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Analysis of pulmonary function tests (PFTs) is an area where machine learning (ML)
may benefit clinicians, researchers, and the patients. PFT measures spirometry, lung
volumes, and carbon monoxide diffusion capacity of the lung (DLCO). The results
are usually interpreted by the clinicians using discrete numeric data according to
published guidelines. PFT interpretations by clinicians, however, are known to have
inter-rater variability and the inaccuracy can impact patient care. This variability may
be caused by unfamiliarity of the guidelines, lack of training, inadequate understanding
of lung physiology, or simply mental lapses. A rules-based automated interpretation
system can recapitulate expert’s pattern recognition capability and decrease errors.
ML can also be used to analyze continuous data or the graphics, including the flow-
volume loop, the DLCO and the nitrogen washout curves. These analyses can discover
novel physiological biomarkers. In the era of wearables and telehealth, particularly with
the COVID-19 pandemic restricting PFTs to be done in the clinical laboratories, ML
can also be used to combine mobile spirometry results with an individual’s clinical
profile to deliver precision medicine. There are, however, hurdles in the development
and commercialization of the ML-assisted PFT interpretation programs, including the
need for high quality representative data, the existence of different formats for data
acquisition and sharing in PFT software by different vendors, and the need for
collaboration amongst clinicians, biomedical engineers, and information technologists.
Hurdles notwithstanding, the new developments would represent significant advances
that could be the future of PFT, the oldest test still in use in clinical medicine.

Keywords: pulmonary function test, flow-volume loop, machine learning, artificial intelligence, spirometry, lung
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INTRODUCTION

The application of machine learning (ML) in medicine is
burgeoning and its use in healthcare is potentially transformative
(Deo, 2015; Rajkomar et al., 2019). ML is a sub-discipline
of computer science in which computers “learn” from large
quantities of data in order to find patterns without being explicitly
programmed to do so (Sidey-Gibbons and Sidey-Gibbons, 2019).
There are two main types of ML—supervised and unsupervised
learning. Supervised learning occurs when inputs are chosen
with the goal of predicting a known output or target. Typical
examples are the development of predictive models that can
identify suspicious pulmonary nodules on chest imaging (Uthoff
et al., 2019), predict Framingham Risk Score (Chen et al.,
2020), and interpret EKGs (Chang et al., 2020). In unsupervised
learning, there are no outputs to predict. Instead, the goal
is to find naturally occurring patterns or groupings within
data. This method has been employed, for example, to identify
different phenotypes of sepsis (Seymour et al., 2019). Analysis of
pulmonary function test (PFT) is an area where ML, supervised
and unsupervised, may benefit the clinicians and the patients
(Mlodzinski et al., 2020). The ML methods that may be useful
in the analysis of numeric and graphic data of PFTs are shown in
the Table 1. To understand how, it is helpful to first examine the
current pitfalls in PFT interpretation.

PFT Interpretations Today Use Discrete
Data Points and Are Guided by
Rules-Based Algorithms
The most common pulmonary function tests (PFTs) are
spirometry, lung volume determinations, and diffusing capacity
assessments. These tests have two fundamental goals: (1)
describe/categorize physiologic abnormalities in a subject and
(2) quantify the magnitude of the abnormality. Physiologic
abnormalities are conventionally grouped as obstructive
ventilatory defects, restrictive ventilatory defects, and gas
transfer defects, though multiple defects can be found in a single
test. These are currently defined by whether certain discrete
measurements are within a pre-determined normal range of
values (“rules based” interpretations). The magnitude of the
defect is quantified by either reporting a percent predicted of
a reference value or else describing the degree of statistical
deviation from the mean predicted value (i.e., z-scores).
Importantly, PFT interpretation alone cannot diagnose disease
states—this can only be accomplished by incorporating PFT
results into the overall clinical picture.

Guidelines have been published to assist in interpretating
PFTs (Pellegrino et al., 2005). PFT interpretations by clinicians,
however, are known to have significant inter-rater variability
(Miller et al., 2011; Holt et al., 2019; Topalovic et al., 2019b) and
the inconsistency can potentially impact patient care (Enright,
2006; Holt et al., 2019). This variability is due to multiple
factors: (1) disagreement among interpreters regarding the
choice of reference values and cut-points, (2) actual quality of
test performance (and the recognition of this by interpreters),
(3) inherent uncertainty about the significance of borderline

values, and (4) human errors from lack of training, inadequate
understanding of lung physiology, or simply mental lapses.

A rules-based expert computerized interpretation system
can help standardize interpretation criteria and address human
factors thereby decreasing inter-rater variability and improving
the quality and consistency of PFT interpretation. This is not a
new concept. Indeed, automated algorithms developed as early
as the 1980s sought to reproduce the assessments of an expert
physician. For example, a rules-based expert system, PUFF, was
developed for local use. It aimed to capture expertise knowledge
in PFT interpretation and reduce the tedious work for the
clinicians (Aikins et al., 1983). The agreement between PUFF and
the physicians was excellent (89–96%), but the continued use of
PUFF was hampered by incompatibility when it was modified
for other network systems. Another interpretation program was
developed using a least mean squares method to rapidly analyze
the patient’s PFT data. It was able to select the “best interpretation
statements” that were acceptable to a pulmonary physician in 90%
of the patients (Krumpe et al., 1982). In one study, the pattern
recognition of PFTs by pulmonologists matched the guidelines
in about 75% of the cases (Topalovic et al., 2019a). An AI-
based software perfectly matched the PFT pattern interpretations
(100%) and assigned a correct diagnosis in 82% of all case
(Topalovic et al., 2019a). Today, modern PFT systems often offer
automated interpretive features based on recommendations such
as those proposed by the ATS/ERS in 2005 (Pellegrino et al.,
2005), but the features vary significantly and are not validated.
Importantly, any rules-based expert computerized interpretation
systems should not be considered a replacement for human input
because there are still patient and technical factors that may affect
the data’s suitability for interpretation by an algorithm.

Using ML to Go Beyond Simply
Automating Interpretation Rules
The potential for using ML in PFT interpretation is expanding
in several directions. First, ML is being used to better detect
technical deficiencies and poor-quality data to avert algorithm
misclassifications and alert the interpreters. Second, attempts
are being made to combine PFT data with the clinical picture
to better diagnose specific disease states. Third, and perhaps
most exciting, ML is being used to analyze continuous data, not
just discrete data points, to define new patterns of physiologic
dysfunction and links to disease states. Finally, ML can be used
to integrate PFT data into the realm of telehealth. These are
discussed in detail below and outlined in the Figure 1.

Improving Test Quality
Standard PFTs require properly calibrated equipment,
standardized testing procedures, and cooperative patients.
Current ERS/ATS standards define test quality using checklists
filled out by the technologists. Checklists, however, are poor at
assessing many of the nuances associated with good patient effort
and subtle machine performance characteristics. ML techniques
could aid in assessing the quality of the forced expiratory flow
pattern, inert gas washout pattern, panting maneuvers, and
breath-holds required during standard PFTs. These possibilities
have yet to be developed in any practical fashion.
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TABLE 1 | Machine learning methods that may be useful in the analysis of the numeric and graphic data of the pulmonary function tests.

Methods Description

Random forests A method of decision tree analysis in which a supervised algorithm works through “bagging” approach to create multiple decision
trees with a random subset of the data. These decision trees are then merged to get a more accurate and stable prediction. It is the
most common machine learning technique and is best suited for classification and regression tasks.

Neural network A set of algorithms that uses interconnected layers of computational units (analogous to neurons in the brain) to find relationships in
data by iteratively adapting the weights between units. The network typically consists of an input layer that receives the data, several
hidden layers, and an output layer. The network can learn using supervised training where an input/output relationship is known or
through unsupervised training where no outputs are provided.

Convolutional neural network A form of neural network, in which the network learns to optimize the filters (or kernels) that slide along input features through
automated learning and provides translational responses. It is most applied to analyze visual images.

Fuzzy logic A means of fuzzy mathematics that is best suited to handle partial truth where the truth value of the variables may be any real
number between 0 and 1. The method has the capability of recognizing, interpreting, and utilizing data and information that are
vague and imprecise, and outputs the degrees of truth. The reasoning style fuzzy system can be combined with the learning
structure of neural networks to become fuzzy-neural systems. The hybrid intelligent system has the strength of incorporating the
universal approximation theorem to discover the interpretable IF-THEN fuzzy rules.

Naïve Bayes A probabilistic classifier based on Bayes’ theorem. It assumes that the value of a particular feature is independent of the value of
any other feature. It is a simple technique that only requires a small number of training data to estimate the parameters necessary
for classification. The naive Bayes model can be used without accepting Bayesian probability or using any Bayesian methods.

Support vector machine A supervised machine learning that analyzes data for classification and regression analysis. It can build a model that assigns new
examples to one category or the other, making it a non-probabilistic binary linear classifier. It can also perform a non-linear
classification using the “kernel trick” mapping the inputs into high-dimensional feature spaces.

k-means clustering A common unsupervised machine learning method, in which unsupervised algorithms aim to group input vectors into k clusters
based on k averages of points (i.e., centroids) without referring to known, or labeled outcomes.

Adaptive Boosting (AdaBoost) A statistical classification algorithm that is frequently used with other “weaker” machine learning algorithms (e.g., decision tree) to
improve their performance. AdaBoost when used with decision trees is often referred to as the best out-of-the-box classifier. The
AdaBoost basically improve the relative “hardness” of each learner and converge them to a stronger learner.

Incorporating PFT Patterns With Clinical Data to
Formulate Diagnostic Possibilities
Although ML algorithms can be developed to learn to simply
recapitulate the multitude of patterns already known to and
used by experts, an exciting challenge is using ML to explore
existing PFTs in conjunction with the available healthcare data
to potentially uncover completely novel associations between
PFT patterns and diseases. A simple example available today
is a decision tree model that incorporates lung function and
clinical variables to improve the accuracy for detecting common
lung diseases including COPD, asthma, interstitial lung disease,
and neuromuscular disorder, compared to using PFT data alone
(Topalovic et al., 2017). This study included 968 new patients
seen in a pulmonary practice. The pulmonary diagnoses of
these patients were labeled based on the combination of PFT
results and the physician’s assessment. It was found the ATS/ERS
algorithm resulted in a correct diagnostic label in 38% of
the patients. COPD had the highest positive predictive value
(74%), whereas all other diseases were poorly identified. The
decision tree algorithm improved the overall accuracy by ˜
2-fold (68%) with an improved positive predictive value for
COPD (83%), asthma (66%), interstitial lung disease (52%),
and neuromuscular disorder (100%). Another study that used a
neuro-fuzzy system incorporating spirometric parameters (FEV1,
FVC, and FEV1/FVC) and clinical symptoms was able to classify
asthma and COPD with >99% accuracy (Badnjevic et al., 2015).

Analyzing Continuous Data
ML, supervised and unsupervised, can also be used to go
beyond identifying patterns described by discrete data points

and analyze continuous data or graphics. A prime example
would be an analysis of the entire expiratory flow-volume
loop (FVL). The traditional approach to assess the forced
expiratory portion of the FVL uses a small number of discrete
values, such as FEV1, FVC, FEF25−75%, and the FEV1/FVC
ratio. FEV1 is the most reproducible spirometric parameter
reflecting bronchial caliber, yet it is unable to quantify ventilation
inhomogeneity (Ross et al., 1992). FEF25−75% is quite variable
and is not reliable for the diagnosis of small airway disease
(the so-called “quiet zone”) (Quanjer et al., 2014; Malerba
et al., 2016). Since the expiratory flow signals in a FVL
reflect the sequential emptying properties of multiple lung units
having different time constants as the lung volume decreases,
analysis of the entire curve would be a better method to
explore regional lung properties such as small airway function
and mechanical (i.e., compliance and resistance) heterogeneity
(Topalovic et al., 2014).

Numerous approaches to analyzing the FVL have been
reported. An artificial neural network model that combined
traditional spirometric measurements and area under the
expiratory flow-volume curve differentiated well between
normal, obstruction, restriction, and mixed impairments
(Ioachimescu and Stoller, 2020). The square root of the area
under the expiratory flow-volume curve plus FEV1, FVC, and
FEV1/FVC z-scores could categorize ventilatory impairments
with very low rates of misclassification (<9%) compared
with standard classifications based on FVC, FEV1/FVC, and
TLC (Ioachimescu and Stoller, 2020). A fully convolutional
neural network of flow-volume curves with CT scan as the
output was more accurate in discriminating predominant
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FIGURE 1 | The diagram shows how machine learning may be used in pulmonary function testing. The two main areas are to assist in the interpretation and to
discover novel physiological biomarkers.

emphysema/airway phenotypes in COPD (area under the curve
[AUC] = 0.80) compared with traditional spirometry parameters
(FEV1 [area under the curve, or AUC = 0.71] and FEV1/FVC
[AUC = 0.70]) and random forest classifier (AUC = 0.78). The
neural network was also better in discriminating predominant
emphysema/small airway phenotypes (AUC 0.91) compared
with FEV1/FVC (AUC 0.80), FEV1% predicted (AUC 0.83),
and had similar accuracy to random forest classifier (AUC
0.90) (Bodduluri et al., 2020). Geometric analysis of the
expiratory FVL demonstrated the concavity of the forced
expiratory curve quantified by a slope-ratio was more prominent
in asthmatic patients (1.35 ± 0.03) than normal subjects
(0.90 ± 0.11) (Dominelli et al., 2016). The shape factors at
50 and 75% FVC and the slope ratio at 75% FVC improved
after inhaled corticosteroid treatment (Kraan et al., 1989).
The concavity of the expiratory limb of the spontaneous
FVL measured by a rectangular area ratio obtained during
exercise was inversely correlated with dynamic hyperinflation
and exercise limitation in patients with COPD (Varga et al.,
2016). The parameters in a second-order transfer function
model of the flow dynamics during forced expiration (the
two poles and the steady state gain) identified patients with
COPD defined by the existing guidelines with high accuracy
(88.2%) and may help in cases where FEV1/FVC ratio-based
diagnosis is uncertain (Topalovic et al., 2014). The multiscale
computational modeling, which is the use of computers to
simulate and study complex systems using mathematics, physics,
and computer science, can be used to analyze expiratory flow

in FVL and help evaluate obstructive lung diseases (Burrowes
et al., 2014). Incorporating ML and computational modeling
into the analysis of the entire FVL is a fruitful avenue for
future research.

Evaluation of regional DLCO may also be an application in
which ML can be useful. Traditional approaches to measuring
DLCO, including single-breath, steady-state, and rebreathing
methods, treat the lung as a single, well-mixed compartment and
produce a single value of DLCO that is taken to represent an
average DLCO at a given lung volume. Currently the single breath
DLCO measures are calculated by the changes in the concentration
of CO relative to an inert gas in one alveolar sample in the
expired gas (Graham et al., 2017). In fact, the entire exhalation
curves of CO and inert gas after the breath hold can be modeled
and analyzed with the help of ML. This could shed light on the
non-uniform distribution of DLCO due to the heterogeneity of
blood flow and ventilation distribution that is best observed in
slow exhalation, when DLCO is found to decrease non-linearly
from high to low lung volumes (Stokes et al., 1981; Huang
et al., 2002). Like the FVL, ML analysis of the entire exhalation
curve could improve insight into regional changes in DLCO over
single summary measurements, and provide earlier diagnosis
of lung disease, such as emphysema and pulmonary vascular
disease. Similarly, ML can also be used to analyze the nitrogen
washout curve and data from forced oscillation technique. Such
analyses potentially allow for the discovery of novel clinical
and physiological phenotypes related to emptying properties
of different lung regions (or ventilation heterogeneity) in

Frontiers in Physiology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 678540

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-678540 June 18, 2021 Time: 17:53 # 5

Giri et al. Machine Learning and PFT

obstructive lung diseases independent of traditional spirometry
indices (Mikamo et al., 2013; Timmins et al., 2014).

Intergrating PFT Data Into Telehealth Applications
In the era of wearables and telehealth, remote respiratory
monitoring for chronic respiratory patients has been proposed to
reduce hospitalizations, improve self-care, and enhance health-
related quality of life. The need for telemonitoring has become
more essential with the COVID-19 pandemic restricting in-
person pulmonary function testing (Kouri et al., 2020). Handheld
spirometers are among the respiratory devices that are suitable
for telemonitoring application. The spirometric data can be
transmitted via a gateway (e.g., a smartphone) to a cloud
repository site. ML may have increased application opportunities
in screening and interpreting these mobile pulmonary function
data. A smartphone game-based pulmonary function assessment
has demonstrated good correlation with those measured by
a spirometer in 34 stroke patients with intraclass correlation
coefficients for FVC and FEV1 of > 0.90 (Joo et al., 2018).
FEV1 and FVC measured by a smartphone-connected spirometer
agreed with those measured by a conventional spirometer in
pediatric patients with cystic fibrosis and asthma (Pearson
correlation coefficients > 0.9 for FEV1 and FVC), but only
less than half of the tests were acceptable and reproducible
according to the ATS/ERS criteria (Kruizinga et al., 2020).
An automated mobile expert diagnostic telehealth system
that consists of a spirometer, mobile application, and expert
diagnostic system was able to diagnose asthma and COPD
with high accuracy (>90%) in 780 patients at remote primary
healthcare institutions and hospitals (Gurbeta et al., 2018). An
ML algorithm combined with sociodemographic, clinical, and
physiological telemonitoring data was better in predicting acute
exacerbations of COPD than the two traditional symptoms-
counting algorithms (AUC of 0.74 with the ML algorithm vs.
0.60 and 0.58 for the traditional algorithms) (Orchard et al.,
2018). ML may be used to extract usable spirometry data from
the mobile programs in the wearable devices. Finally, precision
medicine can be delivered by tailoring analyses to an individual’s
clinical profile and learning from the experience of a patient
(Franssen et al., 2019).

HURDLES FOR DEVELOPMENT OF
ML-BASED PFT PROGRAMS

Despite the exciting potential for the use of ML in PFT, there
are hurdles in the development and commercialization of the
ML-assisted PFT interpretation programs. These include: (1) the
need for high quality representative data, (2) the existence of
inherent biases in historical data, (3) the need for development
and constant update of validated endpoints on which to train
ML models, (4) the existence of different formats for data
acquisition and sharing in PFT software by different vendors,
and (5) the need for collaboration amongst clinicians, biomedical
engineers, and information technologists to acquire large data
sets to develop and validate such algorithms. Our medical
system is reluctant to entrust a machine with a task that
a human can do, particularly due to the “black-box” nature

of fully automated systems. In recognition of these hurdles
and the need to regulate the development, production and
monitoring of ML models in medical devices, the US Food
and Drug Administration (FDA) in April 2019 published a
discussion paper that proposed a framework for AI/ML-based
Software as a Medical Device (SaMD) (USFDA, 2019). The
FDA purports to risk stratify SaMDs based on the intended use
of SaMD-derived information for healthcare decision making
and the risk profile of the individual patient. Based on this
stratification, ML-based PFT software could be used for “treating
and diagnosing,” “driving clinical management” as well as
“informing clinical management” in all tiers of risk, “critical,”
“serious,” and “non-serious” (USFDA, 2019). The American
Society of Mechanical Engineers has also introduced standards
for the ML-based PFT software as an SaMD (V&V40) and
machine learning (V&V70) (ASME, 2021). There are working
groups on patient-specific models, computational modeling of
medical devices, and machine learning under V&V40. This
standard can be used by the practitioner as a framework to
assess the device/software using sound engineering judgment.
Such a nationally accepted framework would be key to addressing
quality, liability, privacy, reimbursement, and regulatory issues of
AI/ML-based software and may serve to provide an impetus for
amalgamations of an integrated man-and-machine approach into
daily medical practice.

Hurdles notwithstanding, there is significant potential for
the use of ML in pulmonary function assessment. Future
research should focus on how ML may improve, simplify,
enhance, and expedite PFT interpretation, and integrate PFT
parameters with imaging and clinical information to discover
novel physiological markers that can enhance the diagnostic
sensitivity and specificity of pulmonary diseases. All these
developments would represent significant advances that could be
the future of PFTs, the oldest test still in use in clinical medicine
(MacIntyre, 2012).
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