacteria’, ‘Archaea’ and ‘Eukarya’ (1–3). High-throughput
RNA sequencing (RNA-seq) (4), which can qualitatively
and quantitatively capture any type of RNA, promises
to help researchers characterize transcriptome comprehen-
sively due to the capacities of whole-genome expression pro-
filing (5–7), detection of novel RNA forms and variants (8–
12) and genome reannotation (13,14). With the continuous
developments of RNA-seq technology, it has become a rou-
tine and indispensable approach for systematically charac-
terizing transcriptome across diverse developmental stages
and physiological conditions (1,10,15–17). Of note, over the
past years, transcriptomic studies have made the leap from
bulk RNA-seq to single-cell RNA-seq (scRNA-seq), unveil-
ing new insights into cell type classification and cellular het-
erogeneity exploration (18,19).

As RNA-seq has been widely used in a broad diver-
sity of species worldwide, a huge amount of transcrip-
tomic data has been generated at unprecedentedly exponen-
tial rates, accordingly posing great challenges in large-scale
data aggregation and standardized processing. To facilitate
more effective reuse, integration, and mining of those data,
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valuable efforts have been made to construct comprehen-
sive or specialized database resources, such as Gene Ex-
pression Omnibus (GEO) (20), Expression Atlas (21), Hu-
man Cell Atlas (HCA) (22) and Genotype-Tissue Expres-
sion (GTEx) (23). Specifically, GEO, a widely used resource
developed by NCBI (24), is devoted to archiving worldwide
transcriptomic data (as well as other omics data), yet ignor-
ing standardized data processing and structured metadata
management. Expression Atlas in EBI (25), contains both
bulk and single-cell expression profiles with unified pro-
cessing, nevertheless lacking co/post-transcriptional events
(e.g. RNA editing and splicing). HCA is specialized in hu-
man single-cell expression profiling, whereas GTEx focuses
on human gene expression and regulation across tissues.
To sum up, existing resources have two major shortcom-
ings. First, none of them takes good account of transcrip-
tomic profiles (e.g. expression, RNA editing, splicing, etc.).
Second, they do not well curate and categorize experimen-
tal metadata under the framework of biological contexts.
Given the large-scale data volumes and heterogeneous types
of data and metadata, it is challenging to build a compre-
hensive database that integrates transcriptomic profiles at
both bulk and single-cell levels, accompanying with stan-
dardized data processing, metadata curation, and online
tools.

To address these challenges, here we present Gene Ex-
pression Nebulas (GEN, https://ngdc.cncb.ac.cn/gen/), an
open-access data portal integrating transcriptomic profiles
under various conditions across multiple species. It was
originally established in 2016, along with the foundation
of the National Genomics Data Center (NGDC; previously
named as BIG Data Center) (26,27), China National Cen-
ter for Bioinformation (CNCB). Since its inception, GEN,
as one of the core resources in CNCB-NGDC, has been fre-
quently updated by importing and processing datasets ob-
tained from a variety of raw sequencing data archives. Un-
like existing resources, GEN provides a curated collection
of high-quality bulk and single-cell RNA-seq datasets with
uniformed data processing and adopts a structured cura-
tion model to categorize diverse experimental conditions
into different biological contexts. Accordingly, GEN fea-
tures large-scale integration of diverse transcriptomic pro-
files and provides online tools for analysis and visualization
of both bulk and single-cell RNA-seq data.

MATERIALS AND METHODS

Data collection

A number of high-throughput RNA-seq projects and
their associated datasets were collected from several pub-
lic raw sequencing databases, including Genome Sequence
Archive (GSA, https://ngdc.cncb.ac.cn/gsa/) (28,29), Se-
quence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/
sra/) (30), European Nucleotide Archive (ENA, https://
www.ebi.ac.uk/ena) (31) and DDBJ Sequence Read Archive
(DRA, https://ddbj.nig.ac.jp/DRASearch/) (32). Only the
datasets with median mapping rates ≥70% for bulk RNA-
seq and ≥40% for scRNA-seq were kept for further pro-
cessing. As a result, a total of 296 RNA-seq projects and
323 high-quality datasets were obtained.

Unified and standardized data processing

For bulk RNA-seq datasets, Fastp v0.20.0 (33) was used
for trimming and filtering raw reads. And, HISAT2 v2.0.5
(34) was used for quick alignment to evaluate the data
quality, and RseQC v2.6.4 (35) was implemented for infer-
ring the strand specificity of the sequencing library. Then
high-quality RNA-seq reads were aligned to the refer-
ence genome by STAR v2.7.1a (36). After that, quantifi-
cation of gene/isoform assembly was performed by RSEM
v1.3.1 (37) with default parameters. ‘Raw counts’, ‘FPKM’
(Fragments Per Kilobase of transcript per Million mapped
fragments) and ‘TPM’ (Transcripts Per Million) values of
each gene/isoform were calculated. For circular RNA (cir-
cRNA) expression analysis, the cleaned RNA-seq reads
were mapped to the reference genome by BWA-MEM (38).
Next, CIRCexplorer2 (39) and CIRI2 v2.0.6 (40) were used
to identify circRNA candidates by recognizing the back-
splicing junction (BSJ) reads (≥2) with default parameters.

Moreover, RNA editing sites were identified with the
genome from GENCODE v33 (41) as reference. All
known RNA editing sites were retrieved from REDIpor-
tal v2.0 (42) (http://srv00.recas.ba.infn.it/atlas/). Novel hu-
man RNA editing sites were detected by Parallel Strat-
egy of REDItool 2.0 (43). To obtain more accurate novel
editing sites, a filtration step was added for non-Alu re-
gions using additional criteria as the non-Alu regions usu-
ally have sporadic editing sites. Meanwhile, pblat v1.0 (44)
was used to discover the mismatched RNA-seq reads and
multi-mapping reads, which were then trimmed to remove
duplicate reads by using SAMtools v1.9 (45). Editing sites
of both A-to-I and C-to-U were maintained for further
analysis. RepeatMasker (http://www.repeatmasker.org) and
SNP files used for annotating high-confidence novel RNA
editing sites were both downloaded from UCSC (https://
hgdownload.soe.ucsc.edu/downloads.html).

In addition, for alternative splicing analysis, high-quality
RNA-seq reads were mapped to the reference genome by
STAR. Then, detection of differentially spliced events was
mainly executed with BAM files by rMATS v3.1.0 (46). The
high-quality RNA-seq reads were mapped to the reference
genome by STAR. Each ‘case’ group was compared to the
‘control’ group to identify differentially spliced events, and
parameter of ‘–cstat 0.0001’ was used for 0.01% difference,
to compute p-values and FDRs of splicing events with the
absolute value of exon inclusion level (|��|) > 0.01% cutoff.

For scRNA-seq datasets, notably, alignment approach
was consistent with bulk RNA-seq datasets, while gene
quantification tools varied with the data generated by dif-
ferent platforms/strategies to deal with cell barcodes and
unique molecular identifiers (UMIs). Currently, pipelines
for the three most commonly adopted scRNA-seq tech-
nologies were as follows (47–49): (i) for data generated by
plate- or fluidigm-based protocol, such as Smart-seq2 (50)
and SMARTer (Fluidigm C1) strategies, STAR v2.7.1a and
RSEM v1.3.1 were used to align and calculate ‘raw counts’,
‘FPKM’ and ‘TPM’ values of each gene/isoform with the
parameter ‘–single-cell-prior’; (ii) for data from droplet-
based protocol including Drop-seq (51) and inDrop (52),
dropEst v0.8.6 (53) was used to provide more accurate es-
timates of molecular counts in individual cells by barcode
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corrections, classification of cell quality, and diagnostic in-
formation about the droplet libraries; and (iii) specifically
for data from 10× Genomics platform (54), CellRanger
v3.1.0 (https://support.10xgenomics.com/single-cell-gene-
expression/software/overview/welcome) was implemented
as a one-stop analysis pipeline for quality control, sam-
ple de-multiplexing, barcode processing and generation of
feature-barcode matrices.

Collection of gene annotations

For all collected species, a wide range of gene functional
annotations were extracted from Ensembl (55) and NCBI
(24), roughly falling into basic information including ge-
nomic location and functional description, and associated
terms or ontologies like Gene Ontology (GO) (56). Partic-
ularly, for Homo sapiens, housekeeping and tissue-specific
genes were derived from GTEx (57), genes were anno-
tated based on Disease Ontology (DO) (58) along with
GO, and a gene structure visualization on the basis of
Genome Browser (59) was provided. Furthermore, anno-
tation information of editome-disease associations from
Editome-Disease Knowledgebase (EDK, https://ngdc.cncb.
ac.cn/edk) (60) and RT-qPCR reference genes from Inter-
nal Control Genes (ICG, http://icg.big.ac.cn) (61) were also
included for corresponding genes, while external links to
GTEx (https://www.gtexportal.org/home/) (23), REDIpor-
tal (http://srv00.recas.ba.infn.it/atlas/) (62) and GeneCard
(https://www.genecards.org) (63) were added to each gene
(if available).

Downstream analysis

A series of popular downstream analysis tools were im-
plemented in GEN. For bulk RNA-seq data, four tools
were included for different analysis purposes, namely, dif-
ferential expression analysis with limma (64), weighted gene
co-expression network analysis with WGCNA (65), func-
tional enrichment analysis with clusterProfiler (66), and
gene regulatory network inference with GENIE3 (67). For
scRNA-seq data, Seurat (68) was integrated for the selec-
tion and filtration of cells based on quality-control met-
rics, data normalization and scaling, detection of high-
variance genes, linear dimensional reduction (i.e. principal
component analysis), graph-based clustering, visualization
of cluster assignment and identification of cluster mark-
ers. Marker gene enrichment analysis was generated with
Enrichr (69), and trajectory inference was performed with
Monocle (70). Furthermore, SingleR (71) was employed to
infer cell type identity of each cell independently by lever-
aging reference transcriptomic datasets of pure cell types.
Here, reference datasets from Human Primary Cell Atlas
(72), BLUEPRINT (73), and Human Immune Cell RNA-
seq Data (74), Human Hematopoietic Cell RNA-seq Data
(75) and DICE (Database of Immune Cell Expression, Ex-
pression quantitative trait loci (eQTLs) and Epigenomics)
Project (76) were used for human cell type annotation, while
those from Mouse RNA-seq Data (77) and Immunological
Genome Project (ImmGen) (78) were used for mouse cell
type annotation, separately.

Database implementation

GEN was implemented using Spring Boot (https://spring.
io/projects/spring-boot; a framework easy to create stand-
alone java applications) as the back-end framework. All
data were stored and managed by using MySQL (https:
//dev.mysql.com; a free and popular relational database
management system). To provide user-friendly and highly
interactive web applications, web pages were constructed
using HTML5 and rendered using JSP (https://jakarta.
ee/specifications/pages/3.0/, Jakarta Server Pages, a tem-
plate engine for web applications). Front-end interfaces
were built using Semantic UI (https://semantic-ui.com; a
development framework that helps create beautiful, re-
sponsive layouts HTML) and JQuery (https://jquery.com;
a fast, small, and feature-rich JavaScript library). Further-
more, data visualization was built by HighCharts (https://
www.highcharts.com; a JavaScript plug-in to create interac-
tive charts), Plotly.js (https://plotly.com/javascript/; a high-
level, declarative charting library) and DataTables (https://
datatables.net; a plug-in for the jQuery JavaScript library to
render HTML tables). Interactive visualization of scRNA-
seq data was powered by Cerebro (79). Online tools were de-
veloped with Shiny (https://shiny.rstudio.com/, an R pack-
age to build interactive web applications).

DATABASE CONTENTS AND USAGE

GEN features comprehensive integration, manual curation
and standardized analysis of high-quality transcriptomic
datasets at bulk and single-cell levels based on a structured
curation model and uniformed data processing pipelines.
More importantly, diverse experimental conditions of all in-
corporated datasets are categorized into more informative
biological contexts. In the current version, GEN houses a
collection of transcriptomic profiles of 323 datasets cover-
ing 50 500 samples and 15 540 169 cells across 30 species.
For each dataset, a full range of transcriptomic profiles
including gene expression, alternative RNA splicing and
RNA editing (if applicable) are provided in GEN. More-
over, GEN accommodates value-added gene annotations
based on differential expression analysis across diverse ex-
perimental conditions and cell clusters. Accordingly, GEN
provides user-friendly web functionalities and applications
for large-scale data query, retrieval, analysis and visualiza-
tion (Figure 1).

Metadata curation and datasets

GEN adopts a structured curation model, incorporat-
ing manually curated items in light of dataset, profile
(expression/splicing/editing), and sample: (i) datasets are
annotated and categorized into six biological contexts of
general interest, involving baseline, genetic (e.g. mutation,
natural variation), phenotypic (e.g. disease, aging), environ-
mental (e.g. abiotic stress, biotic stress), spatial (e.g. organ-
ism, tissue, cell type) and temporal (e.g. development, circa-
dian, time series); (ii) Expression/splicing/editing profiles
include the main steps and parameters of data processing
together with reference genome and annotation details and
(iii) samples contain a wealth of descriptive information,
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Figure 1. Database contents and features of Gene Expression Nebulas. Abbreviations used: SC, single-cell; TS, tissue-specific; HS, house-keeping; FPKM,
fragments per kilobase of transcript per million mapped fragments; TPM, transcripts per million. SE: skipped exon; A3SS: alternative 3′ splice site; A5SS:
alternative 5′ splice site; MXE: mutually exclusive exons; RI: retained intron.

including basic information, sample characteristic, biolog-
ical condition, experimental variable, experimental proto-
col, sequencing strategy and platform, quality assessment
and data analysis procedure (reference genome, annotation
file, software and parameter setting). All descriptive terms
with controlled vocabularies are extracted and abstracted
by manual curation of 293 published articles. In particular,
diseases, tissues, and cell types are further linked to con-
trolled terms from Disease Ontology (DO, https://disease-
ontology.org) and BRENDA Tissue Ontology (BTO, http:
//www.ontobee.org/ontology/bto). More details about the
curation model are publicly available at https://ngdc.cncb.
ac.cn/gen/documentation.

Specifically, for each dataset, GEN provides a curated
summary of metadata, covering species, tissue, healthy
condition, RNA type, sample number, sequencing strat-
egy, sequencing quality & quantity and experimental con-

dition (https://ngdc.cncb.ac.cn/gen/browse/datasets, Figure
2A). To manage all collected datasets, GEN assigns an ac-
cession number prefixed with ‘GEND’ for each dataset.
Moreover, since each dataset associates with specific sam-
ple(s) (prefixed with ‘GENS’), manual curation is con-
ducted for all datasets by linking to controlled terms from
DO and BTO via sample meta-information. As a result,
all datasets incorporated in GEN cover 128 tissues and 46
cell types (originally curated from metadata provided by
submitters). Based on these curated metadata, as a conse-
quence, users can conveniently find the dataset(s) of inter-
est. Structured metadata for all collected datasets is pro-
vided in a tabular form and also freely downloadable (https:
//ngdc.cncb.ac.cn/gen/download). Overall, bulk RNA-seq
and scRNA-seq datasets involve 30 and 22 species, 89
and 64 tissues, respectively (Table 1). Regarding the spe-
cific biological contexts, GEN incorporates 153 baseline
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Figure 2. Screenshots of database web interfaces. (A) Curated meta-information of dataset, including sequencing strategies, tissue, cell type, disease, bio-
logical context, quality and quantity and etc. (B) Boxplot of expression levels of multiple genes of interest across samples. (C) Heatmap of differentially
expressed genes for bulk RNA-seq datasets. (D) Clustering results of single-cell RNA-seq dataset on a 3D UMAP plot where cells are color-coded by
clusters.

datasets, 323 spatial datasets, 83 temporal datasets, 58 en-
vironmental datasets, 55 genetic datasets and 148 pheno-
typic datasets, involving 84 diseases such as autism, cancer,
diabetes, systemic lupus erythematosus (https://ngdc.cncb.
ac.cn/gen/browse/datasets). Not surprisingly, Homo sapiens
has the most abundant datasets, involving 192 datasets, 29
942 samples, 70 tissues and 84 diseases corresponding to
11 body systems (including cardiovascular, endocrine, gas-
trointestinal, hematopoietic, immune, integumentary, mus-
culoskeletal, nervous, respiratory, reproductive and urinary
system). More statistics of datasets and samples housed in
GEN are summarized and publicly accessible on the statis-
tics page (https://ngdc.cncb.ac.cn/gen/statistics).

Transcriptomic profiles at bulk and single-cell levels

GEN provides a full range of transcriptomic profiles char-
acterizing both transcriptional and post-transcriptional
regulations. For all collected datasets in GEN, expres-
sion profiles are quantified on both gene and transcript
levels by three types of quantification methods, namely,
raw read count number, FPKM and TPM. At the bulk
level, GEN currently integrates gene expression profiles of
7412 samples from 157 datasets, involving 17 animals, 10
plants, 2 protists and 1 fungus, including Homo sapiens and
model organisms such as Arabidopsis thaliana, Danio rerio,

Drosophila melanogaster and Mus musculus (Table 1). Gene
expression profiles can be visualized in heatmap/boxplot
charts (Figure 2B). Moreover, GEN incorporates circRNA
expression profiles of 456 samples from 10 human datasets.
Based on the expression profiles, differentially expressed
genes (DEGs) are identified between biological condition
groups, which can be accessed in tabular form and visual-
ized in heatmap charts (Figure 2C). In addition, GEN inte-
grates a valuable collection of RNA editing events and al-
ternative RNA splicing isoforms in 10 datasets with 574 hu-
man samples (involving 18 tissues and 16 diseases) as value-
added profiles on co/post-transcriptional levels.

At the single-cell level, GEN provides high-quality ex-
pression profiles of 15 540 169 cells from 166 datasets cover-
ing 22 species (17 animals, 2 plants, 2 protists and 1 fungus),
64 tissues and 42 human diseases (Table 1). To reveal biolog-
ical functions underlying expression profiles, further down-
stream analyses including cell clustering, identification of
marker genes for each cluster and functional enrichment are
performed. To facilitate easy access to cell clustering results
for each dataset/sample, GEN is capable of visualizing the
clustered cells using t-SNE and UMAP plots, which can be
color-coded according to metadata information, cell clus-
ters and inferred cell types (Figure 2D). Notably, in the cur-
rent implementation, GEN presents cell type annotations
for 121 datasets in H. sapiens and 7 datasets in M. Musculus
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Table 1. Data statistics in Gene Expression Nebulas (as of August 2021)

Kingdom Species
#Datasets

(bulk/single-cell) #Samples #Tissues #Cells

Animalia Homo sapiens 192 (68/124) 29 942 70 6 823 695
Mus musculus 11 (3/8) 914 7 1 176 003
Drosophila melanogaster 7 (1/6) 14 800 4 3 837 235
Gallus gallus 4 (1/3) 329 7 42 129
Macaca mulatta 4 (1/3) 326 1 304
Rattus norvegicus 4 (2/2) 134 2 122
Capra hircus 3 (1/2) 86 3 59
Danio rerio 3 (1/2) 367 9 28 773
Bos taurus 2 (1/1) 142 3 100
Caenorhabditis elegans 2 (1/1) 12 2 130 713
Canis lupus familiaris 2 (1/1) 30 7 657 999
Macaca fascicularis 2 (1/1) 20 4 22 737
Ovis aries 2 (1/1) 21 8 11 380
Oryctolagus cuniculus 2 (1/1) 32 1 32
Schistosoma mansoni 2 (1/1) 15 2 55 930
Sus scrofa 2 (1/1) 32 1 32
Xenopus tropicalis 2 (1/1) 115 2 2 520 906

Plantae Oryza sativa 32 (31/1) 1087 14 27
Glycine max 16 (16/0) 499 8 -
Arabidopsis thaliana 8 (5/3) 242 7 220 188
Sorghum bicolor 5 (5/0) 462 7 -
Triticum aestivum 3 (3/0) 78 6 -
Glycine soja 2 (2/0) 34 6 -
Zea mays 2 (2/0) 480 1 -
Brassica napus 1 (1/0) 44 6 -
Gossypium hirsutum 1 (1/0) 14 1 -
Solanum lycopersicum 1 (1/0) 6 1 -

Protista Plasmodium falciparum 2 (1/1) 208 0 180
Dictyostelium discoideum 2 (1/1) 12 0 4988

Fungi Saccharomyces cerevisiae 2 (1/1) 17 0 6637

Total 30 323 (157/166) 50 500 128 15 540 169

since sufficient cell type annotation reference only exists for
them (see details in Materials and Methods). In addition,
marker genes for each cluster and gene enrichment analysis
results can be browsed and downloaded.

Gene annotations and expression profiles

GEN provides an abundance of gene annotations for a to-
tal of 1 191 846 genes across 30 species. In addition to ba-
sic annotation (such as genomic location, biotype, func-
tional description), GEN integrates value-added annota-
tions derived from transcriptomic profiles, including quan-
titative (expression levels across different conditions) and
qualitative (differential expression patterns between condi-
tion groups). For any specific gene(s), expression levels in
a given dataset can be visualized by interactive heatmap
and boxplot charts, and expression patterns from differen-
tial expression analysis (also applicable to the identifica-
tion of marker genes for specific cell types) are annotated
and incorporated in GEN. Moreover, GEN incorporates
additional annotations for each gene, including editome-
disease associations, internal control genes, and ontology
terms (from GO, DO; see details in Materials and Meth-
ods). Consequently, GEN allows users to retrieve single
or multiple genes by gene name/ID/symbol (https://ngdc.
cncb.ac.cn/gen/browse/genes). Based on all collected anno-
tations in GEN, users can conveniently find the genes of in-
terest with specific annotations/profiles and investigate ex-
pression patterns across diverse biological conditions.

Online tools for data analysis and visualization

GEN is equipped with a series of online tools in aid of fur-
ther downstream data analysis and visualization (see details
in Materials and Methods). For bulk RNA-seq data, GEN
offers online services for differential expression analysis,
weighted gene co-expression network analysis (WGCNA),
functional enrichment analysis and gene regulatory net-
work inference. For scRNA-seq data, users can perform
multiple analyses including quality control, data normaliza-
tion, scaling and regression, dimensional reduction, graph-
based clustering, and identification of marker genes for cell
clusters (68). Furthermore, GEN is able to help users con-
duct gene enrichment analysis for cell markers, cell trajec-
tory inference, and cell type annotation. Meanwhile, single-
cell analysis results can be visualized by Cerebro (79), which
allows interactive investigation and inspection of single-cell
transcriptomic profiles incorporated in GEN. All these re-
sults can be downloaded in CSV and Excel formats and vi-
sualized images can be exported to PNG or PDF.

DISCUSSION AND FUTURE DEVELOPMENTS

GEN features systematic integration, manual curation and
standardized data processing of 323 high-quality bulk and
single-cell RNA-seq datasets across 30 species. It enables
easy access to a comprehensive range of transcriptomic pro-
files, which are critical for unravelling both transcriptional
and post-transcriptional regulatory mechanisms. More-
over, GEN provides abundant gene annotations based on

https://ngdc.cncb.ac.cn/gen/browse/genes
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value-added curation of transcriptomic profiles and deliv-
ers online services for bulk and single-cell data analysis and
visualization.

Future directions of GEN include continuous integra-
tion and analysis of high-quality RNA-seq datasets with
diverse sequencing strategies (e.g. miRNA-seq, single-cell
spatial RNA-seq, nanopore long-read RNA-seq) across
more species. Also, GEN will be frequently updated by
enriching gene annotations based on manual curation of
the ever-increasing transcriptomic profiles (13). Particu-
larly, since the field of single-cell genomics is under rapid de-
velopment, we will keep an eye on cutting-edge scRNA-seq
analysis methods and make updates on GEN data process-
ing pipelines accordingly. GEN will also provide online ser-
vices to accept user-submitted expression profiles with qual-
ity control and manual curation. Furthermore, interconnec-
tions with external and internal database resources at multi-
omics levels (e.g. variome (80), methylome (81) and interac-
tome (82)) will be added and enhanced. Web tools for RNA
editing profiling, alternative splicing detection and batch-
effect correction across different technologies and condi-
tions will be developed and/or implemented in GEN.

DATA AVAILABILITY

GEN is freely available online at https://ngdc.cncb.ac.cn/
gen/ and does not require user to register.

ACKNOWLEDGEMENTS

We would like to thank Zhuojing Fan for her help on web in-
terface design and a number of users for providing supports
and reporting bugs. We also appreciate the anonymous re-
viewers for their valuable comments on this work.

FUNDING

National Key Research & Development Program of
China [2017YFC0907502]; Special Investigation on Sci-
ence and Technology Basic Resources of the MOST
[2019FY100102]; Strategic Priority Research Program
of the Chinese Academy of Sciences [XDA19050302,
XDB38030200, XDB38030400]; The Youth Innovation
Promotion Association of Chinese Academy of Science
[2018134]; National Key Research & Development Pro-
gram of China [2018YFC0309805]; International Part-
nership Program of the Chinese Academy of Sciences
[153F11KYSB20160008]; Genomics Data Center Con-
struction of Chinese Academy of Sciences [WX145XQ07-
04]; National Natural Science Foundation of China
[32030021, 31871328]; Open Biodiversity and Health Big
Data Programme of IUBS. Funding for open access charge:
Special Investigation on Science and Technology Basic Re-
sources.
Conflict of interest statement. None declared.

REFERENCES
1. Stubbington,M.J.T., Rozenblatt-Rosen,O., Regev,A. and

Teichmann,S.A. (2017) Single-cell transcriptomics to explore the
immune system in health and disease. Science, 358, 58–63.

2. Giacomello,S., Salmen,F., Terebieniec,B.K., Vickovic,S.,
Navarro,J.F., Alexeyenko,A., Reimegard,J., McKee,L.S.,
Mannapperuma,C., Bulone,V. et al. (2017) Spatially resolved
transcriptome profiling in model plant species. Nat. Plants, 3, 17061.

3. Bhadauria,V., Popescu,L., Zhao,W.S. and Peng,Y.L. (2007) Fungal
transcriptomics. Microbiol. Res., 162, 285–298.

4. Wang,Z., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a
revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63.

5. Cao,J., Spielmann,M., Qiu,X., Huang,X., Ibrahim,D.M., Hill,A.J.,
Zhang,F., Mundlos,S., Christiansen,L., Steemers,F.J. et al. (2019) The
single-cell transcriptional landscape of mammalian organogenesis.
Nature, 566, 496–502.

6. Smirnov,D.A., Zweitzig,D.R., Foulk,B.W., Miller,M.C., Doyle,G.V.,
Pienta,K.J., Meropol,N.J., Weiner,L.M., Cohen,S.J., Moreno,J.G.
et al. (2005) Global gene expression profiling of circulating tumor
cells. Cancer Res., 65, 4993–4997.

7. Schnable,P.S., Hochholdinger,F. and Nakazono,M. (2004) Global
expression profiling applied to plant development. Curr. Opin. Plant
Biol., 7, 50–56.

8. Marioni,J.C., Mason,C.E., Mane,S.M., Stephens,M. and Gilad,Y.
(2008) RNA-seq: an assessment of technical reproducibility and
comparison with gene expression arrays. Genome Res., 18, 1509–1517.

9. Alamancos,G.P., Agirre,E. and Eyras,E. (2014) Methods to study
splicing from high-throughput RNA sequencing data. Methods Mol.
Biol., 1126, 357–397.

10. Stark,R., Grzelak,M. and Hadfield,J. (2019) RNA sequencing: the
teenage years. Nat. Rev. Genet., 20, 631–656.

11. Park,E., Jiang,Y., Hao,L., Hui,J. and Xing,Y. (2021) Genetic
variation and microRNA targeting of A-to-I RNA editing fine tune
human tissue transcriptomes. Genome Biol., 22, 77.

12. Zhang,Z., Pan,Z., Ying,Y., Xie,Z., Adhikari,S., Phillips,J.,
Carstens,R.P., Black,D.L., Wu,Y. and Xing,Y. (2019) Deep-learning
augmented RNA-seq analysis of transcript splicing. Nat. Methods,
16, 307–310.

13. Sang,J., Zou,D., Wang,Z., Wang,F., Zhang,Y., Xia,L., Li,Z., Ma,L.,
Li,M., Xu,B. et al. (2019) IC4R 2.0: rice genome reannotation using
massive RNA-Seq Data. Genom. Proteom. Bioinf., 18, 161–117.

14. Cheng,C.Y., Krishnakumar,V., Chan,A.P., Thibaud-Nissen,F.,
Schobel,S. and Town,C.D. (2017) Araport11: a complete reannotation
of the Arabidopsis thaliana reference genome. Plant J., 89, 789–804.

15. Ray,S. and Satya,P. (2014) Next generation sequencing technologies
for next generation plant breeding. Front. Plant Sci., 5, 367–367.

16. Rodon,J., Soria,J.C., Berger,R., Miller,W.H., Rubin,E., Kugel,A.,
Tsimberidou,A., Saintigny,P., Ackerstein,A., Brana,I. et al. (2019)
Genomic and transcriptomic profiling expands precision cancer
medicine: the WINTHER trial. Nat. Med., 25, 751–758.

17. Yang,X., Kui,L., Tang,M., Li,D., Wei,K., Chen,W., Miao,J. and
Dong,Y. (2020) High-hroughput transcriptome profiling in drug and
biomarker discovery. Front. Genet., 11, 19.

18. Zhong,S., Zhang,S., Fan,X., Wu,Q., Yan,L., Dong,J., Zhang,H.,
Li,L., Sun,L., Pan,N. et al. (2018) A single-cell RNA-seq survey of
the developmental landscape of the human prefrontal cortex. Nature,
555, 524–528.

19. Ren,X., Wen,W., Fan,X., Hou,W., Su,B., Cai,P., Li,J., Liu,Y., Tang,F.,
Zhang,F. et al. (2021) COVID-19 immune features revealed by a
large-scale single-cell transcriptome atlas. Cell, 184, 1895–1913.

20. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2013) NCBI GEO: archive for functional genomics
data sets–update. Nucleic Acids Res., 41, D991–D995.

21. Papatheodorou,I., Moreno,P., Manning,J., Fuentes,A.M.-P.,
George,N., Fexova,S., Fonseca,N.A., Füllgrabe,A., Green,M.,
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