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Machine learning can predict survival of
patients with heart failure from serum
creatinine and ejection fraction alone
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Abstract

Background: Cardiovascular diseases kill approximately 17 million people globally every year, and they mainly
exhibit as myocardial infarctions and heart failures. Heart failure (HF) occurs when the heart cannot pump enough
blood to meet the needs of the body.
Available electronic medical records of patients quantify symptoms, body features, and clinical laboratory test values,
which can be used to perform biostatistics analysis aimed at highlighting patterns and correlations otherwise
undetectable by medical doctors. Machine learning, in particular, can predict patients’ survival from their data and can
individuate the most important features among those included in their medical records.

Methods: In this paper, we analyze a dataset of 299 patients with heart failure collected in 2015. We apply several
machine learning classifiers to both predict the patients survival, and rank the features corresponding to the most
important risk factors. We also perform an alternative feature ranking analysis by employing traditional biostatistics
tests, and compare these results with those provided by the machine learning algorithms. Since both feature ranking
approaches clearly identify serum creatinine and ejection fraction as the two most relevant features, we then build the
machine learning survival prediction models on these two factors alone.

Results: Our results of these two-feature models show not only that serum creatinine and ejection fraction are
sufficient to predict survival of heart failure patients from medical records, but also that using these two features alone
can lead to more accurate predictions than using the original dataset features in its entirety. We also carry out an
analysis including the follow-up month of each patient: even in this case, serum creatinine and ejection fraction are
the most predictive clinical features of the dataset, and are sufficient to predict patients’ survival.

Conclusions: This discovery has the potential to impact on clinical practice, becoming a new supporting tool for
physicians when predicting if a heart failure patient will survive or not. Indeed, medical doctors aiming at
understanding if a patient will survive after heart failure may focus mainly on serum creatinine and ejection fraction.

Keywords: Cardiovascular heart diseases, Heart failure, Serum creatinine, Ejection fraction, Medical records, Feature
ranking, Feature selection, Biostatistics, Machine learning, Data mining, Biomedical informatics

Background
Cardiovascular diseases (CVDs) are disorders of the heart
and blood vessels including, coronary heart disease (heart
attacks), cerebrovascular diseases (strokes), heart failure
(HF), and other types of pathology [1]. Altogether, car-
diovascular diseases cause the death of approximately 17
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million people worldwide annually, with fatalities figures
on the rise for first time in 50 years the United Kingdom
[2]. In particular, heart failure occurs when the heart is
unable to pump enough blood to the body, and it is usu-
ally caused by diabetes, high blood pressure, or other heart
conditions or diseases [3].
The clinical community groups heart failure into two

types based on the ejection fraction value, that is the pro-
portion of blood pumped out of the heart during a single
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contraction, given as a percentage with physiological val-
ues ranging between 50% and 75%. The former is heart
failure due to reduced ejection fraction (HFrEF), previ-
ously known as heart failure due to left ventricular (LV)
systolic dysfunction or systolic heart failure and char-
acterized by an ejection fraction smaller than 40% [4].
The latter is heart failure with preserved ejection frac-
tion (HFpEF), formerly called diastolic heart failure or
heart failure with normal ejection fraction. In this case, the
left ventricle contracts normally during systole, but the
ventricle is stiff and fails to relax normally during diastole,
thus impairing filling [5–10].
For the quantitative evaluation of the disease pro-

gression, clinicians rely on the New York Heart Asso-
ciation (NYHA) functional classification, including four
classes ranging from no symptoms from ordinary activi-
ties (Class I) to a stage where any physical activity brings
on discomfort and symptoms occur at rest (Class IV).
Despite its widespread use, there is no consistent method
of assessing the NYHA score, and this classification fails
to reliably predict basic features, such as walking distance
or exercise tolerance on formal testing [11].
Given the importance of a vital organ such as the heart,

predicting heart failure has become a priority for medi-
cal doctors and physicians, but to date forecasting heart
failure-related events in clinical practice usually has failed
to reach high accuracy [12].
In this context, electronic health records (EHRs, also

called medical records) can be considered a useful
resource of information to unveil hidden and non-obvious
correlations and relationships between patients’ data, not
only for research but also for clinical practice [13, 14] and
for debunking traditional myths on risk factors [15, 16]. To
this aim, several screening studies have been conducted
in the last years, covering different conditions and demo-
graphics and with different data sources, to deepen the
knowledge on the risk factors. Among them, it is worth
mentioning the PLIC study [17], where EHRs, blood test,
single-nucleotide polymorphisms (SNPs), carotid ultra-
sound imaging, and metagenomics data have been col-
lected in a four-visit longitudinal screening throughout 15
years in Milan (Italy, EU) to support a better assessment
of cardiovascular disease risk.
Machine learning applied to medical records, in partic-

ular, can be an effective tool both to predict the survival
of each patient having heart failure symptoms [18, 19],
and to detect the most important clinical features (or risk
factors) that may lead to heart failure [20, 21]. Scien-
tists can take advantage of machine learning not only for
clinical prediction [22, 23], but also for feature ranking
[24]. Computational intelligence, especially, shows its pre-
dictive power when applied to medical records [25, 26],
or coupled with imaging [27–29]. Further, deep learning
and meta-analysis studies applied to this field have also

recently appeared in the literature [30–33], improving on
human specialists’ performance [34], albeit showing lower
accuracy (0.75 versus 0.59).
Modeling survival for heart failure (and CVDs in gen-

eral) is still a problem nowadays, both in terms of achiev-
ing high prediction accuracy and identifying the driving
factors. Most of the models developed for this purpose
reach only modest accuracy [35], with limited inter-
pretability from the predicting variables [36]. More recent
models show improvements, especially if the survival out-
come is coupled with additional targets (for example,
hospitalization [37]). Although scientists have identified a
broad set of predictors and indicators, there is no shared
consensus on their relative impact on survival prediction
[38]. As pointed out by Sakamoto and colleagues [39], this
situation is largely due to a lack of reproducibility, which
prevents drawing definitive conclusions about the impor-
tance of the detected factors. Further, this lack of repro-
ducibility strongly affects model performances: general-
ization to external validation datasets is often inconsistent
and achieves only modest discrimination. Consequently,
risk scores distilled from the models suffer similar prob-
lems, limiting their reliability [40]. Such uncertainty has
led to the proliferation of new risk scores appearing in
the literature in the last years, with mixed results [41–47].
As a partial solution to improve models’ effectiveness,
recent published studies included cohorts restricted to
specific classes of patients (for example, elderly or dia-
betic) [48, 49]. These attempts have led to tailored models
and risk scores [50, 51] with better but still not optimal
performance.
In this paper, we analyze a dataset of medical records

of patients having heart failure released by Ahmad and
colleagues [52] in July 2017. Ahmad and colleagues [52]
employed traditional biostatistics time-dependent mod-
els (such as Cox regression [53] and Kaplan–Meier sur-
vival plots [54]) to predict mortality and identify the key
features of 299 Pakistan patients having heart failure,
from their medical records. Together with their analy-
sis description and results, Ahmad and coworkers made
their dataset publicly available online (“Dataset” section),
making it freely accessible to the scientific community
[55]. Afterwards, Zahid and colleagues [56] analyzed the
same dataset to elaborate two different sex-based mortal-
ity prediction models: one for men and one for women.
Although the two aforementioned studies [52, 56] pre-
sented interesting results, they tackled the problem by
standard biostatistics methods, leaving room for machine
learning approaches. We aim here to fill this gap by using
several data mining techniques first to predict survival of
the patients, and then to rank the most important features
included in the medical records. As major result, we show
that the top predictive performances can be reached by
machine learning methods with just two features, none
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of them coming unexpected: one is ejection fraction, and
the other is serum creatinine, well known in the literature
as a major driver of heart failure [57–62], and also a key
biomarker in renal dysfunction [63–65].
In particular, we first describe the analyzed dataset

and its features (“Dataset” section), and then the
methods we employed for survival prediction and
feature ranking (“Methods” section). In the Results
section (“Results” section), we report the survival pre-
diction performances obtained through all the employed
classifiers (“Survival machine learning prediction on all
clinical features” section), the ranking of the features
obtained through traditional biostatistics techniques and
machine learning (“Feature ranking results” section), and
the survival prediction performances achieved by employ-
ing only the top two features identified through fea-
ture ranking (ejection fraction and serum creatinine,
“Survival machine learning prediction on serum creati-
nine and ejection fraction alone” section). Later, we report
and describe the results of the analysis that includes the
patients’ follow-up time (Table 11). Finally, we discuss the
results (“Discussion” section) and draw some conclusions
at the end of the manuscript (“Conclusions” section).

Dataset
We analyzed a dataset containing the medical records of
299 heart failure patients collected at the Faisalabad Insti-
tute of Cardiology and at the Allied Hospital in Faisalabad
(Punjab, Pakistan), during April–December 2015 [52, 66].
The patients consisted of 105 women and 194 men, and
their ages range between 40 and 95 years old (Table 1). All

299 patients had left ventricular systolic dysfunction and
had previous heart failures that put them in classes III or
IV of New York Heart Association (NYHA) classification
of the stages of heart failure [67].
The dataset contains 13 features, which report clinical,

body, and lifestyle information (Table 1), that we briefly
describe here. Some features are binary: anaemia, high
blood pressure, diabetes, sex, and smoking (Table 1). The
hospital physician considered a patient having anaemia
if haematocrit levels were lower than 36% [52]. Unfortu-
nately, the original dataset manuscript provides no defini-
tion of high blood pressure [52].
Regarding the features, the creatinine phosphokinase

(CPK) states the level of the CPK enzyme in blood. When
a muscle tissue gets damaged, CPK flows into the blood.
Therefore, high levels of CPK in the blood of a patient
might indicate a heart failure or injury [68]. The ejec-
tion fraction states the percentage of how much blood
the left ventricle pumps out with each contraction. The
serum creatinine is a waste product generated by cre-
atine, when a muscle breaks down. Especially, doctors
focus on serum creatinine in blood to check kidney func-
tion. If a patient has high levels of serum creatinine, it
may indicate renal dysfunction [69]. Sodium is a min-
eral that serves for the correct functioning of muscles and
nerves. The serum sodium test is a routine blood exam
that indicates if a patient has normal levels of sodium in
the blood. An abnormally low level of sodium in the blood
might be caused by heart failure [70]. The death event
feature, that we use as the target in our binary classifica-
tion study, states if the patient died or survived before the

Table 1 Meanings, measurement units, and intervals of each feature of the dataset

Feature Explanation Measurement Range

Age Age of the patient Years [40, ..., 95]

Anaemia Decrease of red blood cells or hemoglobin Boolean 0, 1

High blood pressure If a patient has hypertension Boolean 0, 1

Creatinine phosphokinase Level of the CPK enzyme in the blood mcg/L [23, ..., 7861]

(CPK)

Diabetes If the patient has diabetes Boolean 0, 1

Ejection fraction Percentage of blood leaving Percentage [14, ..., 80]

the heart at each contraction

Sex Woman or man Binary 0, 1

Platelets Platelets in the blood kiloplatelets/mL [25.01, ..., 850.00]

Serum creatinine Level of creatinine in the blood mg/dL [0.50, ..., 9.40]

Serum sodium Level of sodium in the blood mEq/L [114, ..., 148]

Smoking If the patient smokes Boolean 0, 1

Time Follow-up period Days [4,...,285]

(target) death event If the patient died during the follow-up period Boolean 0, 1

mcg/L: micrograms per liter. mL: microliter. mEq/L: milliequivalents per litre
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Table 2 Statistical quantitative description of the category features

Full sample Dead patients Survived patients

Category feature # % # % # %

Anaemia (0: false) 170 56.86 50 52.08 120 59.11

Anaemia (1: true) 129 43.14 46 47.92 3 40.89

High blood pressure (0: false) 194 64.88 57 59.38 137 67.49

High blood pressure (1: true) 105 35.12 39 40.62 66 32.51

Diabetes (0: false) 174 58.19 56 58.33 118 58.13

Diabetes (1: true) 125 41.81 40 41.67 85 41.87

Sex (0: woman) 105 35.12 34 35.42 71 34.98

Sex (1: man) 194 64.88 62 64.58 132 65.02

Smoking (0: false) 203 67.89 66 68.75 137 67.49

Smoking (1: true) 96 32.11 30 31.25 66 32.51

#: number of patients. %: percentage of patients. Full sample: 299 individuals. Dead patients: 96 individuals. Survived patients: 203 individuals.

end of the follow-up period, that was 130 days on aver-
age [52]. The original dataset article [52] unfortunately
does not indicate if any patient had primary kidney dis-
ease, and provides no additional information about what
type of follow-up was carried out. Regarding the dataset
imbalance, the survived patients (death event = 0) are
203, while the dead patients (death event = 1) are 96. In
statistical terms, there are 32.11% positives and 67.89%
negatives.
As done by the original data curators [52], we repre-

sented this dataset as a table having 299 rows (patients)
and 13 columns (features). For clarification purposes, we
slightly changed the names of some features of the origi-
nal dataset (Additional file 1). We report the quantitative
characteristics of the dataset in Table 2 and Table 3. Addi-
tional information about this dataset can be found in the
original dataset curators publication [52, 66].

Methods
In this section, we first list the machine learning methods
we used for the binary classification of the survival (“Sur-
vival prediction classifiers” section), and the biostatistics

and machine learning methods we employed for the fea-
ture ranking (“Feature ranking” section), discarding each
patient’s follow-up time. We then describe the logistic
regression algorithm we employed to predict survival
and to perform the feature ranking as a function of the
follow-up time (“Stratified logistic regression” section).
We implemented all the methods with the open source
R programming language, and made it publically freely
available online (Data and software availability).

Survival prediction classifiers
This part of our analysis focuses on the binary prediction
of the survival of the patients in the follow-up period.
To predict patients survival, we employed ten dif-

ferent methods from different machine learning areas.
The classifiers include one linear statistical method (Lin-
ear Regression [71]), three tree-based methods (Random
Forests [72], One Rule [73], Decision Tree [74]), one
Artificial Neural Network (perceptron [75]), two Support
Vector Machines (linear, and with Gaussian radial ker-
nel [76]), one instance-based learning model (k-Nearest
Neighbors [77]), one probabilistic classifier (Naïve Bayes

Table 3 Statistical quantitative description of the numeric features

Full sample Dead patients Survived patients

Numeric feature Median Mean σ Median Mean σ Median Mean σ

Age 60.00 60.83 11.89 65.00 65.22 13.21 60.00 58.76 10.64

Creatinine phosphokinase 250.00 581.80 970.29 259.00 670.20 1316.58 245.00 540.10 753.80

Ejection fraction 38.00 38.08 11.83 30.00 33.47 12.53 38.00 40.27 10.86

Platelets 262.00 263.36 97.80 258.50 256.38 98.53 263.00 266.66 97.53

Serum creatinine 1.10 1.39 1.03 1.30 1.84 1.47 1.00 1.19 0.65

Serum sodium 137.00 136.60 4.41 135.50 135.40 5.00 137.00 137.20 3.98

Time 115.00 130.30 77.61 44.50 70.89 62.38 172.00 158.30 67.74

Full sample: 299 individuals. Dead patients: 96 individuals. Survived patients: 203 individuals. σ : standard deviation
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[78]), and an ensemble boosting method (Gradient Boost-
ing [79]).
We measured the prediction results through common

confusion matrix rates such as Matthews correlation
coefficient (MCC) [80], receiver operating characteristic
(ROC) area under the curve, and precision-recall (PR)
area under the curve (Additional file 1) [81]. The MCC
takes into account the dataset imbalance and generates a
high score only if the predictor performed well both on
the majority of negative data instances and on the major-
ity of positive data instances [82–84]. Therefore, we give
more importance to the MCC than to the other confusion
matrix metrics, and rank the results based on the MCC.

Feature ranking
For the feature ranking, we employed a traditional univari-
ate biostatistics analysis followed by a machine learning
analysis; afterwards, we compared the results of the two
approaches.
Biostatistics. We used common univariate tests such

as Mann–WhitneyU test [85], Pearson correlation coeffi-
cient [86], and chi square test [87] to compare the distri-
bution of each feature between the two groups (survived
individuals and dead patients), plus the Shapiro–Wilk test
[88] to check the distribution of each feature. Each test
has a different meaning but all of them produce a score
(a coefficient for the PCC, and a p-value for the other
tests) representing the likelihood of a feature to be asso-
ciated to the target. These scores can then be employed
to produce a ranking, that lists the features from the most
target-related to the least target-related.
The Mann–Whitney U test (or Wilcoxon rank–sum

test) [85], applied to each feature in relation to the death
event target, detects whether we can reject the null
hypothesis that the distribution of the each feature for the
groups of samples defined by death event are the same. A
low p-value of this test (close to 0) means that the ana-
lyzed feature strongly relates to death event, while a high
p-value (close to 1) means the opposite. The Pearson cor-
relation coefficient (or Pearson product-moment correla-
tion coefficient, PCC) [86] indicates the linear correlation
between elements of two lists, showing the same elements
on different positions. The absolute value of PCC gener-
ates a high value (close to 1) if the elements of the two
lists have linear correlation, and a low value (close to 0)
otherwise.
The chi square test (or χ2 test) [87] between two fea-

tures checks how likely an observed distribution is due to
chance [89]. A low p-value (close to 0) means that the two
features have a strong relation; a high p-value (close to 1)
means, instead, that the null hypothesis of independence
cannot be discarded.
Similar to what Miguel and colleagues did on a breast

cancer dataset [90], we decided also to take advantage of

the Shapiro–Wilk test [88] to assess if each feature was
extracted from a normal distribution.
Machine learning. Regarding machine learning feature

ranking, we focused only on Random Forests [72, 91],
because as it turned out to be the top performing clas-
sifier on the complete dataset (“Feature ranking results”
section). Random Forests [72] provides two feature rank-
ing techniques: mean accuracy reduction and Gini impu-
rity reduction [92]. During training, Random Forests gen-
erates several random Decision Trees that it applies to
data subsets, containing a subsets both of data instances
and of features. In the end, Random Forests checks all the
binary outcomes of these decisions trees and chooses its
final outcome through a majority vote. The feature rank-
ing based upon the mean accuracy decreases counts how
much the prediction accuracy decreases, when a partic-
ular feature is removed. The method then compares this
accuracy with the accuracy obtained by using all the fea-
tures, and considers this difference as the importance of
that specific feature: the larger the accuracy drop, the
more important the feature. The other feature ranking
method works similarly, but is based upon the Gini impu-
rity decrease [91]: the more the Gini impurity drops, the
more important the feature.

Aggregate feature rankings and prediction on the top
features
Starting from the whole dataset D we generated a col-
lection D = {{

Dtr
i ,Dts

i
}}N

i=1 of N Monte Carlo stratified
training/test partitions D = Dtr

i ∪Dts
i with ratio 70%/30%.

For each execution, we randomly selected 70% of
patients for the training set, and used the remaining 30%
for the test set. To make our predictions more realistic,
we avoided using the same balance ratio of the whole
complete dataset (32.11% positives and 67.89% negatives).
This way, we had different balance ratios for each of the
100 executions with, on average, 32.06% positives and
66.94% negatives on average in the training sets, and with,
on average, 32.22% positives and 67.78% negatives on
average in the test sets.
On the N training portions Dtr

1 , . . . ,Dtr
N we applied

seven different feature ranking methods, namely RRe-
liefF [93–95], Max-Min Parents and Children [96–98],
Random Forest [72], One Rule [73], Recursive Partition-
ing and Regression Trees [99], Support Vector Machines
with linear kernel [100] and eXtreme Gradient Boosting
[79, 101, 102], using the feature death event as the tar-
get and obtaining 7N ranked lists of the 11 features.
Agglomerating all the 7N features into the single Borda list
[103, 104] we obtained the global list (Fig. 2 for N =
100), together with the Borda count score of each fea-
ture, corresponding to the average position across all 7N
lists, and thus the lower the score, the more important the
feature.
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We then used only the top–two features, namely serum
creatinine and ejection fraction to build on each sub-
set Dtr

i three classifiers, namely Random Forests (RF),
Support Vector Machine with Gaussian Kernel (GSVM)
and eXtreme Gradient Boosting (XGB). Finally, we then
applied the trained models to the corresponding test por-
tions Dts

i with the aforementioned top–2 features and
averaged the obtained performances modelwise on the N
test set instances.
For the feature ranking and the classification made

on the top two features, we employed different sets
of the machine learning methods than the ones we
used for the survival prediction on the complete dataset
(“Survival prediction classifiers” section): RReliefF, Max-
Min Parents and Children, Random Forests, One Rule,
Recursive Partitioning and Regression Trees Support Vec-
tor Machines with linear kernel, and eXtreme Gradient
Boosting, for the feature ranking, and Random Forests,
Gradient Boosting, and SVM with radial kernel. We
decided to use three different sets of methods because we
aimed to demonstrate the generalisability of our approach,
by showing that our computational solution is not only
valid with few machine learning classifiers, but rather
works for several groups of methods.
Regarding the final prediction using only the top two

selected features, we chose Random Forests because
it resulted in being the top performing classifier on
the complete feature dataset (“Survival machine learn-
ing prediction on all clinical features” section) and it
is universally considered an efficient method for fea-
ture ranking [92]. We then chose Gradient Boosting
and Support Vector Machine with radial Gaussian kernel
because both these methods have shown efficient per-
formances in feature ranking with medical informatics
data [105, 106].

Stratified logistic regression
In the just-described first analysis, we wanted to predict
the survival of patients and to detect the clinical feature
importance in the follow-up time, without considering its
different extent for each patient. In the second analysis,
we decided to include the follow-up time, to see if the
survival prediction results or the feature ranking results
would change. To analyze this aspect, wemapped the orig-
inal dataset time feature (containing the days of follow-up)
into a month variable, where month 0 means that fewer
than 30 days have gone by, month 1 means between 30
and 60 days,month 2means between 60 and 90 days, and
so on.
We then applied a stratified logistic regression [107]

to the complete dataset, including all the original clini-
cal features and the derived follow-up month feature. We
measured the prediction with the aforementioned confu-
sion matrix metrics (MCC, F1 score, etc.), and the feature

ranking importance as the logistic regression model coef-
ficient for each variable.

Results
In this section, we first describe the results we obtained
for the survival prediction on the complete dataset
(“Survival machine learning prediction on all clinical fea-
tures” section), the results obtained for the feature rank-
ing (“Feature ranking results” section), and the results
on the survival prediction when using only the top two
most important features of the dataset (“Survival machine
learning prediction on serum creatinine and ejection frac-
tion alone” section and “Serum creatinine and ejection
fraction linear separability” section), all independently
from the follow-up time. We then report and discuss
the results achieved by including the follow-up time of
each patient in the survival prediction and feature rank-
ing (“Survival prediction and feature ranking including the
follow-up period” section).

Survival machine learning prediction on all clinical features
We employed several methods to predict the survival
of the patients. We applied each method 100 times and
reported the mean result score (Table 4).
For methods that needed hyper-parameter optimization

(neural network, Support Vector Machine, and k-Nearest
Neighbors), we split the dataset into 60% (179 randomly
selected patients) for the training set, 20% (60 randomly
selected patients) for the validation set, and 20% (the
remaining 60 patients) for the test set. To choose the top
hyper-parameters, we used a grid search and selected the
models that generated the highest Matthews correlation
coefficient [83].
For the other methods (Random Forests, One Rule, Lin-

ear Regression, Naïve Bayes, and Decision Tree), instead,
we split the dataset into 80% (239 randomly selected
patients) for the training set, and 20% (the remaining 60
patients) for the test set.
For each of the 100 executions, our script randomly

selected data instances for the training set and for the test
(and for the validation set, in the case of hyper-parameter
optimization) from the complete original dataset. We
trained the model on the training set (and validated it on
the validation set, in the case of hyper-parameter opti-
mization). We then applied the script to the test set. Given
the different selections of data instances for the dataset
splits, each execution led to slightly different results.
Our prediction results showed that Random Forests

outperformed all the other methods, by obtaining the top
MCC (+0.384), the top accuracy (0.740), and the top ROC
AUC (0.800) (Table 4). The Decision Trees obtained the
top results on the true positives (sensitivity = 0.532) and
on the F1 score (0.554), and was the only classifier able to
predict correctly the majority of deceased patients. The
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Table 4 Survival prediction results on all clinical features – mean of 100 executions

Method MCC F1 score Accuracy TP rate TN rate PR AUC ROC AUC

Random forests +0.384* 0.547 0.740* 0.491 0.864 0.657 0.800*

Decision tree +0.376 0.554* 0.737 0.532* 0.831 0.506 0.681

Gradient boosting +0.367 0.527 0.738 0.477 0.860 0.594 0.754

Linear regression +0.332 0.475 0.730 0.394 0.892 0.495 0.643

One rule +0.319 0.465 0.729 0.383 0.892 0.482 0.637

Artificial neural network +0.262 0.483 0.680 0.428 0.815 0.750* 0.559

Naïve bayes +0.224 0.364 0.696 0.279 0.898 0.437 0.589

SVM radial +0.159 0.182 0.690 0.122 0.967 0.587 0.749

SVM linear +0.107 0.115 0.684 0.072 0.981* 0.594 0.754

k-nearest neighbors -0.025 0.148 0.624 0.121 0.866 0.323 0.493

MCC: Matthews correlation coefficient. TP rate: true positive rate (sensitivity, recall). TN rate: true negative rate (specificify). Confusion matrix threshold for MCC, F1 score,
accuracy, TP rate, TN rate: τ = 0.5. PR: precision-recall curve. ROC: receiver operating characteristic curve. AUC: area under the curve. MCC: worst value = –1 and best value =
+1. F1 score, accuracy, TP rate, TN rate, PR AUC, ROC AUC: worst value = 0 and best value = 1. MCC, F1 score, accuracy, TP rate, TN rate, PR AUC, ROC AUC formulas: Additional
file 1 (“Binary statistical rates” section). Gradient boosting: eXtreme Gradient Boosting (XGBoost). SVM radial: Support Vector Machine with radial Gaussian kernel. SVM linear:
Support Vector Machine with linear kernel. Our hyper-parameter grid search optimization for k-Nearest Neighbors selected k = 3 on most of the times (10 runs out of 100).
Our hyper-parameter grid search optimization for the Support Vector Machine with radial Gaussian kernel selected C = 10 on most of the times (56 runs out of 100). Our
hyper-parameter grid search optimization for the Support Vector Machine with linear kernel selected C = 0.1 on most of the times (50 runs out of 100). Our hyper-parameter
grid search optimization for the Artificial Neural Network selected 1 hidden layer and 100 hidden units on most of the times (74 runs out of 100). We report in blue and with ∗
the top performer results for each score.

linear Support Vector Machines achieved an almost per-
fect prediction score on the negative elements (specificity
= 0.961), but a poor score on the positive elements (sensi-
tivity = 0.072). The Artificial Neural Network perceptron,
instead, obtained the top value on the Precision-Recall
AUC (0.750).
Because of the imbalance of the dataset (67.89% negative

elements and 32.11% positive elements), all the methods
obtained better prediction scores on the true negative
rate, rather than on the true positive rate (Table 4). These
results occur because the algorithms can see more neg-
ative elements during training, and therefore they are
more trained to recognize deceased patient profiles dur-
ing testing.

Feature ranking results
Similarly to what authors did for a dataset of patients
having mesothelioma symptoms [92], we decided then
to investigate the most important features of the cardio-
vascular heart disease patients dataset. To this aim, we
first performed a traditional univariate biostatistics anal-
ysis (“Feature ranking” section), and then employed Ran-
dom Forests [108], to generate machine learning results.
We then compared the results obtained through the two
approaches.
All the biostatistics tests (Mann–Whitney U test in

Table 5, Pearson correlation coefficient in Table 6, and chi
squared test in Table 7) identified serum creatinine and
ejection fraction as the top two most important features.
Mann–Whitney U test (Table 5) and chi squared test

(Table 7), in particular, showed a significant p-value close
to 0 for both these two features. The Pearson correlation

coefficient results (Table 6, left side) also showed age, in
the third position, as a top feature among serum creatinine
and ejection fraction.
The Shapiro–Wilk test (Table 6, right side) generated p-

values close to 0 for all the features, meaning that the null
hypothesis of normality is rejected, and all variables are
non-normal.
Regarding Random Forests feature ranking, both the

accuracy reduction and the Gini impurity rankings
detected serum creatinine, ejection fraction, and age as
the top three most important features of the dataset
(Fig. 1). The two rankings show high similarity: the

Table 5 Mann–Whitney U test

Mann–Whitney U

Rank Feature Test p-value

1 Serum creatinine 0

2 Ejection fraction 0.000001

3 Age 0.000167

4 Serum sodium 0.000293

5 High blood pressure 0.171016

6 Anaemia 0.252970

7 Platelets 0.425559

8 Creatinine phosphokinase 0.684040

9 Smoking 0.828190

10 Sex 0.941292

11 Diabetes 0.973913

Results of the univariate application of the Mann–Whitney U test between each
feature and the target feature death event
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Table 6 Pearson correlation coefficients (PCC) and Shapiro–Wilk tests

Pearson correlation coefficient Shapiro–Wilk test

Rank Feature abs(PCC) Rank Feature p-value

1 Serum creatinine 0.294 1 Creatinine phosphokinase 7.05 × 10−28

2 Ejection fraction 0.269 2 Serum creatinine 5.39 × 10−27

3 Age 0.254 3 Smoking 4.58 × 10−26

4 Serum sodium 0.195 4 Death event 4.58 × 10−26

5 High blood pressure 0.079 5 Sex 1.17 × 10−25

6 Anaemia 0.066 6 High blood pressure 1.17 × 10−25

7 Creatinine phosphokinase 0.063 7 Diabetes 5.12 × 10−25

8 Platelets 0.049 8 Anaemia 6.21 × 10−25

9 Smoking 0.013 9 Platelets 2.89 × 10−12

10 Sex 0.004 10 Serum sodium 9.21 × 10−10

11 Diabetes 0.002 11 Ejection fraction 7.22 × 10−09

12 Age 5.34 × 10−05

Results of the univariate application of the Pearson correlation coefficient between each feature and the target feature death event, absolute value (left), and the univariate
application of the Shapiro–Wilk test on each feature (right)

Kendall τ rank correlation coefficient between them is
+0.56 and the Spearman ρ rank correlation coefficient is
+0.73. Both these coefficients range between −1 (when
the ranking of a list is the opposite of the other one) and
+1 (when the two rankings are similar) [109].
To have a unique final classification to evaluate, we

then merged the two rankings into an aggregate rank-
ing by using Borda’s method [110]. For every feature f,
we added its position in the accuracy decrease ranking
p1(f ) to its position in the Gini impurity raking p2(f ), and
saved this aggregate value in the ranking variable scoref .
Finally, we sorted all the features increasingly based upon
scoref (Table 8).

Table 7 Chi squared test

Chi squared test

Rank Feature p-value

1 Ejection fraction 0.000500

2 Serum creatinine 0.000500

3 Serum sodium 0.003998

4 Age 0.005997

5 High blood pressure 0.181909

6 Anaemia 0.260370

7 Creatinine phosphokinase 0.377811

8 Platelets 0.637681

9 Smoking 0.889555

10 Sex 1

11 Diabetes 1

Results of the application of the chi squared test between each feature and the
target feature death event

In the aggregated ranking (Table 8), creatinine phospho-
kinase appeared as the fourth most important feature tied
with serum sodium, while anaemia and diabetes were the
least important features among all.
Once we obtained the ranking of the features based

upon their importance, we aimed to understand what is
the minimum number of features (and which features
should be used) to still be able to perform an accurate
prediction of the survival of patients. In fact, we want to
provide a method that can be used by medical doctors in
the hospital, in the scenario where just few features of the
electronic health record (EHR) of a patient are available.
Since we observed that serum creatinine and ejection

fraction resulted as the top two features in the univariate
biostastitics analysis tests (Pearson correlation coefficient
in Table 6, Mann–Whitney U test in Table 5 and chi
squared in Table 7), and in the Random Forests analysis
(Table 8 and Fig 1), we decided to explore if it is possible to
correctly predict the patients’ survival from these top two
clinical features alone.

Survival machine learning prediction on serum creatinine
and ejection fraction alone
As mentioned earlier (“Aggregate feature rankings and
prediction on the top features” section), we decided
to investigate if machine learning can precisely predict
patients’ survival by using the top two ranked features
alone. We therefore elaborated another computational
pipeline with an initial phase of feature ranking, followed
by a binary classification phase based on the top two
features selected (Table 9).
All the different methods employed for feature rank-

ing identified serum creatinine and ejection fraction as
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a b

Fig. 1 Random Forests feature selection. Accuracy reduction. Gini impurity. Random Forests feature selection through accuracy reduction (a).
Random Forests feature selection through Gini impurity (b)

the top two features for all the 100 executions (Fig. 2),
so we then performed a survival prediction on these two
features by employing three algorithms: Random Forests,
Gradient Boosting, and SVM radial.
All the three classifiers employed outperformed their

corresponding results obtained on the complete datase
(Table 4). Random Forests and Gradient Boosting applied
to serum creatinine and ejection fraction alone, more-
over, even outperformed all the methods applied to the
complete dataset (Table 4), by achieving Matthews cor-
relation coefficients greater than +0.4 in the [−1; +1]
range. Similar to the application on the complete
dataset, here the classifiers obtained better results on

the specificity (true negative rate) than on the recall
(true positive rate), because of the imbalance of the
dataset.

Serum creatinine and ejection fraction linear separability
To verify further the predictive power of serum creati-
nine and ejection fraction, we depicted a scatterplot with
the serum creatinine values on the x axis and the ejection
fraction values on the y axis, and we colored every patient-
point based on survival status (survived or dead, Fig. 3).
This plot shows a clear distinction between alive patients
and dead patients, that we highlighted by manually insert-
ing a black straight line.

Table 8 Random Forests feature selection aggregate ranking

Final rank Feature Accuracy decrease Accuracy decrease rank Gini impurity Gini impurity rank

1 Serum creatinine 3.78 × 10−2 1 11.84 1

2 Ejection fraction 3.43 × 10−2 2 10.71 2

3 Age 1.53 × 10−2 3 8.58 3

4 Creatinine phosphokinase 7.27 × 10−4 6 7.26 4

4 Serum sodium 7.20 × 10−3 4 6.49 6

6 Sex 1.64 × 10−3 5 1.12 8

6 Platelets 2.47 × 10−4 8 6.80 5

8 High blood pressure −1.68 × 10−3 11 1.13 7

8 Smoking 3.68 × 10−4 7 0.95 11

10 Anaemia −5.91 × 10−4 10 1.06 9

10 Diabetes −1.41 × 10−4 9 1.02 10

We merged the two rankings through their position, through the Borda’s method [103]
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Table 9 Survival prediction results on serum creatinine and ejection fraction – mean of 100 executions

Method MCC F1 score Accuracy TP rate TN rate PR AUC ROC AUC

Random forests +0.418* 0.754* 0.585* 0.541 0.855* 0.541 0.698

Gradient boosting +0.414 0.750 0.585* 0.550* 0.845 0.673* 0.792*

SVM radial +0.348 0.720 0.543 0.519 0.816 0.494 0.667

MCC: Matthews correlation coefficient. TP rate: true positive rate (sensitivity, recall). TN rate: true negative rate (specificify). Confusion matrix threshold for MCC, F1 score,
accuracy, TP rate, TN rate: τ = 0.5. PR: precision-recall curve. ROC: receiver operating characteristic curve. AUC: area under the curve. MCC: worst value = –1 and best value =
+1. F1 score, accuracy, TP rate, TN rate, PR AUC, ROC AUC: worst value = 0 and best value = 1. MCC, F1 score, accuracy, TP rate, TN rate, PR AUC, ROC AUC formulas: Additional
file 1 (“Binary statistical rates” section). Gradient boosting: eXtreme Gradient Boosting (XGBoost). SVM radial: Support Vector Machine with radial Gaussian kernel. We reported
in blue and with ∗ the top results for each score.

Survival prediction and feature ranking including the
follow-up period
In the previous part of the analysis, we excluded follow-up
time from the dataset because we prefered to focus on the
clinical features and to try to discover something mean-
ingful about them. Follow-up time, however, can be an
important factor in the survival of patients, and should not
be eliminated completely from this study. We therefore
decided to investigate the possible relationship between
follow-up time and the survival of patients: is the moment
of the follow-up visit related to the chance of survival of
the patient?
Follow-up time and survival. To analyze this aspect,

we first grouped together all the surviving patients and the
deceased patients for each month. We then built a barplot
that relates the percentage of surviving patients to each
follow-up month (Fig. 4). This plot shows that it is impos-
sible to correlate the survival of patients to the follow-up
month because the survival trend is not linear: the month

5, in fact, reports less surviving patients thanmonth 4 and
month 6 (Fig. 4).
For the same reasons, there is no trend showing an

increasing or decreasing rate of survived patients as func-
tion of months gone by: the month 5, in fact, has less
half survived patients, similarly to month 0 and month 1,
without being adjacent to them (Fig. 4).
Survival prediction including follow-up time. Even if

we notice no linear correlation between follow-up month
and survival, we decided to repeat the survival predic-
tion analysis and the feature ranking analysis by including
this feature, and to explore the relevance of ejection frac-
tion and serum creatinine in this case. As mentioned
earlier (“Stratified logistic regression” section), we used a
stratified logistic regression for this task.
We first applied the logistic regression to rank all the

clinical features. The results we obtained (Table 10) again
showed ejection fraction and serum creatinine to be the
most relevant clinical factors.

serum creatinine

ejection fraction

age

serum sodium

sex

platelets

smoking

creatinine phosphokinase

high blood pressure

 diabetes

anaemia

2.446

2.924

4.060

5.303

6.429

6.866

7.043

7.193

7.599

7.879

8.260

Fig. 2 Aggregated results of the feature rankings. Borda list of the 700 rankings obtained applying seven ranking methods on 100 instances of 70%
training subsets of D. We ranked the Borda list by importance, quantitatively expressed as the Borda count score, corresponding to the average
position across all 700 lists. The lower the score, the higher the average rank of the feature in the 700 lists and thus the more important the feature.
We highlight the top two features with red circles
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Fig. 3 Scatterplot of serum creatinine versus ejection fraction. Serum creatinine (x axis) range: [0.50, 9.40] mg/dL. Ejection fraction (y axis) range:
[14, 80]%. We manually drew a black straight line to highlight the discrimination between alive and dead patients

Fig. 4 Barplot of the survival percentage for each follow-up month. Follow-up time (x axis) range: [0, 9] months. Survival percentage (y axis) range:
[11.43, 100]%. For each month, we report here the percentage of survived patients. For the 0 month (less than 30 days), for example, there were
11.43% survied patients and 88.57% deceased patients
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Table 10 Stratified logistic regression feature ranking

Rank Clinical feature Importance

1 Ejection fraction 4.13938106

2 Serum creatinine 3.69917184

3 Age 2.61938095

4 Creatinine phosphokinase 1.88929235

5 Sex 1.32038950

6 Platelets 1.06270364

7 High blood pressure 0.79478093

8 Anaemia 0.77547306

9 Smoking 0.65828165

10 Diabetes 0.60355319

11 Serum sodium 0.54241360

Results of the feature ranking obtained by the stratified logisitc regression.
Importance: coefficient of the trained logistic regression model, average of 100
execution

We trained the model on the whole dataset, and then
ranked the non-temporal features based upon their gener-
alized linear model (GLM) coefficients. We repeated this
operation 100 times and reported the average importance
value for each variable (Table 10).
Afterwards, in a similar way as we did before (“Aggre-

gate feature rankings and prediction on the top features”
section), we decided to investigate how the survival pre-
diction would behave when using only the two selected
features.We trained the stratified logistic regression on all
the features including the follow-up time, by using 70% of
patients, randomly selected. We then selected the top two
clinical features, trained a model by using only these top
two features and follow-up month, and tested this three-
feature model on the test set. We applied this method 100
times, and reported the average results (Table 11). For all
executions, the top two features were ejection fraction and
serum creatinine.
The stratified logistic regression using only three fea-

tures outperformed the model using all features, in each
confusion matrix. metric (Table 10). The results showed
that, when including follow-up month into the model,
machine learning predictions using only ejection fraction

and serum creatinine outperformed a prediction using all
the clinical features.
Additionally, the results obtained by the stratified

logistic regression and considering the follow-up month
(Table 10) outperformed the results achieved by the
other methods without the follow-up month (Table 4 and
Table 9), highlighting the importance of this temporal
variable.

Discussion
Our results not only show that B it might be possible to
predict the survival of patients with heart failure solely
from their serum creatinine and ejection fraction, but also
that the prediction made on these two features alone can
be more accurate than the predictions made on the com-
plete dataset. This aspect is particularly encouraging for
the hospital settings: in case many laboratory test results
and clinical features were missing from the electronic
health record of a patient, doctors could still B be able to
predict patient survival by just analyzing the ejection frac-
tion and serum creatinine values. B That being said, we
recognize that additional confirmatory studies need to be
completed before this machine learning procedure can be
taken up into clinical practice.
Our analysis also generated some interesting results that

differ from the original dataset curators study [52]. Ahmad
and colleagues, in fact, identified age, serum creatinine
(renal dysfunction), high blood pressure, ejection fraction
and anaemia as top features. In our Random Forests fea-
ture ranking instead (Table 8), high blood pressure is on
8th position out of 11, and anaemia is on the 10th position
out of 11 (last position tied with diabetes).

Conclusions
In our work, the fact that our traditional biostatistics anal-
ysis selected ejection fraction and serum creatinine as the
two most relevant features confirmed the relevance of the
feature ranking executed with machine learning. More-
over, our approach showed that machine learning can
be used effectively for binary classification of electronic
health records of patients with cardiovascular hearth dis-
eases.

Table 11 Survival prediction results including the follow-up time – mean of 100 executions

Method MCC F1 score Accuracy TP rate TN rate PR AUC ROC AUC

Logistic regression +0.616* 0.719* 0.838* 0.785* 0.860* 0.617* 0.822*

(EF, SR, & FU)

Logistic regression +0.607 0.714 0.833 0.780 0.856 0.612 0.818

(all features)

Top row: logistic regression using only ejection fraction (EF), serum creatinine (SC), and follow-up time month (FU). Bottom row: logistic regression using all features. MCC:
Matthews correlation coefficient. TP rate: true positive rate (sensitivity, recall). TN rate: true negative rate (specificify). Confusion matrix threshold for MCC, F1 score, accuracy,
TP rate, TN rate: τ = 0.5. PR: precision-recall curve. ROC: receiver operating characteristic curve. AUC: area under the curve. MCC: worst value = –1 and best value = +1. F1
score, accuracy, TP rate, TN rate, PR AUC, ROC AUC: worst value = 0 and best value = 1. MCC, F1 score, accuracy, TP rate, TN rate, PR AUC, ROC AUC formulas: Additional file 1
(“Binary statistical rates” section). We reported in blue and with ∗ the top results for each score.
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As a limitation of the present study, we have to report
the small size of the dataset (299 patients): a larger dataset
would have permitted us to obtain more reliable results.
Additional information about the physical features of the
patients (height, weight, body mass index, etc.) and their
occupational history would have been useful to detect
additional risk factors for cardiovascular health diseases.
Also, if an additional external dataset with the same fea-
tures from a different geographical region had been avail-
able, we would have used it as a validation cohort to verify
our findings.
Regarding future developments, we plan to apply our

machine learning approach to alternative datasets of
cardiovascular heart diseases [111–113] and other ill-
nesses (cervical cancer [114], neuroblastoma [115], breast
cancer [90], and amyotrophic lateral sclerosis [116]).

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12911-020-1023-5.
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