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Optimization reconstruction 
method of object profile using 
flexible laser plane and bi-planar 
references
Guan Xu1, Jing Yuan1, Xiaotao Li2 & Jian Su1

An optimization method to reconstruct the object profile is performed by using a flexible laser plane 
and bi-planar references. The bi-planar references are considered as flexible benchmarks to realize the 
transforms among two world coordinate systems on the bi-planar references, the camera coordinate 
system and the image coordinate system. The laser plane is confirmed by the intersection points 
between the bi-planar references and laser plane. The 3D camera coordinates of the intersection points 
between the laser plane and a measured object are initially reconstructed by the image coordinates of 
the intersection points, the intrinsic parameter matrix and the laser plane. Meanwhile, an optimization 
function is designed by the parameterized differences of the reconstruction distances with the help of a 
target with eight markers, and the parameterized reprojection errors of feature points on the bi-planar 
references. The reconstruction method with the bi-planar references is evaluated by the difference 
comparisons between true distances and standard distances. The mean of the reconstruction errors 
of the initial method is 1.01 mm. Moreover, the mean of the reconstruction errors of the optimization 
method is 0.93 mm. Therefore, the optimization method with the bi-planar references has great 
application prospects in the profile reconstruction.

The vision measurement including structured light is an effective non-contact 3D measurement method1–7. As 
a laser projector provides more strong and narrowband illumination than a normal digital projector, the laser 
projector is considered as a flexible symbol for projecting a laser plane onto the object to be measured8,9. The 
laser curve between the measured object and the laser plane contains the depth information about both the 
intersection position and the measured object. Therefore, the measurement system based on the structured light 
is favored by many researchers.

The vision measurement based on the structured light is widely studied due to the advantages of wide meas-
urement range, reasonable test speed and precision in visual measurement approaches10–12. Huynh13 presents a 
calibration method for the structured light system derived from the projector. Three collinear world points con-
tribute the cross ratio value in the image, which is the same with the cross ratio calculated by the world points. The 
recovery matrix of the stripe plane is provided according to the projection from the structured light to the image. 
A double cross ratio method is also reported by Wei14 to achieve the calibration of the structured-light-stripe 
vision sensor. Wei15 employs the vanishing points and vanishing lines, which are derived from a target with paral-
lel lines, to improve the laser plane calibration. Li16 designs a flexible laser scanning system including an industry 
robot arm and a laser scanner. The rotations and translations of the robot arm are considered in the scanning 
model. Niola17 describes a calibration for the laser scanner in robotic applications. A target with the known 
movement is employed to model the geometry of the laser emitter and camera. An approach is illustrated by Le18 
by fusing the structured illumination with the data to reconstruct the 3D sharp edge and realize the automatic 
inspection and reconstruction. In addition, an algorithm is introduced to reconstruct the 3D object profile with 
the sharp edge. A reconstruction method of 3D profile is proposed by Ma19 on the basis of a nonlinear iterative 
optimization to reduce the errors from the lens distortion. According to the shape of projection light, the vision 
measurement methods based on the structured light can be divided into four parts: point structured light, line 
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structured light, grating structured light and coded structured light. The point structured light method can obtain 
the 3D data of a point. However, it is slow for the large object measurement. The methods of grating or coded 
structured light are generally based on the digital light processing (DLP) projector and the camera20,21. Villa22 
proposes a reference-plane based method to reconstruct the 3D data on the object. The depth is performed by 
moving the flat plate on a linear stage. Then, a pattern of crossed gratings along the x and y directions is projected 
on the measured object. The x and y coordinates are determined by the fringe phases generated from the Fourier 
transform and the inverse Fourier transform. Zhang23 presents a method considering the digital projector as 
a camera. The digital micro-mirror device (DMD) image is established by the mapping between the (Charge 
Coupled Device) CCD pixels and DMD pixels. Then the intrinsic parameter matrix of the digital projector is 
calibrated as the matrix of a camera. The extrinsic parameter matrices are derived from the Zhang’s method. 
Finally, the 3D coordinates are reconstructed by the image coordinates and the extrinsic parameter matrices. 
Hu24 introduces an approach to calibrate the projector-camera system. The absolute phase map is solved by a 
three-step algorithm. Then, a flat plate is designed on a linear stage and driven by a stepper motor. By moving the 
flat plate and the projection images, four unknown parameters are calibrated for the measurement system. Finally, 
the system parameters are optimized by a coordinate measurement machine (CMM), a plate with holes and an 
iterative algorithm. The digital-projector-based methods take the advantages of high efficiency and plenty of data. 
However, as the pattern of the digital projector is generated from a light bulb, the coded light pattern of the digital 
projector tends to be impacted by the illuminations from environment, such as the sunlight. After the calibration, 
the relative position between the digital projector and the camera is fixed. As the planar laser projector contrib-
utes the narrow-band and high-density structured light, it is appropriate to measure the complex surface with a 
moderate test speed, by avoiding the environmental interference illuminations.

Camera calibration is the basis of the accuracy of a vision measurement system. 3D recovery depends on the 
single or multi-view images captured by a camera. Therefore, the camera calibration has also attracted research-
ers to improve the 3D reconstruction accuracy. At present, the calibration methods are mainly divided into 1D 
calibration25,26, 2D calibration27–29 and 3D calibration30. The 1D calibration reference is simple in structure and 
easy to be manufactured, but the calibration accuracy is the lowest due to the lack of information on the 1D 
reference. Although the structure of the 2D calibration reference is a little more complicated than the one of the 
1D reference, it is convenient to be made and moved to different places with the advantage of high calibration 
accuracy. The 3D calibration reference provides the highest accuracy for the camera calibration. Nevertheless, the 
3D calibration reference is complex to be made and suitable for specific situations. Although a 2D reference can 
be used to calibrate the projection laser plane31, many images of the planar reference in different positions should 
be captured to calibrate only one laser plane. One target can provide sufficient number of features for solving the 
intersection points, when the relative position between the camera and the projector is fixed in previous work. 
We focus on the other situation, which is to reconstruct the intersection points from a flexible laser plane. There 
is only one intersection line between the flexible laser plane and the target. As the flexible laser plane is deter-
mined by at least two lines on the plane, a reconstruction method adopting the bi-planar references is proposed 
to perform the laser plane calibration in the camera coordinate system. The bi-planar method with two planar 
references contributes four main advantages that belong to the 2D reference and 3D reference. As the two planar 
references locate on different planes, the feature points on the bi-planar references are similar to the ones on the 
3D reference. Thus, it should be noted that the calibration and reconstruction are achieved by only one image of 
the camera. Moreover, the calibration reference consists of two planar references, which are easier to be manufac-
tured than the 3D references. Then, the large 3D or 2D references are complicated to be prepared for the profile 
measurement in a large view field. The reconstruction method of the bi-planar references is easy to be extended to 
the method of n-planar references. The n-planar references method extends the effective measurement in a larger 
view field. However, the large 3D or 2D references for a larger view field are replaced by the small 2D references 
that are convenient to be realized in the reconstruction. Finally, the laser plane is flexible, e.g. hand-held, as the 
laser plane that is projected to the bi-planar references can be solved in only one image.

An optimization reconstruction method of the object profile is proposed for the vision measurement using the 
flexible planar laser and bi-planar references. Two planar references are separately distributed at the left and right 
sides of the measured object. The two planar references are non-coplanar in space. First, the laser plane, generated 
from a laser projector, is projected onto the measured object. Therefore, the laser plane intersects with the object 
as well as the planar references providing an intersection curve and two intersection lines. Then, in the camera 
coordinate system, the flexible laser plane is modeled by the projections of feature points on the two planar ref-
erences and the image coordinates of the laser intersection points. Finally, the 3D coordinates of the measured 
object are determined by the projection of the intersection curve and further enhanced by the optimization func-
tion. The optimization method is compared with the initial method by the reconstructed distance errors to verify 
the accuracy of the reconstruction method.

Methods
For the 3D profile reconstruction problem, a random laser plane is projected to the measured object and two 
planar references in Fig. 1. Two world coordinate systems OW1-XW1YW1ZW1, OW2-XW2YW2ZW2, the camera coor-
dinate system OC-X CY CZ C and the image coordinate system OI-XIYIZI are defined on the two planar references, 
the camera and the image, respectively. Two checker-board-pattern references are considered as the transform 
bridges among the measured object, the laser plane and the camera.

The flexible laser plane intersects two planar references with two lines. According to the camera pinhole 
model32, the 3D points on the intersection lines and the projected image points are represented by
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tR ,k k(W, ) (W, ) and A are generated from the Zhang’s method33. s(k) is the scale factor. k = 1, 2 correspond to the 
coordinate systems Ow1-X w1Y w1Z w1, Ow2-X w2Y w2Z w2, respectively.

According to the projectivity in Eq. (1), the first and second coordinates of Xi
k(W, ) are given by33
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Therefore, the 3D point of the intersection laser line in the camera coordinate system is expressed by34
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k(C, ) is the 3D point on the intersection laser line.
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the 3D points Xi
(C) of the intersection laser lines locate on the laser plane. Therefore,

Π =X 0( ) (4)i
(C) T

2

where Π = [Π1, Π2, Π3, 1]T is the coordinate of the laser plane, which is determined by the point sets Xi
(C,1) and 

Xi
(C,2) on the two intersection laser lines. 02 is a 2-dimensional zero vector.
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points in Q are located on two different intersection lines, from Eq. (4), we have

Π = 0Q (5)n2

where 02n is a 2n-dimensional zero vector. The laser plane Π can be solved by the singular value decomposition 
(SVD)35.

The 3D point Xi
(M) on the measured object as well as on the laser plane obeys to34

X( ) 0 (6)i
T (M)Π =

Moreover, in view of the camera pinhole model32, the 3D point Xi
(M) on the measured object in the camera 

coordinate system also satisfies the projection

Figure 1.  The reconstruction principle with a flexible laser plane and two planar references in the view field of 
a camera.
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(IM) (IM) (IM) T are the 2D projection points of Xi

k(M, ) in the image coordinate system. s(M) is a 
scale factor.

The closed form solution of the 3D point Xi
(M) on the measured object can be generated from stacking Eqs (6) 

and (7). The diagram of the closed form solution is shown in Fig. 2.
In order to improve the reconstruction accuracy of the points on the measured object, the standard distance 

is employed as an optimization object to enhance the measurement accuracy24. In Fig. 3, we design a target for the 
benchmarks of the standard distances. There are eight different markers with the coordinate X j

(M) on the target. 
Four standard distances are given by the eight markers. The laser plane intersects two markers on the target. As 
the distance reconstructed by the laser plane should be equal to the real distance between two markers, the 
parameterized function is constructed by the difference between the distance on the target and the parameterized 
reconstruction distance given by
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are the parameterized coordinates of the reconstruction point on the target.

Figure 2.  The closed form solution of the 3D reconstruction method adopting a flexible laser plane and two 
planar references.
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Equation (8) covers the intrinsic parameters of the camera and the laser plane. However, the laser plane 
depends on the intersection laser points on the target, which is also determined by the extrinsic parameters R(W,k) 
and t(W,k) of the camera. Furthermore, the extrinsic parameters R(W,k) and t(W,k) represent the relative positions 
among the two planar references and the camera, as well as the coordinate of the laser plane. Therefore, on the 
basis of Eq. (8), we enhance the objective function by the parameterized reprojection errors with the extrinsic 
parameters. The final parameterized function is





 

∑∑α β γ Π Π Π α β γ Π Π Π

α β γ Π Π Π

=

− −

+ −

= =

−

(9)

f u v u v

u v d

s

t X

X

t X x

(R , , , , , , , , , ) {[ ( , , , , , , , )

( , , , , , , , ) ]

A[R , ] }

k k

j

m

i

n

j

j
k k

i
k k

i
k

(W, ) (W, )
0 0 1 2 3

1 1

(M)
0 0 1 2 3

1
(M)

0 0 1 2 3 0
2

(W, ) (W, ) (R, ) ( ) (IR, ) 2

where Xi
k(R, ), x i

k(IR, ) are the known 3D world coordinates and 2D image coordinates of the feature points on the 
two references. The optimized solutions of R(W,k), t(W,k), α, β, γ, u0, v0, Π1, Π2, Π3 are related to the minimized 
value of the parameterized function in Eq. (9). The optimized points on the measured object are solved by the 
optimized solutions. The diagram of the optimization solution is shown in Fig. 4.

Results
Two 280 mm × 400 mm planar references are employed in the experiments. The references are covered with a 
check board pattern. The distance between the adjacent corner points on the planar reference is 20 mm. Each 
planar reference includes 247 feature points. The resolution of the captured images is 2048 × 1536 in the experi-
ments. In the camera calibration, Harris corner recognition36 is adopted to acquire the coordinates of the feature 
points in the images of two planar references.

The reconstruction experiment results of the flexible laser plane and two planar references are shown in Fig. 5. 
Figure 5(a,c,e and g) are the experimental photographs in the four groups of reconstruction experiments. A 
cylindrical tube, a vehicle model, a cup and a box are selected as the objects to be reconstructed. Figure 5(b,d,f 
and h) represent the point reconstruction results that are related to the Fig. 5(a,c,e and g). The red tetrahedrons 
show the distribution of feature points on the two planar references. The green spheres represent the points on 
the intersection lines between the flexible laser plane and the planar references in the camera coordinate system. 
The intersection line between the laser plane and the planar reference includes 40 green spheres. Two intersection 
lines determine the position of the laser plane. 10 different positions of the laser plane are selected in the four 
groups of the reconstruction experiments. The blue spheres illustrate the points on the intersection lines between 
the measured object and the flexible laser plane in the camera coordinate system. The blue curve is formed by 20 
blue spheres on the intersection between the measured object and the laser plane.

In order to evaluate the precision of the reconstruction method, the eight different markers on the target 
in Fig. 3 are also considered as the benchmarks of the standard test distances. The relationships between the 
reconstruction errors and the standard test distances are analyzed by varying the standard distance. The stand-
ard test distance is determined by 20 mm, 30 mm, 40 mm and 50 mm, respectively. Four measurement distances 
between the camera and the object being measured are 900 mm, 1000 mm, 1100 mm and 1200 mm, respectively. 

Figure 3.  The optimization reconstruction adopting a target with the eight markers. Four distance benchmarks 
are generated from the eight markers.
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The differences between the reconstructed distances and standard test distances are used to verify the accuracy of 
the profile reconstruction method. It is defined by37

= − −−E DD D (10)k k k 1 0

where Ek is the reconstruction error of the test distance, Dk and Dk−1 are the reconstruction points of the markers, 
D0 is the standard test distance. 40 images of the target with the eight different markers are captured by the cam-
era. 20 images of them are conducted to the optimization function. The other 20 images are chosen to evaluate the 
reconstruction error of the test distance.

The reconstruction error results of the proposed optimization method are compared with ones of the ini-
tial closed-form-solution method in Fig. 6. The corresponding statistics are summarized in Table 1. The scopes 
of the reconstruction errors of the initial method are 0.21 mm–2.31 mm, 0.20–2.26 mm, 0.18 mm–2.22 mm 
and 0.17 mm–2.39 mm when the measurement distances between the camera and the measured object are 
900 mm, 1000 mm, 1100 mm and 1200 mm. Moreover, the corresponding scopes of the optimization method are 
0.16 mm–2.26 mm, 0.13 mm–2.21 mm, 0.13 mm–2.18 mm, 0.10 mm–2.28 mm. The average errors of the initial 
method are 1.02 mm, 0.98 mm, 1.00 mm and 1.04 mm when the measurement distances between the camera and 
the measured object are 900 mm, 1000 mm, 1100 mm and 1200 mm. The corresponding average errors of the 
optimization method are 0.94 mm, 0.90 mm, 0.92 mm and 0.95 mm. The root mean squares of errors of the initial 
method are 1.13 mm, 1.10 mm, 1.11 mm and 1.16 mm when the measurement distances between the camera and 
the measured object are 900 mm, 1000 mm, 1100 mm and 1200 mm. The corresponding root mean squares of the 
errors of the optimization method are 1.05 mm, 1.03 mm, 1.04 mm and 1.08 mm.

In the test with the standard distance of 20 mm, the ranges of the minimum value, the maximum value, 
the mean and the root mean square of the reconstruction errors of the initial method are 0.17 mm–0.21 mm, 
0.70 mm–0.82 mm, 0.48 mm–0.53 mm and 0.50 mm–0.56 mm. However, the ones of the optimization method are 
0.10 mm–0.16 mm, 0.65 mm–0.78 mm, 0.41 mm–0.45 mm and 0.43 mm–0.48 mm. In the test with the standard 
distance of 30 mm, the scopes of the minimum value, the maximum value, the mean and the root mean square 
of the reconstruction errors of the initial method are 0.33 mm–0.42 mm, 1.30 mm–1.40 mm, 0.83 mm–0.88 mm 
and 0.87 mm–0.92 mm. Then, the ones of the optimization method are 0.31 mm–0.35 mm, 1.28 mm–1.33 mm, 
0.76 mm–0.81 mm and 0.81 mm–0.85 mm. In the test with the standard distance of 40 mm, the ranges of the 
minimum value, the maximum value, the mean and the root mean square of the reconstruction errors of the 
initial method are 0.42 mm–0.57 mm, 1.73 mm–1.88 mm, 1.12 mm–1.22 mm and 1.19 mm–1.27 mm. However, 
the ones of the optimization method are 0.29 mm–0.47 mm, 1.67 mm–1.72 mm, 1.02 mm–1.09 mm and 
1.09 mm–1.16 mm. The scopes of the minimum value, the maximum value, the mean and the root mean square 
of the reconstruction errors of the initial method are 0.64 mm–0.83 mm, 2.22 mm–2.39 mm, 1.49 mm–1.55 mm 
and 1.55 mm–1.62 mm with the standard distance of 50 mm. Moreover, the ones of the optimization method are 
0.59 mm–0.77 mm, 2.18 mm–2.28 mm, 1.41 mm–1.47 mm and 1.48 mm–1.53 mm.

Figure 4.  The optimization solution of the 3D reconstruction method adopting a flexible laser plane and two 
planar references.
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The relative errors of the initial method are 2.59%, 2.88%, 2.96% and 3.04% while the relative errors of the 
optimization method are 2.19%, 2.62%, 2.69% and 2.91%, when the measurement distance between the camera 
and the measured object is 900 mm and the standard test distances are 20 mm, 30 mm, 40 mm and 50 mm. When 
the measurement distance between the camera and the measured object are 1000 mm, the relative errors of the 
initial method are 2.40%, 2.78%, 2.79% and 2.99% while the relative errors of the optimization method are 2.03%, 

Figure 5.  The reconstruction experiment results of the flexible laser plane and two planar references. (a) The 
reconstruction image of the cylindrical tube. (b) The point reconstruction results of the cylindrical tube.  
(c) The reconstruction image of the vehicle model. (d) The point reconstruction results of the vehicle. (e) The 
reconstruction image of the cup. (f) The point reconstruction results of the cup. (g) The reconstruction image of 
the box. (h) The point reconstruction results of the box.
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2.54%, 2.55% and 2.83%, in the test with the standard distances of 20 mm, 30 mm, 40 mm and 50 mm. The rela-
tive errors of the initial method are 2.47%, 2.81%, 2.91% and 3.02% while the relative errors of the optimization 
method are 2.13%, 2.58%, 2.64% and 2.88% when the measurement distance between the camera and the meas-
ured object is 1100 mm. The relative errors of the initial method are 2.65%, 2.92%, 3.04% and 3.11% while the 
relative errors of the optimization method are 2.25%, 2.69%, 2.71% and 2.94%, with the measurement distance of 
1200 mm and the standard test distances of 20 mm, 30 mm, 40 mm and 50 mm.

Two examples in Fig. 7 are provided for the measurement of mechanical parts by using the described method. 
The true values of the two mechanical parts, which are measured by a vernier caliper, are 90.16 mm and 49.50 mm, 
respectively. Nevertheless, the mean errors of the initial method and the optimization method obtained from the 
different 20 images of the first measured part are 2.94 mm and 2.77 mm. The average relative errors of the initial 
method and the optimization method are 3.26% and 3.07%. The average errors of the initial method and the opti-
mization method of the second measured mechanical part are 1.55 mm and 1.40 mm. The average relative errors 
of the initial method and the optimization method are 3.12% and 2.84%, respectively.

Discussion
In this paper, a 3D reconstruction process is realized by the flexible laser plane without position limitation relative 
to the camera and the bi-planar references. In order to calibrate the flexible laser plane relative to the camera, 
3D and 2D targets are naturally considered as the references to solve the flexible laser plane. The 3D target could 
be designed with the combination of two orthogonal planes or the two planes with the known relative position. 
This kind of target is difficult to be manufactured. And then, we solve the flexible laser plane by the 2D target. 
However, a flexible laser plane cannot be reconstructed from only one planar target. It is because there is only one 
intersection line between the laser plane and the planar target, and a laser plane cannot be determined by only 
one line. In view of the above reasons, two planar targets are chosen as the references to reconstruct the flexible 
laser plane. As there are two intersection lines between the laser plane and the two planar targets, the flexible laser 
plane is derived from the two intersection lines. In this method, the laser plane is flexible to the camera and there 
is no strict restriction of the position between two planar targets.

From the experimental results, we naturally come to the conclusion that the reconstruction errors of the opti-
mization method are generally smaller than those of the initial method. It is to say, the optimization method is 
closer to the real 3D value than the initial method. This proves that the optimization function effectively reduces 
the reconstruction experimental error and contributes good stability and reliability. In addition, the relative errors 

Figure 6.  The experimental results of the reconstruction errors obtained from the initial method and the 
optimization method. The standard test distances are 20 mm, 30 mm, 40 mm and 50 mm, respectively. The 
measurement distances between the camera and the measured object are 900 mm, 1000 mm, 1100 mm and 
1200 mm, which correspond to (a) to (d).
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of the optimization method are smaller than those of the initial method. Furthermore, the relative errors of the 
two methods are less than 4%. The averages, the root mean squares and relative errors present steady growing 
trends with the increasing standard test distance from 20 mm to 50 mm. As the measurement distance between 
the camera and the measured object rises from 900 mm to 1200 mm, the distance reconstruction errors decrease 
firstly, then increase gradually. It is worth noting that the averages and the root mean squares of the distance 
reconstruction errors achieve the smallest values when the measurement distance between the camera and the 
measured object is 1000 mm. The averages and the root mean squares of the distance reconstruction errors are 
the largest values when the camera is 1200 mm away from the object being measured in the experiments. The 
averages and the root mean squares of the distance reconstruction errors under the measurement distance of 
1100 mm are slightly smaller than those under the distance of 900 mm. Therefore, the experimental results show 
that the reconstruction results are the closest to the true values when the camera is 1000 mm away from the object 
being measured and the standard test distance is 20 mm. Two mechanical parts are measured by the method. The 
average relative errors of the initial method and the optimization method are less than 5%. As the laser projector 
is small and flexible to the camera, the measurement just requires the laser projector to approach the measured 
object. Therefore, the measurement can be achieved in a small space by the laser projector. The method has 
potential applications in the object profile measurement fields, such as automotive industry and aviation industry.

Summary.  An optimization reconstruction method of object profile is realized in this paper by using a flex-
ible laser plane and bi-planar references. Two planar references are adopted to build the transformations among 
the measured object, the laser plane and the camera. Two world coordinate systems are determined by the two 
planar references. Therefore, the camera internal parameters, the rotation matrix and the translation vector are 
determined by the projections from the feature points on the two planar references to ones on the image. The laser 
plane is modeled by the camera coordinates of the points on the intersection lines between the laser plane and 
two planar references. The camera coordinates of the points on the intersection curves of the measured object 
are obtained by the laser plane and the projection relationship of the camera. A target taking the markers with 

Measurement 
distance

Standard 
test distance Solution method

Error

Mean RMS Min. Max.

900 mm

20 mm
Initial method 0.52 0.54 0.21 0.78

Optimization method 0.44 0.46 0.16 0.65

30 mm
Initial method 0.86 0.90 0.42 1.39

Optimization method 0.79 0.83 0.35 1.32

40 mm
Initial method 1.19 1.24 0.57 1.78

Optimization method 1.08 1.14 0.47 1.70

50 mm
Initial method 1.52 1.57 0.70 2.31

Optimization method 1.46 1.50 0.66 2.26

1000 mm

20 mm
Initial method 0.48 0.50 0.20 0.70

Optimization method 0.41 0.43 0.13 0.65

30 mm
Initial method 0.83 0.87 0.41 1.30

Optimization method 0.76 0.81 0.31 1.28

40 mm
Initial method 1.12 1.19 0.42 1.75

Optimization method 1.02 1.09 0.36 1.67

50 mm
Initial method 1.49 1.55 0.78 2.26

Optimization method 1.41 1.48 0.70 2.21

1100 mm

20 mm
Initial method 0.49 0.53 0.18 0.81

Optimization method 0.43 0.47 0.13 0.78

30 mm
Initial method 0.84 0.88 0.42 1.39

Optimization method 0.77 0.82 0.34 1.33

40 mm
Initial method 1.16 1.21 0.52 1.73

Optimization method 1.06 1.11 0.47 1.67

50 mm
Initial method 1.51 1.56 0.83 2.22

Optimization method 1.44 1.49 0.77 2.18

1200 mm

20 mm
Initial method 0.53 0.56 0.17 0.82

Optimization method 0.45 0.48 0.10 0.71

30 mm
Initial method 0.88 0.92 0.33 1.40

Optimization method 0.81 0.85 0.31 1.33

40 mm
Initial method 1.22 1.27 0.51 1.88

Optimization method 1.09 1.16 0.29 1.72

50 mm
Initial method 1.55 1.62 0.64 2.39

Optimization method 1.47 1.53 0.59 2.28

Table 1.  The reconstruction errors of the initial method and the optimization method.
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different distances is adopted to evaluate the reconstruction accuracy of the 3D points on the measured object. 
Then, an optimization function is established to enhance the accuracy of the reconstruction results by minimizing 
the parameterized differences of the standard test distances and the reconstruction distances and minimizing 
the parameterized reprojection errors of the feature points on two planar references. The effects of the measure-
ment distance between the camera and the measured object, and the ones of the standard test distance on the 
target are investigated by the experiments. The mean of the reconstruction error of the initial method is 1.01 mm 
while the mean of the reconstruction error of the optimization method is 0.93 mm. The root mean square of the 
reconstruction errors of the initial method is 1.12 mm while the root mean square of the reconstruction errors of 
the optimization method is 1.05 mm. Furthermore, the means of the relative errors of the initial method and the 
optimization method are 2.84% and 2.57%, respectively. Therefore, the optimization method effectively improves 
the accuracy of the reconstruction method and provides the relative errors smaller than 4%. Two mechanical 
parts are measured by the method to explain the applications. The reconstructed values are compared with the 
true values from a vernier caliper. The average relative errors of the initial method and the optimization method 
are less than 5%. Consequently, the proposed optimization reconstruction method, using the bi-planar references 
and a flexible laser plane, has potential applications in the object profile measurement fields.

Data availability.  The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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