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Abstract Perinatal asphyxia occurs still with great inci-
dence whenever delivery is prolonged, despite improve-
ments in perinatal care. After asphyxia, infants can suffer
from short- to long-term neurological sequelae, their
severity depend upon the extent of the insult, the metabolic
imbalance during the re-oxygenation period and the
developmental state of the affected regions. Significant
progresses in understanding of perinatal asphyxia patho-
physiology have achieved. However, predictive diagnostics
and personalised therapeutic interventions are still under
initial development. Now the emphasis is on early non-
invasive diagnosis approach, as well as, in identifying new
therapeutic targets to improve individual outcomes. In this
review we discuss (i) specific biomarkers for early prediction
of perinatal asphyxia outcome; (ii) short and long term
sequelae; (iii) neurocircuitries involved; (iv) molecular path-

ways; (v) neuroinflammation systems; (vi) endogenous brain
rescue systems, including activation of sentinel proteins and
neurogenesis; and (vii) therapeutic targets for preventing or
mitigating the effects produced by asphyxia.
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ERK Extracellular signal-regulated kinases
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GDNF Glial cell-derived neurotrophic factor
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KA Kainic acid
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MAPK Mitogen-activated protein kinase
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enhancer of activated B cells
NGF Nerve growth factor
NMDA N-methyl-D-aspartic acid
nNOS Neuronal nitric oxide synthase
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PKA Protein kinase A
PKC Protein kinase C
ROS Reactive oxidative species
SNAP-25 Synaptosomal-associated protein 25
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TH Tyrosine hydroxylase
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TNF-α Tumour necrosis factor-alpha

VTA Ventral tegmental area
XRCC1 X-ray cross complementing factor 1

Introduction

Perinatal asphyxia (PA) or neonatal hypoxia- ischemia (HI)
is a temporary interruption of oxygen availability that
implies a risky metabolic challenge, even when the insult
does not lead to a fatal outcome [1]. Different clinical
parameters have been used to both diagnose and predict the
prognosis for PA, including non reassuring foetal heart rate
patterns, prolonged labour, meconium-stained fluid, low 1-
minute Apgar score, and mild to moderate acidemia,
defined as arterial blood pH less than 7 or base excess
greater than 12 mmol/L [2].

The guidelines of the American Academy of Paediatrics
(AAP) and the American College of Obstetrics and
Gynaecology (ACOG) consider all of the following criteria
in diagnosing asphyxia: (i) profound metabolic or mixed
acidemia (pH <7.00) in umbilical artery blood sample, if
obtained, (ii) persistence of an Apgar score of 0–3 for
longer than 5 min, (iii) neonatal neurologic sequelae (e.g.,
seizures, coma, hypotonia), and (iv) multiple organ
involvement (e.g., kidney, lungs, liver, heart, intestines)
[3]. Clinically, this type of brain injury is called Hypoxic-
Ischemic Encephalopathy (HIE). The staging system
proposed by Sarnat and Sarnat in 1976 is often useful in
classifying the degree of encephalopathy. Mild (stage I),
moderate (stage II), or severe (stage III) HIE is commonly
diagnosed using physical examination, which evaluates the
level of consciousness, neuromuscular control, tendon and
complex reflexes, pupils, heart rate, bronchial and salivary
secretions, gastrointestinal motility, presence or absence of
myoclonus or seizures, electroencephalography findings,
and autonomic function [4]. However, these parameters
have no predictive value for long-term neurologic injury
after mild to moderate asphyxia [5].

PA is a major paediatric issue with few successful
therapies to prevent neuronal damage. PA still occurs
frequently when delivery is prolonged, despite improve-
ments in perinatal care [6–9]. The international incidence
has been reported as 2–6/1,000 term births [10, 11],
reaching higher rates in developing countries [12–14].

Prognosis and sequelae of perinatal asphyxia

Studies of neurodevelopmental outcome after HIE often
give limited information about the children, pooling a wide
range of outcome severities. The emphasis in neonatology
and paediatrics is on non-invasive diagnosis approaches for
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predictive diagnostics. Several methods for predicting
outcomes in infants with HIE are used in the clinical
setting including: neonatal clinical examination and clinical
course, monitoring general movements [15, 16], early
electrophysiology testing, cranial ultrasound imaging,
Doppler blood flow velocity measurements, magnetic
resonance imaging (MRI) and MR microscopy. The
neonatal brain MRI provides detailed information about
lesion patterns in HIE allowing for earlier and more
accurate prediction of long-term outcome [17, 18]. Very
recently, a potential serum biomarker for predicting indi-
vidual predispositions to pathologies or progression of
complications induced by asphyxia has been described. As
HIE induces changes in blood-barrier permeability [19], a
potential correlation between blood and brain can be
established. Thus, the presence of specific level of lactate
dehydrogenase [20] or free radicals in blood predicts HIE in
newborn infant during the first 12 h after birth. This result
is of clinical interest offering a potential inexpensive and
safe prognostic marker for newborn infants with PA. Long-
term follow-up studies are required to correlate the
information obtained from early biomarkers predictor with
clinical-pathophysiologic outcome.

The time course and the severity of the neurological
deficits observed following HI depends upon the extent of
the insult, the time lapse before normal breathing is restored
and the CNS maturity of the foetus. Severe asphyxia has
been linked to cerebral palsy, mental retardation, and
epilepsy [7, 21–23], while mild-moderate asphyxia has
been associated with cognitive and behavioural alterations,
such as hyperactivity, autism [22], attention deficits in
children and adolescents [24, 25], low intelligence quotient
score [26], schizophrenia [27–29] and development of
psychotic disorders in adulthood [30]. In a prospective
cohort study of genetic and perinatal influences on the
aetiology of schizophrenia [26, 31], it was reported that
individuals with hypoxia-related obstetric complications
were more than five times more likely to develop
schizophrenia than individuals with no hypoxia-related
obstetric complications. Moreover, a downregulation of
brain-derived neurotrophic factor (BDNF) has been
detected in cord samples of patients exposed to PA who
develop schizophrenia as adults [27]. This finding suggests
that the decrease in neurotrophic factors induced by HI may
lead to dendritic atrophy and disruption of synaptogenesis,
effects that are present in individuals destined to develop
schizophrenia as adults [27]. Moreover, in a 19-year
longitudinal study, it was found that neonatal HI complica-
tions were associated with a doubling of the risk for
developing a psychotic disorder [32].

Because the majority of studies have focused on
detecting major developmental abnormalities at a very
young age, we still know little about the less severe

difficulties that children may experience later, since
different levels of morbidity have been found after mild or
moderate PA [33]. To understand the long-term effects of PA
on development, it is necessary to follow participants
through school age. Specific cognitive functions continue
to develop throughout childhood, and subtle functional
deficits usually become apparent when a child faces
increasing demands to develop complex abilities in school.
Different studies have shown that children 2 to 6 years old
with mild PA have general intellectual skills comparable to
control groups, and those with moderate PA obtain
consistently worse results than control groups but without
reaching statistically significant, differences [34–36]. When
children with moderate PA are tested at 7 to 9 years, they
show problems in reading, spelling and math [22, 37, 38].
Given the good prognosis of children with mild PA, the
heterogeneity of moderate PA, and the devastating effects of
severe PA, some authors have proposed a dose–response
effect [9, 37].

Neurocircuitries of the hippocampus, as well as the basal
ganglia [10, 24, 39–43], are particularly vulnerable to HI in
the neonate [18, 44–50]. Hippocampus have been associ-
ated with specific cognitive functions such as memory and
attention and together with striatum, play a role in the
pathogenesis of attention deficit hyperactivity disorder,
autism and schizophrenia [10, 51, 52]. The striatum has
also been associated with cerebral palsy, a group of
disorders of movement and posture development. Motor
abnormalities are often accompanied by disturbances of
sensation, perception, cognition, behaviour and/or by a
seizure disorder [16]. Term infants exposed to severe HI
show focal brain lesions in the peri-Rolandic cortex,
ventrolateral thalamus, hippocampus, and posterior puta-
men on MRI [17, 18, 53, 54], as well as abnormalities in
generalized movement patterns at 1 and 3 months of age
[16]. This group also shows increased susceptibility for
developing cerebral palsy, including athetosis and dystonia,
with impaired motor speech and impaired use of the hands
compared to the legs [54]. A recent MRI study of a cohort
of 175 term infants with PA, with scans obtained at 6 weeks
and at 2 years postnatally, provides compatible results [17].
The early MRIs showed marked structural damage to the
deep grey matter, hippocampus, or frontal white matter,
producing a long-term impact on intellectual function in the
children. In particular, memory and attention/executive
functions were impaired in children that experienced severe
PA. Language problems were also common [17]. These
MRI findings provide evidence of the close relationship
between the localisation of the lesion, the severity of the HI
injury, and the resulting functional impairment. A similar
system-selective pattern of network degeneration in the
hippocampus has been seen with diffusion tensor MRI in
mice with hypoxic-ischaemic injury [55, 56]. In agreement,
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hippocampal cell death was observed 1 week [57, 58],
1 month [43, 59–61] and 3 months [62, 63] after PA,
principally in the CA1, CA3 and dentate gyrus (DG)
regions of rats. Moreover, a decrease in synaptogenesis and
dendritic branching of pyramidal cells has been found in
hippocampal cultures from rats exposed to PA [Rojas-
Mancilla et al., in preparation] (see Fig. 1). These effects
could be correlated with deficits in neuro-behavioural
functions such as hyperactivity, deficits in working memory,
non-spatial memory, anxiety, and motor coordination [40,
42, 61, 63, 64–66] and also could be a key factor in the
development of neuropathology, including schizophrenia
[27].

Energy deficit and calcium homeostasis

Energy failure occurring in PA leads a radical shift from an
aerobic to a less efficient anaerobic metabolism, resulting in
a decreased rate of ATP and phosphocreatine formation
[67–69], lactate accumulation [70, 71], decreased pH [67,
72], decreased protein phosphorylation [69, 73–75]; and
finally, over-production of reactive oxygen species (ROS)
[76–80] that result in cell death. Deficit in ATP production
leads to loss of resting membrane potential [81], disturban-
ces in ionic homeostasis, membrane depolarisation [82],
and an increase in extracellular glutamate concentration
[70, 83] as shown in Fig. 2. This results in over-activation
of the ionotropic NMDA (N-methyl-D-aspartic acid),
AMPA/KA (Alpha-amino acid-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid/Kainic acid) receptors as well as the
G-protein-linked metabotropic glutamate receptors
(mGluR) [82, 84, 85], inducing a massive influx of Ca2+

into cells. The increase in cytosolic Ca2+, in turn, activates
proteases, lipases, endonucleases, and nitric oxide syn-
thases that degrade the cytoskeleton and extracellular
matrix proteins, producing membrane lipid peroxidation,
peroxynitrites, and other free radicals [44, 57, 86, 87].
These events [88–91] elicit a cascade of downstream
intracellular processes that finally lead to excitotoxic
neuronal damage [92–94] and cell death (see Fig. 2).

In response to the energy deficit, blood flow is
redistributed to the heart, brain and adrenal glands in order
to ensure oxygen supply to these vital organs. This
redistribution occurs at the expense of reduced perfusion
of kidneys, gastrointestinal tract, muscles, skeleton and skin
[28, 69, 95–97]. In the brain there is also a redistribution of
blood flow, favouring the brain stem at the expense of the
cortex [98], showing a re-compartmentalisation of struc-
tures to privilege survival [69]. Re-oxygenation can lead to
improper homeostasis, partial recovery, and sustained over-
expression of alternative metabolic pathways, prolonging
the energy deficit and/or generating oxidative stress.

Oxidative stress is associated with inactivation of a number
of enzymes, including mitochondrial respiratory enzymes
[69, 99], low capacity of the antioxidant mechanism at this
early developmental stage [100–103], high oxidative
phosphorylation, high free iron producing hydroxyl radi-
cals, high fatty acid content, high metabolism and low
metabolic reserves, high oxygen consumption, and imma-
turity at birth [8, 102, 104, 105] (see Fig. 2).

Fig. 1 Perinatal asphyxia reduces neurite branching of primary
cultured pyramidal neurons from hippocampus. Asphyxia was
induced by immersing foetuses-containing uterine horns, removed
from ready-to-deliver rats into a water bath at 37°C for 21 min. The
cultures were prepared 6 h after delivery. After 14 days in vitro, the
cultures were fixed with a formalin solution for assaying neuronal and
astroglial phenotype using antibodies against microtubule associated
protein-2 (MAP-2, red) and glial fibrillary acidic protein (GFAP, green)
respectively, counterstained with 4′,6-diamidino-2-phenylindole
(DAPI, blue), a DNA marker. A fluorescent photomicrograph of
cultures from a caesarean-delivered control (a), and asphyxia-exposed
(b) rats, showing MAP-2 (red) and GPAP (green) positive cells is
shown. A significant decrease on neurite branching is observed in
asphyctic cultures (b), principally evident in neurites of secondary and
tertiary order. Moreover, a relationship between neurons and astrocytes
can be observed in both experimental conditions, being more
pronounced in astrocytes from asphyctic condition. Scale bar:
20 μm. Taken from Rojas-Mancilla et al., in preparation
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Perinatal asphyxia and cell death

The mechanisms of neuronal cell death after PA includes
necrosis, apoptosis, autophagia and hybrid cell deaths and/
or a continuum of neuronal phenotypes, depending princi-
pally on the severity of the insult and the maturational state
of the cell [69, 106–109]. An initial decrease in high-energy
phosphates results in impairment of the ATP-dependent
Na+-K+ pump, which after the severe insult causes an acute
influx of Na+, Cl−, and water with consequent cell swelling,
cell lysis, and thus early cell death by necrosis. Conversely,
a less severe insult causes membrane depolarisation
followed by a cascade of excitotoxicity and oxidative

stress, leading to delayed cell death, principally apoptosis.
Thus, necrosis can be observed within minutes, while
apoptosis takes more time to develop [110]. Apoptosis is
triggered by the activation of endogenous proteases
caspases, resulting in cytoskeletal disruption, cell shrink-
age, and membrane blebbing. The nucleus undergoes
chromatin condensation and nuclear DNA degradation
resulting from endonuclease activation [111]. Since apopto-
sis requires energy, a determinant factor of when cells die is
likely the ability of mitochondria to provide adequate
energy. Another determinant of classic apoptosis is the loss
of neuronal connections, which can continue days to weeks
after injury, because groups of cells seem to commit to die

Fig. 2 Neuropathological mechanisms induced by perinatal asphyxia
in the neonatal brain. Following PA, energy failure leads to a shift
from aerobic to anaerobic metabolism, resulting in a decreased rate of
ATP and other energy compounds, lactate accumulation, decreased
pH, and finally, over-production of reactive oxygen species (ROS). An
ATP deficit leads to dissipation of ion gradients and membrane
depolarisation, due to pumps decreased protein phosphorylation, with
a subsequent increase in extracellular glutamate concentration. This
results in over-activation of glutamate receptors inducing a massive
influx of Ca2+ into cells, which activates proteases, lipases, endonu-
cleases, and nitric oxide synthases that degrade the cytoskeleton and
extracellular matrix proteins, producing membrane lipid peroxidation,
peroxynitrites, and other free radicals. These events elicit a cascade of
downstream intracellular processes that finally lead to excitotoxic

neuronal damage and cell death. At the same time, antioxidative
mechanisms get involved and DNA damage triggers the activation of
sentinel proteins that maintain genome integrity, such as poly (ADP-
ribose) polymerases (PARPs), but when overactivated, leads to further
energy depletion and cell death. Depending upon time after asphyctic
injury, re-oxygenation can lead to improper homeostasis, prolonging
the energy deficit and/or generating oxidative stress. Oxidative stress
has been associated with inactivation of a number of metabolic repair
enzymes and further activation of degradatory enzymes, thus extend-
ing and maintaining damage. After acute damage, proliferation and
sprouting are diminished, in agreement with a decrease in activity of
Protein kinase C (PKC) and cyclin-dependent kinase (Cdk) observed
after PA. But at long-term, release of neurotrophic factors promotes
neurogenesis and neuritogenesis
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[106]. Apoptosis is the more prevalent type of delayed cell
death in the perinatal brain, and both caspase-dependent
and caspase-independent mechanisms of apoptotic cell
death have been recognised [43, 69, 83, 112, 113]. Thus,
multiple cell death mediators are activated by neonatal HI
injury, including various members of the Bcl-2, Bcl-2-
associated X protein (BAX), Bcl-2-associated death pro-
moter (BAD) [43, 114, 115] death receptor [116], and
caspases [117, 118] protein families, correlating with
increased apoptosis in the brain [119, 120]. After neonatal
insult, markers of apoptosis (cleaved caspase-3) and
necrosis (calpain-dependent fodrin breakdown product)
can be expressed by the same damaged neurons [121],
suggesting that the “continuum” could be explained by a
failure of some dying cells to complete apoptosis, due to a
lack of energy and mitochondrial dysfunction [106, 113,
122]. HI also increases markers for autophagosoma
(microtubule-associated protein 1 light chain 3–11) and
lysosomal activities (cathepsin D, acid phosphatase, and β-
N-cetylhexosaminidase) in cortical and hippocampal CA3-
damaged neurons, suggesting an activation of autophagic
flux that may be related to the apoptosis observed in
delayed neuronal death after severe HI [84, 108].

Increased knowledge of the factors that determine when
or how cells die after HI is important since it might be
possible to salvage tissue using drugs, growth factors, or
interventions that influence brain activity and restore the
damaged neurocircuitry.

Perinatal asphyxia and neurotransmission systems

Glutamatergic system

The depletion of energy reserves that accompanies pro-
longed hypoxia results in neuronal depolarisation and the
release of excitatory amino acids into the extracellular
space [69, 123–126], in concentration that exceed both the
glial reuptake capacity that is further compromised by
energy failure [127] and re-uptake into the synaptic nerve
terminal [128]. Thus, glutamate and aspartate accumulate to
excitotoxic levels [86, 92–94]. Glutamate activates iono-
tropic NMDA, AMPA/KA and metabotropic receptors.
AMPA/KA receptor activation increases sodium conduc-
tance, depolarising the membrane and activating voltage-
dependent calcium channels including the NMDA receptor
channel. Metabotropic receptors mGluR1-mGluR5, through
second messengers, mobilise calcium from intracellular
reservoirs to the cytosolic compartment, activating pro-
teases, lipases and endonucleases, which in turn initiate a
process of cell death [44, 86, 129, 130]. In fact, a transient
increase in excitatory amino acid levels has been found in
several experimental models of HI and in the cerebrospinal

fluid of human newborn [85, 125, 131, 132]. The
importance of NMDA-mediated injury in the immature
brain is related to the fact that NMDA receptors are
functionally up regulated in the perinatal period because
of their role in activity-dependent neuronal plasticity [94].
Immature NMDA channels has a higher probability of
aperture and conductance than adult channels, and the
voltage-dependent magnesium block that is normally
present in adult channels at resting membrane potentials,
is more easily relieved in the perinatal period [84, 133].
Thus, increased expression and phosphorylation of NR1
subunits of NMDA receptors have been observed in the
striatum after PA. This change is correlated with increased
excitability and neurodegeneration during the neonatal
period [134, 135]. Moreover, a deficiency in the GluR2
subunit of AMPARs during development has been corre-
lated with increased susceptibility to HI at the regional and
cellular levels [136, 137]. Recent studies further suggest
crosstalk between inflammation and excitotoxic neuronal
damage. It has been shown that the pro-inflammatory
cytokine TNF-α is one of the most potent regulators of
AMPAR trafficking to and from the plasma membrane, and
that it can rapidly increase the proportion of Ca2+-
permeable AMPAR at the surface. In combination with
increased extracellular glutamate levels, this enhances
excitotoxic cell death [85, 138].

The pharmacological blockade of glutamate receptors
markedly protects against brain injury induced by severe
hypoxia [139–142], reinforcing the idea that glutamatergic
receptors during the perinatal period are most susceptible
over-activation, promoting the excitotoxicity found after
hypoxic ischaemic insults.

Astrocytes also play an important role in preventing
neurotoxicity by glutamate uptake [143–147] and are
affected by the energy deficit induced by PA as described
earlier. Indeed, a decrease in glutamate uptake has been
observed in the hippocampus of rat pups subjected to
15 min of PA [148] and a similar result has been observed
in the cortex, basal ganglia and thalamus of piglets [149].
Reduced glutamate uptake is correlated with a down-
regulation of astrocytic excitatory amino acid transporters
EAAT-1 and EAAT-2 [150] after HI, reinforcing the idea that
energy deficits also promote a severe disruption of
astrocytic cell function.

Dopaminergic and nitridergic system

Mesencephalic dopamine (DA) neurons are essential for the
control of motor and cognitive behaviour, and are associ-
ated with multiple psychiatric and neurodegenerative dis-
orders [151]. In recent years, increasing evidence shows
that the monoamine neurotransmitters, particularly DA,
may aggravate damage to the brain induced by HI. The
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striatum, a region richly innervated by the nigrostriatal
dopaminergic pathway, is especially susceptible to asphyc-
tic neuronal damage [47].

Levels of DA as well as its metabolites may remain
elevated even after normoxia is stabilised [152], due to an
impaired DA uptake mechanism [153, 154]. It has been
suggested that during HI, the increase in extracellular DA
levels can result in alterations in the sensitivity of neurons
to the excitatory amino acids [155, 156]. Furthermore,
glutamate and aspartate levels are increased, mainly in
mesencephalic tissues [70]. A proposed mechanism for the
neurotoxic effect of DA is through an increase in the
production of free radicals during the re-oxygenation period
[157, 158]. This is in agreement with evidence showing that
neuronal injury occurring during re-oxygenation after an
asphyctic insult is partly due to oxygen free radical-
mediated oxidative events [159–161]. PA also induces
change in the expression and pharmacological parameters
of dopaminergic receptors in the meso-telencephalic DA
systems [125]. In addition, asphyxia induced an increase of
tyrosine hydroxylase (TH) mRNA in the projection fields,
striatum and limbic regions, at 1 week. PA did not appear to
exert any effect on D1R mRNA levels. These changes may
affect D2R and D1R expression differently during develop-
ment, contributing to long-term imbalances in neurocircui-
try [162].

The postnatal establishment of DA neuronal connectivity
can be disturbed by metabolic insults occurring at birth.
Indeed, it has been shown that PA, alters the establishment
of DA neurocircuitries, with long-term consequences.
[163]. In our studies, we have shown decreased TH
labelling, together with decreased cell viability in substantia
nigra (SN) of hypoxic rat brains, suggesting an increased
vulnerability of DA cells to hypoxic insult [90, 163]. It was
reported that foetal asphyxia induced at E17 by 75-minute
clamping of the uterine circulation causes long-term deficits
in DA-mediated locomotion in rats, which was related to
loss of dopaminergic neurons in the SN, probably associ-
ated with nigrostriatal astrogliosis [164]. The molecular
changes in glial cell survival following PA are not fully
established yet, and the resulting effects of astrocytic
alterations on neuron survival and neurite outgrowth and
branching should be determined.

In vivo, neuritogenesis depends on signals from neigh-
bouring and distant cells to guide the growth cone to the
targets [151, 163, 165]. The expression of guidance
proteins such as semaphorins, ephrins, netrins, Slits and
their cognate receptors and corresponding growth cones are
likely the primary targets for the effect of metabolic insults
on the CNS [151]. DA fibres start to invade the neostriatum
before birth [166], but DA-containing axon terminals
establish a mature targeting several weeks after birth
[167]. In the neostriatum, TH immune-reactive fibres have

been shown decrease after PA [62], and the dendrite
branching of dopaminergic neurons evaluated in organo-
typic cultures show decreased secondary and higher order
dendrite branching after asphyxia [90, 163]. These obser-
vations could indicate a modification in attractive and
repulsive signals, perhaps suggesting a role for semaphor-
ins, which have been shown to be particularly vulnerable to
oxidative stress [168].

Furthermore, the neuronal nitric oxide synthase (nNOS)
positive neurons in neostriatum show alterations after PA,
evidenced by a decrease in number and complexity of
neurite trees. It is interesting that in the SN the number of
nNOS-positive neurons increases [89, 90], revealing that
the interactions amongst DA and nNOS neurons in
mesencephalon and telencephalon are regionally different
[169, 170].

Finally, there are several studies indicating increased
anxiety following PA [61]. Anxiety has been associated
with the neurocircuitries involving neurons of the ventral
hippocampus, the prefrontal cortex and amygdale that are
regulated by dopaminergic innervation [171, 172]. Since
the DA pathways have shown to be particularly vulnerable
to PA [62, 70, 90, 162, 173], it is tempting to hypothesise
that the anxiety-like behaviour is linked to an impairment of
DA transmission.

Perinatal asphyxia and neuroinflammation

Recently, the interconnection between the immune and
neuronal systems has been a focus of several studies,
especially in the context of pathogenesis, in which sustained
or excessive inflammation has been associated with neuro-
toxicity and numerous neuropathologies [174–177].

One major hallmark of neuroimmflamation is the
activation of microglia, which are resident parenchymal
cells of the brain, derived from the same myeloid lineage as
macrophages and dendritic cells [178]. If brain injury
occurs, microglia activate, changing the pattern of secreted
molecules and activating de novo synthesis of
inflammation-related molecules [179]. Microglial activation
has beneficial effects for the removal of cell debris, which
attenuates inflammatory responses and promotes the
remodelling of the affected area. However, over-activation
of microglia can exacerbate neuronal death, because inflam-
matory molecules contribute to a detrimental environment,
causing secondary damage [180]. Hence, the balance
between a properly modulated or exacerbated immune
response is fundamental for biological homeostasis.

Following HI, local inflammation is produced by
activated microglia [181], probably due to necrotic cell
death, producing a damage-associated molecular pattern
(DAMPs). Toll-like receptors (TLRs) are expressed by
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microglial cells [175], sensing the DAMPs [182] and
inducing the activation of the major transcription factor
associated with inflammatory response, i.e. NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells).
Following asphyctic injury, NF-κB is rapidly activated in
neurons and glial cells [183, 184]. Indeed, it has been shown
that NF-κB p65 is up-regulated in the rat brain 10 min post-
PA [185]. An increase in the transcriptional function of NF-
κB due to microglia activation leads to the induction of
several genes associated with the innate immune response,
including proinflammatory cytokines such as: Tumoral
necrosis factor-α (TNF-α), Interleukin-1 beta (IL-1β),
Interleukin-6 (IL-6), Interleukin-10 (IL-10), Interferon
gamma (INF-γ), and proteases such as matrix metal-
loproteinases 3 and 9 (MMP-3 and MMP-9) [186–189].

In humans, a relationship has been established between
pro-inflammatory cytokine serum level and outcome for
infants with PA. Infants who die or develop cerebral palsy
had high plasma levels of pro-inflammatory cytokines as
compared to infants with normal outcomes [190]. In
agreement, blood levels of IL-1β, IL-6 and TNF-α are
correlated with cerebral spinal fluid (CSF) levels of IL-1β
in infants with HIE during the first 24 h of life [191]. Thus,
cell damage during PA is associated with microglia-
mediated inflammation [192] and inflammatory markers
may be useful in predictive diagnostics for PA-induced
brain damage and clinical outcomes.

Perinatal asphyxia and sentinel proteins

PA negatively affects the integrity of the genome, triggering
the activation of sentinel proteins that maintain genome
integrity, such as poly (ADP-ribose) polymerases (PARPs)
[193], X-Ray Cross Complementing Factor 1 (XRCC1),
DNA ligase IIIα [194], DNA polymerase β [195, 196],
Excision Repair Cross-Complementing Rodent Repair
Group 2 (ERCC2) [185, 197, 198] and DNA-dependent
protein kinases [199].

PARP-1 is a member of the nuclear chromatin-associated
PARPs proteins. PARP-1 catalyses the formation of poly
(ADP-ribose) polymers (pADPr) from nicotinamide ade-
nine dinucleotide (NAD+), releasing nicotinamide as a
product [200, 201]. pADPr is then transferred to glutamic
acid or aspartic residues of acceptor proteins, modifying
them post-translationally [201, 202].

When PARP-1 is activated, intracellular levels of pADPr
increase about 10 to 500 times [201]. It has been proposed
that DNA damage induces the binding of PARP-1 to DNA,
promoting the recruitment of the DNA repair machinery
[195, 203]. Activated PARP-1 acts as a transcription
regulator, unravelling the superstructure of chromatin and
regulating the transcriptional activity of various genes,

including nitric oxide synthase, chemokines and integ-
rins. Thus, PARP-1 is involved in the regulation of
various processes, including DNA replication, repair-
ment, transcription, mitosis, proteins degradation and
inflammation [201].

Despite the beneficial effects of PARP-1 activation for
important cellular functions, enhanced pADPr formation
can be detrimental, leading to various forms of cell death
[204]. Normally, in mild DNA damage, PARP facilitates
DNA repair by interacting with DNA repair enzymes such
as DNA polymerase, XRCC1 and DNA-dependent protein
kinase, allowing cells to survive. When the DNA damage is
irreparable, caspase-dependent cell death, mediated by
caspase 3 and caspase 7, degrades PARP-1 into two
fragments of 89 and 24 kDa [205]. Therefore, the cell is
eliminated by apoptosis. It has also been reported that the
accumulation of pADPr promotes the release of AIF
(Apoptosis-inducing factor) from the mitochondria, leading
to cell death through caspase-independent apoptosis [201].
However, when DNA damage is severe, PARP-1 is over
activated, depleting intracellular NAD+ levels, and conse-
quently ATP [68]. This energy-compromised state inhibits
many cellular processes, including apoptosis, and promotes
necrosis [206]. Severe DNA damage is usually triggered by
a massive degree of oxidative stress triggered by reactive
oxygen species such as peroxynitrite, hydroxyl and super-
oxide free radicals. Thus, the effect of PARP-1 activity
depends greatly on the intensity of DNA damage.

Asphyctic injury is characterised by low energy avail-
ability, because of a lack of oxygen. In this context, PARP-1
over activation is especially critical for cell survival. Many
asphyctic models suggest the importance of energy deple-
tion in this clinical condition [207–209] and note that
PARP-1 inhibitors can avoid excessive energy decreases
[91, 210, 211]. Consistently, restoring NAD+ can prevent
changes induced by PARP-1 over-activation [193].

Perinatal asphyxia and neurogenesis: endogenous brain
rescue

Several compensatory mechanisms, including neurogenesis,
have been proposed as mediators of endogenously triggered
protection against delayed cell death [120, 212–216].
Indeed, increased neurogenesis has been observed in brain
regions affected by HI [120, 214, 217, 218], including DG,
CA1 [43, 213, 219, 220], subventricular zone (SVZ) [221,
222], neostriatum [223] and neocortex [224, 225]. It has
been suggested that new cells produced in SVZ can migrate
to the lesioned regions [226–229], attracted by stromal cell-
derived migratory signalling. When the new cells arrive in
the lesioned region, they form functional connections [223].
Basic fibroblast growth factor (bFGF) has been identified as
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a factor promoting cell survival and neurogenesis [229–
231], through activation of the MAPK (Mitogen-activated
protein kinases)/extracellular signal-regulated kinases
(ERK) pathway [43, 232]. Also, the expression of bFGF
has been observed to be upregulated in DG and SVZ
following PA [43, 222, 233, Espina-Marchant et al., in
preparation]. Recently, we have reported evidence suggest-
ing that bFGF, through activation of the MAPK/ERK
pathway is one of the mechanisms involved in neurogenesis
induced by PA [43, 61, Espina-Marchant et al., in
preparation]. Several proteins have been identified as
modulators of the transduction cascade elicited by bFGF
receptors (FGFR) during embryogenesis, including Spry
(Sprouty), Sef (similar expression to FGF) and FLRT3
(leucine-rich repeat trans-membrane protein) [234]. Spry
and Sef provide inhibitory regulation, while FRLT3
stimulates the activation of FGFR and ERK [235]. Whether
these pathways regulate the cellular response to injury
postnatally is not yet known, but recent studies have shown
that FLRT3, Sef, and Spry proteins are up regulated
following PA, with specific temporal and regional patterns
[Morales et al., in preparation]. Indeed, neurogenesis can be
regulated by a large number of molecules, including growth
and neurotrophic factors [236, 237], neurotransmitters, such
as dopamine [238] and serotonin [239–241] and other
factors still under characterisation.

Striatal dopamine de-afferentation has been reported to
increase neurogenesis in the adult olfactory bulb [242],
although the mechanism by which this occurs is still
unknown. Furthermore, it has been shown that D2 and D3
dopamine receptor stimulation promotes proliferation of
neural progenitor cells in both SVZ [243], and hippocam-
pus [244] while D1 receptor stimulation has also been
shown to modulate neurogenesis, but indirectly, via
GABAergic neurons [245]. Dopaminergic fibres targeting
the SVZ and hippocampus originate in mesencephalon
(SNC and VTA). These fibres establish anatomical and
functional contacts with cell precursors that express DA
receptors [238]. When treated with apomorphine, a non-
selective DA receptor agonist [246] or a combination of D1
and D2 agonists [247], the synthesis and release of growth
factors associated with neurogenesis, such as bFGF [246,
248], BDNF, epidermal growth factor (EGF), Nerve growth
factor (NGF), ciliary neurotrophic factor (CNTF). CNTF
and glial cell-derived neurotrophic factor (GDNF) is
increased [237, 249–252], promoting cell proliferation
[247]. To date, the role of different dopamine receptors in
asphyxia-induced neurogenesis has not been characterised.
The issue is however relevant, because indirect dopamine
agonists are used for treating attention deficit hyperactivity
disorder (ADHD), a disorder strongly associated with PA
[253]. Furthermore, it is clear that the issue of specific DA
receptors must be investigated, because receptor multiplic-

ity exists, conveying different and, sometimes opposing
responses [254]. Recently, using organotypic cultures from
DG, we investigated whether DA receptors are involved in
the modulation of neurogenesis induced by PA. When
treated with apomorphine (Apo), there was an increase in
the number of BrdU+ cells (a mitosis marker) and BrdU+/
MAP2+ (neuronal marker) cells in DG organotypic cultures
from asphyxia-exposed, but not from control rats. Since PA
induces a decrease in DA levels and an increase in DA
receptor mRNA expression in DA target regions, it is
possible that the effect of Apo on neurogenesis is via DA
receptors rendered supersensitive by the asphyctic insult.
Supersensitive receptors could also be located on astro-
cytes, releasing growth and neurotrophic factors, or directly
on neural stem cells, driving a neuronal phenotype.
Therefore, further progress is needed in understanding
the subjacent mechanisms involved in the modulation
of neurogenesis after brain insults, in order to develop
novel therapeutic strategies for restoring the damaged
neurocircuitry.

Emerging targets for early intervention
and neuroprotection

Although understanding of the pathophysiology of PA is
gradually increasing, individual therapeutic options for
preventing or mitigating the effects produced by the insult
are limited. In the last years, therapies have focused in
reducing the effects caused by secondary neuronal damage
and restoring the functionality of neurocircuitry. Recent
progress with several promising neuroprotective com-
pounds has been focussed on the first phase of HI insult
including channel blockage (anti-convulsant or anti-
excitatory), anti-oxidation, anti-inflammation [255] and
apoptosis inhibitors. In later phase PA injury therapies that
target the promotion of neuronal regeneration by stimula-
tion of neurotrophic properties of the neonatal brain using
growth factors and stem cell transplantation show promise
[256–258].

Hypothermia has also proven to be an effective treatment
to reduce neuronal injury secondary to hypoxia in animal
models [259–261] and is currently applied in the clinic
[257, 262–264]. The protective effects of hypothermia have
been associated with inhibition of proteases and calpain
activation, loss of mitochondrial membrane potential and
mitochondrial failure, free radical damage, lipid peroxida-
tion and inflammation [257, 265]. In a recent systematic
review and meta-analysis of the 13 clinical trials published
to date, therapeutic hypothermia was associated with a
highly reproducible reduction in the risk of the combined
outcome of mortality or moderate-to-severe neurodevelop-
mental disability, severe cerebral palsy, cognitive delay, and
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psychomotor delay but had higher incidences of arrhythmia
and thrombocytopenia in childhood. In agreement, rando-
mised controlled trials have shown that mild therapeutic
hypothermia (≤34°C head cooling) [266] with or without
whole-body cooling [267], reduces death and disability in
these infants when initiated within 6 h of birth [84, 268].
However, there is concern for a narrow therapeutic window
[261] and the lack of a clear mechanism of action for the
effect of hypothermia [63, 69, 259, 269]. Combining
pharmacological interventions with moderate hypothermia
is probably the next step to fight HI brain damage in the
clinical setting. Indeed, improved neuroprotection in the
asphyxiated newborn has reportedly when hypothermia has
been combined with anticonvulsant or antiexcitatory drugs
including phenobarbital [270, 271], topiramate [272, 273],
levetiracetam [274], memantine [273], xenon [275], mag-
nesium sulphate [276], and bumetanide [277]. Further
studies should concentrate on more rational pharmacolog-
ical strategies by determining the optimal time and dose to
inhibit the various potentially destructive molecular path-
ways and/or to enhance endogenous repair while avoiding
adverse effects. The dissemination of this new therapy will
require improved identification of infants with HIE and
regional commitment to allow these infants to be cared for
in a timely manner. Continued assessment of long-term
outcomes of patients enrolled in completed trials should be
a key priority to confirm the long-term safety of hypother-
mia and other therapeutics interventions.

PARP-1 inhibition as a neuroprotection target is a
relatively novel therapeutic strategy for HI but requires
systematic characterisation of substances with inhibitory
potential. It also requires evaluating the inhibitory potential
of drugs already used in paediatrics, but for different
indications. Ultrapotent novel PARP inhibitors are now
being used in human clinical trials for reducing cell
necrosis following stroke and/or myocardial infarction,
and for down regulating multiple pathways of inflammation
and tissue injury following circulatory shock, colitis or
diabetic complications [278]. However, applying ultra-
potent PARP inhibitors during development could be
dangerous since it has been shown that PARP-1 is required
for repair of damaged DNA and other important functions
[279, 280]. Therefore, it has been suggested that moderate
PARP-1 inhibitors should be chosen for neuronal protection
during development [219, 281]. Several natural compounds
have been investigated for possible protection against
insults leading to over-activation of PARP-1. Nicotinamide,
an amide of nicotinic acid (vitamin B3/niacin) has a broad
spectrum of neuroprotective functions in a variety of health
conditions [282–285]. Nicotinamide protects against oxida-
tive stress [286, 287], ischaemic injury [288] and inflam-
mation [289] by replacing the depletion of the NADH/
NAD+ pair produced by PARP-1 after activation to repair

hypoxic injury-induced DNA damage [283, 290]. We have
reported that therapeutic doses of nicotinamide (0.8 mmol/
kg, i.p.) produced a long-lasting inhibition of PARP-1
activity measured in brain and heart from asphyxia-exposed
and control rats [Allende-Castro et al., in preparation].
Nicotinamide prevents several of the long term changes
induced by PA on monoamines, including changes in the
number of nNOS+ cells, neurite length, and number of TH-
positive neurites, even if the treatment is delayed for 24 h,
suggesting a clinically relevant therapeutic window [89, 90,
291, 292]. Moreover, nicotinamide also prevents the effects
elicited by PA on apoptosis, working memory, anxiety and
motor alterations [42, 61]. Thus, nicotinamide prevents,
with a wide therapeutic window, long-term neuronal deficits
induced by PA. Further, its pharmacodynamic properties
provide advantages over more selective compounds, in
particular its low potency in inhibiting PARP-1. This quality
is useful if the compound is administered during the
neonatal period, because the drug will only antagonise the
effect of PARP-1 overactivation, without impairing normal
DNA repair and cell proliferation. Furthermore, nicotin-
amide can constitute a lead for exploring compounds with a
similar pharmacological profile. Some caffeine metabolites,
but not caffeine itself, are inhibitors of PARP-1 at
physiological concentrations, including theophylline (1,3-
dimethylxanthine) [219] and paraxanthine (1,7-dimethyl-
xanthine) [281, 293]. We are particularly interested in
testing the substituted benzamide (N-(1-ethyl-2-pyrrolidi-
nylmethyl)-2-methoxy-5-sulphamoyl benzamide) and other
benzamides currently in clinical use in paediatrics; and the
xanthine analogues, 1,3-dimethylxanthine and 1,7-dime-
thylxanthine, that are, already used for different clinical
applications.

As described, inflammation plays an important role in
the excitooxidative cascade of injury in the perinatal
period [107]. Antiinflammatory agents have been shown
to be effective in the treatment of brain injury by blocking
microglial activation and thereby, reducing brain levels of
IL-1β [186]. Treatment with an NFkB inhibitor also
provides substantial protection against neonatal HI by
inhibiting apoptosis [255]. Similar results have been
found using other antiinflammatory or antioxidant drugs,
such as, minocycline [186], N acetyl cysteine (a glutathi-
one precursor) [294], indomethacin [256], melatonin (a
natural potent free radical scavenger activating antioxi-
dant enzymes) [295], allopurinol (a xantine-oxidase
inhibitor) [296], pomegranate polyphenols (antioxidant)
[297], 2-iminobiotin (inhibitor of nitric oxide synthase)
[255], and necrostatin 1 (specific inhibitor of necroptosis)
[84, 258, 298].

Recent advances in regenerative medicine suggest that
neurotrophic factors and/or stem cell transplantation may
improve repair of the HI-damaged brain. Neurotrophic
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factors including insulin-like growth factor (IGF-1) [266,
299], NGF [300], BDNF [301] and bFGF [302] reduce
long-term HI-induced brain damage and improve recovery
of behaviour in immature rats. Several authors have also
reported beneficial effects of stem cell transplantation [303–
309]. Several types of stem cells including neuronal stem
cells (NSC), mesenchymal stem cells (MSC) [308, 310,
311] and haematopoietic stem cells (HSC) [305] have been
transplanted in both neonatal and adult animal models of
ischaemic brain damage, promoting functional as well as
anatomical recovery [305, 307–309, 312, 313]. Regenera-
tive effects of stem cell transplantation likely involve both
replacement of damaged cells by exogenous cells as well as
improvement of endogenous repair processes by releasing
trophic factors [303, 308, 310, 311]. Indeed, a single
hemispheric injection with MSC 10 days after HI induced
an up regulation of genes involved in cell survival,
proliferation and neurogenesis. Two injections of MSC
induced expression of genes involved in cell proliferation,
as well as, differentiation and network integration [308].
Intraperitoneal transplantation of human umbilical cord
blood mononuclear cells (HUCB), 3 h after the HI insult,
resulted in better performance of two developmental
sensorimotor reflexes, in the first week after the injury
[306]. Moreover, a neuroprotective effect in the striatum,
and a decrease in the number of activated microglial cells in
the cerebral cortex of treated animals were observed
suggesting that HUCB transplantation might rescue striatal
neurons from cell death after a neonatal HI injury resulting
in better functional recovery [314]. Recently, the potential
use of stem/progenitor cell therapies for neuroprotection or
regeneration after neonatal HI has been evaluated in several
preclinical studies, and the most promising results are now
being tested in clinical trials [315].

Conclusions & outlook

The present review addresses a clinically relevant problem
with both paediatric and neuropsychiatric implications. PA
is a main cause of newborn death and long-term neurolog-
ical damage still without a predictive diagnostics, preven-
tive and/or treatment of consensus.

An early diagnosis for predictive diagnostics of PA is of
vital importance in planning the short- and long-term care
of the infant. The emphasis in neonatology and paediatrics
is on non-invasive diagnosis approaches for predictive
diagnostics.

Advances in the diagnosis and early predictive bio-
markers of PA outcome have been achieved, but still need
improvement. Long-term follow-up studies are required to
correlate the information obtained with the early predictive
biomarkers and clinical-pathophysiological outcome.

Significant progress in understanding the pathophysiol-
ogy of asphyxia is being achieving, providing a valuable
framework on understanding the predisposition to develop
metabolic, neuropsychiatric and neurodegenerative diseases
at adult stages. It is expected that future studies will allow
the identification of critical molecular, morphological,
physiological and pharmacological parameters, specifying
variables that should be considered when planning neonatal
care and development programmes.

Emerging targets for early intervention and neuroprotec-
tion have been focussed on the inhibition of various
potentially destructive molecular pathways including exci-
totoxicity, inflammation, oxidative stress and cell death,
and/or therapies that target on restoring functionality of
neurocircuitries by stimulation of neurotrophic endogenous
properties of the neonatal brain using growth factors and
stem cell transplantation. The use of these novel interven-
tions alone or in combination is very attractive and needs
further research.

In summary, the individual prediction, targeted preven-
tion and personalised treatments of newborn with asphyctic
deficits, is priority in neonatology and paediatrics care.
Advanced strategies in development of robust diagnostic,
biomarker and potential drug-targets approaches are the
main goal for future research.
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