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Assessment of the air quality in metropolitan areas is a major challenge in environmental
sciences. Issues related include the distribution of monitoring stations, their spatial range,
or missing information. In Mexico City, stations have been located spanning the entire
Metropolitan zone for pollutants, such as CO, NO2, O3, SO2, PM2.5, PM10, NO, NOx,
and PMCO. A fundamental question is whether the number and location of such stations
are adequate to optimally cover the city. By analyzing spatio-temporal correlations for
pollutant measurements, we evaluated the distribution and performance of monitoring
stations in Mexico City from 2009 to 2018. Based on our analysis, air quality evaluation
of those contaminants is adequate to cover the 16 boroughs of Mexico City, with the
exception of SO2, since its spatial range is shorter than the one needed to cover the whole
surface of the city. We observed that NO and NOx concentrations must be taken into
account since their long-range dispersion may have relevant consequences for public
health.With this approach, wemay be able to propose policy based on systematic criteria
to locate new monitoring stations.

Keywords: public policy, air pollution, missing data, geo-temporal analysis, semivariogram

1. INTRODUCTION

As population density, mobility, and industrial activity keep growing at an accelerated rate, air
pollution has gained the attention of policy makers in urban and metropolitan areas. There
is a common concern in highly polluted cities regarding the increasing mortality associated
with chronic and acute diseases whose effects may be aggravated due to exposure to air
contaminants (1–3).

It is well-known that different diseases or health-related effects depend on both the exposure
time and concentration levels (1). As evidence suggests, not only long periods of exposure can be
damaging, but exposure to high levels in short periods—even a few hours—may have an immediate
negative impact (4, 5).
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Mexico City (Figure 1), as many other metropolis worldwide,
has implemented strategies for urban planning, transportation,
and regulations of industrial activity to reduce contaminant
emissions (6). As an example, the Metrobus transport system
started operating in the year 2005 as an emission reduction
strategy. By comparing CO, NOx, PM10, and SO2 measurements
before and after the Metrobus operations, a reduction ranging
from 5 to 9% for different contaminants in city areas was
observed (7). Another example is driving restriction policy in
Mexico City, which was originally set only for weekdays. In an
attempt to improve results, the program extended this restriction
to Saturdays without meeting the expected results of reducing
emission by almost 15% (8).

So far, these efforts were not successful as planned. On
the contrary, pollution levels have not decreased, which is
noticeable from the continuous environmental alerts throughout
the years. Some contaminants, such as particulate matter PM10

vary seasonally; however, some regulations may be effective for
this type of pollutant, some may not be useful for others (9).

In this regard, public policies will only be effective if they
rely on the proper identification of pollution sources, the

FIGURE 1 | Map of land use in Mexico City. In this figure, the 16 boroughs of
the Mexico capital city are delimited by black lines. Additionally, the streets of
the metropolitan area of Mexico City are also depicted. It can be observed that
the southern region of this city (Tlalpan, Milpa Alta, part of Xochimilco, and
Tlahuac boroughs) is less dense in terms of urban environment. Map obtained
from INEGI.

understanding of the dispersion dynamics, and the adequate
measurement of relevant variables.

1.1. The Relevance of Pollution Monitoring
and Assessment
Determining the number and distribution of air quality
monitoring stations depends on the area to be covered, traffic,
spatial variability due to land use, influence of meteorological
variables (temperature, wind speed, and ultraviolet radiation),
and dispersion dynamics of each pollutant (10–12).

Environmental policy planning needs reliable methods to
assess the risk level associated with exposure to chemical and
other noxious agents. This latter can be made by direct and
indirect measurements of pollutants with epidemiological and
toxicological dimensions.

Direct approaches require the estimation of the incidence
of undesired effects by considering individual exposures to
contaminants. Environmental hazard of this kind often relies
on the analysis of spatial data collected by environmental
surveys (13).

Monitoring networks have two main purposes. First,
by measuring spatial and temporal trends of pollutant
concentrations, they provide air quality estimations to determine
whether the population is exposed to dangerous levels or not. In
addition, with the use of social-demographic, land use related
variables and meteorological data, simulation models can guide
to better decision-making procedures.

Second, once implemented, the effectiveness of public
policies and regulations can be evaluated by analyzing changes
in pollution levels that are caused merely by the imposed
regulations. Thus, the development of a monitoring system is a
critical component of public health policy making to decrease
toxic emission and eventually prevent population from adverse
contaminant effects.

A relevant emerging concept is environmental health
surveillance. For this concept, the quality and completeness of
information has been found variable, depending on individual
hazards or exposures, even in well-developed public health
surveillance systems, such as the one in Canada (13).

The Mexico City Ministry of Environment (Secretaría del
Medio Ambiente, SEDEMA) is responsible for the establishment
of measuring procedures, data gathering, and reporting air
quality levels (14). The estimations are based on themeasurement
of carbon monoxide (CO), nitrogen dioxide (NO2), ground level
ozone (O3), sulfur dioxide (SO2), small fine particulate matter
(PM2.5 and PM10), nitrogen oxide (NO), other nitrogen oxides
(NOx), and coarse particulate matter (PMCO).

Although Mexico City’s monitoring network meets
international standards, it fails to have complete records
for all the contaminants. In some cases, continuous monitoring
stations stopped functioning due to technical reasons and
maintenance, whereas others just stopped operating and in
some cases, measurements were not registered while they were
still active.

The appropriate functioning of such monitoring stations is
extremely relevant to public health issues (15). It is known,
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for instance, that ozone and particulate matter (PM2.5) levels
have been closely associated with a number of adverse health
effects that may lead to premature mortality (16). Such effects are
particularly relevant in the context of urban environments (17).

1.2. Evaluation of Health Impact and
Monitoring Stations
The progressive incorporation of information sampling and
retrieval technologies and the use of geographic information
systems (GIS) to analyze the data have become a central tenet of
Health Impact Assessment (HIA) programs. The way to analyze
the data however is shifting from merely transaction reports to
the use of advanced analytics, such as the ones used in business
intelligence and data science.

Latin American countries have developed specialized
programs to make use of GIS and computational intelligence to
improve their HIA programs. Studies, such as the ALBA, GeoSur,
or in the case of Mexico, the Global Environmental Outlook
(GEO) are aiming in this direction (13).

GEO has indeed developed its own strategy within the
“geotext” framework in order to use spatial analysis to provide
policy makers (and even the public) with enhanced information
resources, however these resources are just as good as the
information they are based on (18, 19).

In the case of air pollution monitoring stations, the WHO
has actually advanced some guidelines as to what standards are
desirable for the data sources to be useful in the context of HIA
programs (20).

Mexico City is doing partially well according to these
standards; however, our results have shown that there are
things that need improvement, in particular taking into account
the size and urban characteristics of the metropolitan area of
Mexico City as large urban areas pose particular environmental
challenges (21).

It has been discussed that increased risks created by
urban development include unhealthy conditions, which may
arise from unplanned settlements or rapidly growing urban
environments, environmental pollution by over-concentration
of waste and other pollutants, and overcrowding, among
others (22).

1.3. The Question of Spatial
Representativeness
Determiniation of the spatial representativeness of background
monitoring stations from concentration measurements of air
pollutants, has been a matter of intense research (23–27). It has
been shown that the size and shape of representative areas differ
between pollutants and measured locations, and representative
areas may range from 220 to 4,500 km2 (24).

To improve the assessment of coverage estimation in the case
of a limited number of stations, detailed pollutant concentration
maps at pedestrian level have been used (27). In this example, for
Pamplona, Spain, the authors found that∼18% of the entire area
is well-represented, as most of the residential areas are included.
This result states that it is possible to assess the covered area by

air quality networks integrated by a limited number of stations
for a small city (23 km2).

The most complete study on the spatial representativeness of
monitoring sites is the JCR Technical Report developed by the
Forum for Air Quality Modeling in Europe (FAIRMODE)
(28, 29). The aim was to perform an inter-comparison
of 25 assessment methods from 14 different countries
based on a literature review of scientific journals and
technical documentation.

The outcomes of the above-mentioned study were established
to define spatial representativeness and to propose standard
methodological procedures for European country members.
The different methodologies can be categorized according to
their assessment criteria, such as modeling, measurements,
proxies, station classifications, and annual concentrations. The
outputs from these studies are presented as delimited areas or
size parameters.

In order to have an adequate assessment of the effectiveness
of those monitoring networks, the city’s spatial heterogeneities
should be taken into account.

To estimate the concentrations at unmeasured locations,
interpolation methods, such as land-use regression (LUR),
inverse distance weighting (IDW), or kriging, use historical data
from monitoring stations and other monitoring procedures (30,
31). These estimations are mainly used for health risk assessment.
Prediction of high values and trends helps to guide decisions
both, locally and at citywide levels.

Recently, kriging geo-statistical approach has been used
to analyze spatial representativeness from NO2 preliminary
concentrations in urban areas (26, 32). The kriging methodology
for spatio-temporal interpolation is based on the covariance
data structure on spatial or spatio-temporal level. To achieve
that task, the empirical semivariogram is modeled with a
parsimonious covariance structure, through the use of different
kernel functions, to determine the spatial and temporal
correlation range.

1.4. Intervention Policy and Assessment
The development of analytical approaches to determine and
assess environmental pollution data with the best spatio-
temporal granularity is key in the design and implementation
of proper intervention policy, for example, regarding
urbanization process, over-population, personal monitors,
indoor environments, vehicle fleet, peak hours, and green areas
in the city, among others (33).

The PAHO Regional Plan on Urban Air Quality and Health
2000–2009 has proposed efficient systems for air pollution health
impact monitoring. These must include periodic surveillance
of morbidity and mortality associated with air pollution, risk
assessment, effective information systems, and reliable estimation
of social costs related to air pollution.

In this regard, research designs, such as the one advanced here
will help to address some of the main concerns included in the
PAHO plan and also allow us to comply with the agreements
on other initiatives, such as the Air Management Information
Systems (AMIS).
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To this end, Mexico (as a country) has developed a
nationwide air qualitymonitoring program (the SistemaNacional
de Información de la Calidad del Aire, SINAICA https://
sinaica.inecc.gob.mx/). It is worth noticing that the flagship
implementation of SINAICA has been indeed the metropolitan
area of Mexico City.

The information derived from the SINAICA program (in
particular the one constituted in the PROAIRE initiative)
has already allowed the country to develop general policies
to improve the air quality (the PROAIRE strategies for
emission reduction).

The PROAIRE website includes a quite comprehensive
repository of resources useful for research and policy making
that can be found at http://www.aire.cdmx.gob.mx/descargas/
publicaciones/flippingbook/proaire-2011-2020-anexos/.

Research efforts along these lines, although admittedly far
from complete, have allowed to implement public health policy
to lower the negative health impact on air pollution. Take, for
instance, the case of ozone, whose high levels are known to affect
human health, in particular that of vulnerable or over exposed
groups, such as athletes, outdoor workers, asthmatics and people
with respiratory illnesses, and children.

It has been reported that by implementing some of the
recommendations in the PROAIRE initiative, average ozone
levels in the Metropolitan area of Mexico City diminished from
almost 0.18 parts per million (ppm) in 1991 to around 0.1 ppm
in 2007. These levels have remained below (34). It is expected
that such a decrease in the ozone levels would also decrease
respiratory illness incidence.

It is, however, complex to determine the real impact of such
measures, although HIA programs have pointed out that by
implementing appropriate policies up to 33,084 ozone-related
deathsmay have been prevented inMexico City during the period
of 2000–2020 (35).

Another study in three of the largest cities in the Americas
(Mexico City, São Paulo and New York) reported similar results.
In Cifuentes et al. (36), it was mentioned that during the period
of 2000–2020, up to 64,000 premature deaths could be prevented,
just by reducing the levels of ozone and particulate matters in
around 10%.

1.5. Scope and Outline of This Work
In this work, we present a novel methodology based on the use
of spatial and temporal variogram ranges modeling to estimate
monitoring stations representativeness. This methodology
does not require estimation of pollutant concentration (full
interpolation procedure).

This work aims to show the temporal evolution of
spatial representativeness of monitoring stations in Mexico
City, one of the most complex networks and metropolitan
areas worldwide. Additionally, temporal representativeness is
shown, which is not the case for most of these studies.
We explore these spatial coverage and temporal dependence
on measurement for all pollutants currently reported in
Mexico City.

In brief, two main questions are addressed here:

• What is the spatial and temporal representativeness of the air
quality monitoring network in Mexico City?

• Which is the space/time range within which sample point
measurements are correlated with measured values at
monitoring stations?

We also discuss about the public health implications of these
questions and how can we use this information to provide
feedback to health and public policy makers.

2. MATERIALS AND METHODS

2.1. Study Area
Mexico City, which belongs to the Valley of Mexico Metropolitan
Area (VMMA), is located at 99◦ 21′53.64′′ − 98◦ 56′25.08′′ West
and 19◦ 2′53.52′′−19◦ 35′34.08′′ North. By the year 2015, its total
population was 8,985,339 as reported by the National Institute
of Statistics and Geography (Instituto Nacional de Estadística
y Geografía, INEGI) (37). The polygon shape files of Mexico
City were obtained from the National Institute of Statistic
and Geography (Instituto Nacional de Estadística y Geografía,
INEGI) (37). Hereafter, the geo-spatial data granularity was kept
at the 16 available boroughs (municipalities).

2.2. Air Pollution Database
The Mexico City Air Quality Monitoring System public database
is available from the Aire CDMX website (38). For this study, the
required data were accessed using the R package aire.zmvm
(39).This database is part of the Automatic Network of
Atmospheric Monitoring (RAMA, according to the Spanish
acronym of Red Automática de Monitoreo Atmosférico).

The network was established by the Metropolitan
Environmental Commission of Mexico City to monitor
compliance with ambient air quality standards. The RAMA is
part of the Atmospheric Monitoring System (SIMAT, Sistema
de Monitoreo Atmosférico), a program responsible for ongoing
measurements of the main air pollutants in Mexico City.

SIMAT comprehends 70 monitoring stations distributed
along the VMMA, where only 49 of them report contaminant
levels. At each monitoring station, hourly contaminant
concentrations are available for (i) particulate matter with an
aerodynamic diameter of <2.5 and 10 µm, PM2.5, and PM10,
respectively, (ii) carbon monoxide (CO), (iii) ozone (O3), (iv)
sulfur dioxide (SO2), and (v) nitrogen oxides, monoxide, and
dioxide (NOx, NO, and NO2).

Naturally, all the monitoring stations do not collect all types
of contaminants. Additionally, there exist missing records due
to service maintenance or other incidents. The time period used
in this work is from 2009 to 2018, when possible. Location
of monitor stations for each pollutant can be observed in
Figure 2. Complete monitor stations data can be found in
Supplementary Table 1.

2.3. Spatio-Temporal Statistics
The collected data were explored to get a clear picture of the
pollutant monitor stations representativeness in Mexico City.
Hourly contaminant data were summarized by their average into
a week time-basis, if more than 5 days were available containing
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FIGURE 2 | Monitor stations per contaminant in 2019. A borough level description for Mexico City is presented in the different contaminant panels, where the monitor
stations are depicted in color dots. The included contaminants are as follows: CO, NO2, O3, SO2, PM2.5, PM10, NO, NOx , and PMCO. In addition, a panel shows
borough names: 1: Azcapotzalco, 2: Coyoacán, 3: Cuajimalpa de Morelos, 4: Gustavo A. Madero, 5: Iztacalco, 6: Iztapalapa, 7: La Magdalena Contreras, 8: Milpa
Alta, 9: Álvaro Obregón, 10: Tláhuac, 11: Tlalpan, 12: Xochimilco, 13: Benito Juárez, 14: Cuauhtémoc, 15: Miguel Hidalgo, and 16: Venustiano Carranza. A similar
idea is used to match the stations location to their corresponding three letter code: 1: ACO, 2: AJM, 3: ATI, 4: BJU, 5: CAM, 6: CCA, 7: CHO, 8: CUA, 9: FAC, 10:
HGM, 11: IMP, 12: INN, 13: IZT, 14: LAG, 15: LLA, 16: LPR, 17: MER, 18: MGH, 19: MON, 20: MPA, 21: NEZ, 22: PED, 23: PLA, 24: SAG, 25: SFE, 26: SJA, 27:
SUR, 28: TAC, 29: TAH, 30: TAX, 31: TLA, 32: TLI, 33: TPN, 34: UAX, 35: UIZ, 36: VAL, 37: VIF, 38: XAL, 39: AZC, 40: CES, 41: COY, 42: CUT, 43: AJU, 44: GAM,
45: LVI, 46: PER, 47: ARA, 48: FAR, and 49: SAC. Note that for contaminants, such as PMCO and PM2.5 almost all monitor stations are inside Mexico City, whereas
the rest of them include several outside the city.
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FIGURE 3 | NO2 monitor stations representativeness. The tile plot represents data completeness, on a weekly basis, for each monitoring station (three letter code).
The color bar indicates the percentage of complete data. Interestingly, there exist some time gaps, whether the stations were not available yet, lost contaminant track,
or ended their monitoring life. However, in most of the reported periods, records are almost complete (in red). See Supplementary Table 1 for monitor stations
full description.

17-h records or more. Data were plotted for each pollutant.
Figure 3 shows data for nitrogen dioxide (NO2). The rest of
pollutant data can be found in Supplementary Figures 1–8.

In this work, we used the semivariogram to estimate
the degree of spatial and temporal dependence between
measurements for the different air pollutants. In brief, the
semivariogram provides a description of how measurements
vary across distance, time or both, as it measures the degree
of spatial correlation of a random variable Z(x), Z(t), or
Z(x, t), respectively. In particular, for the unidimensional spatial
component Z(x), the experimental semivariogram γ̂ (h) that
varies with distance h is written in equation (1):

γ̂ (h) =
1

2N(h)

N(h)
∑

i=1

[Z(xi + h)− Z(xi)]
2 (1)

whereZ(xi) is the observed value for the ith location at coordinate
xi, Z(xi + h) the observed value at location xi + h, and N(h) the
number of measured points within a distance h. An equivalent
representation applies for the temporal component. As the reader
can see, the expression presented in equation (1) has no close
form, hence, the task here is to find the suitable formulation
that best explains the data from one of the following: exponential
equation (2), spherical equation (3), or Gaussian equation (4), as
described in Chilès and Delfiner (40).

γ̂Exponential(h) = (s− n)
(

1− e−
h
ra

)

+ nH(0,∞)(h) (2)

γ̂Spherical(h) = (s− n)

((

3h

2r
−

h3

2r3

)

H(0,r)(h)+H[r,∞)(h)

)

+ nH(0,∞)(h) (3)

γ̂Gaussian(h) = (s− n)

(

1− e
− h2

r2a

)

+ nH(0,∞)(h) (4)
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where n is also known as the nugget, which can be interpreted
as the residual spatial dependence as it is defined as n =

limh→0+ γ̂ (h), i.e., the y-intercept of the semivariogram γ̂ (h)
where it is supposed that no correlation with other measurement
exists, but the data point itself, when the distance h is as close to
zero; s is a.k.a the sill, which is defined as s = limh→∞+ γ̂ (h)
and it can be interpreted as the limit of the variogram tending to
infinity distance; and r is a.k.a the range, which is the distance
where it is satisfied that lim∀h>0

(

γ̂ (r)− γ̂ (r + h)
)

→ 0, i.e., the
distance where the spatial correlation is lost where the sill levels
off, and for a fixed sill model it would be the first time the sill is
reached, whereas for a asymptotic sill it would conventionally be
the distance where the semivariogram first reaches 95% of the sill;
a = 1

3 as defined in Chilès andDelfiner (40), andHA(h) is the unit
step Heaviside function, where it is 1 if h ∈ A and 0 otherwise.

Now, if we move forward toward spatio-temporal
correlations, the unidimensional concepts for space (h) and time
(u) need to introduce a covariance structure with its associated
semivariogram γ (h, u) form for the different implementations
included in gstat R package implementation as described
in Pebesma (41), Gräler et al. (42), and Baca-Lopez et al. (43)
for the following models: separable equation (5), productSum
equation (6 and 7), metric equation (8), sumMetric equation (9),
and simpleSumMetric equation (10).

γseparable(h, u) = sill
(

γs(h)+ γt(u)− γs(h)γt(u)
)

(5)

γproduct sum(h, u) = (k× sillt + 1)γs(h)+ (k× sills + 1)γt(u)

− kγs(h)γt(u) (6)

sillst = k× sills × sillt + sills + sillt (7)

γmetric(h, u) = γjoint

(

√

h2 + (κ × u)2
)

(8)

γsum metric(h, u) = γs(h)+ γt(u)

+ γjoint

(

√

h2 + (κ × u2)
)

(9)

γsimple sum metric(h, u) = n×Hh>0∨u>0 + γs(h)+ γt(u)

+ γjoint

(

√

h2 + (κ × u2)
)

(10)

where for the spatial s and time t domains, the corresponding
variables are h and u, respectively; the sill parameter has been
described explicitly as sill to avoid confusion with the space
variable s; γs and γt are the spatial and temporal semivariograms
with their respective standardized versions γ s and γ t with
separate nugget effects and (joint) sill of 1; k is a positive
parameter, i.e., k > 0 that satisfies equation (7); κ is the
spatio-temporal anisotropy (stAni) correction; n is the nugget
parameter; and HA(h) is the unit step Heaviside function, where
it is 1 if h ∈ A and 0 otherwise.

The initial semivariogram parameter values were obtained
from the empirical spatio-temporal pollutant measurements
using gstat R package implementation as described in Pebesma
(41), Gräler et al. (42), and Baca-Lopez et al. (43). Here, the
initials values are computed as follows:

• Nugget: It is the median value of the first three empirical
variogram matrix row/column means for the spatial or
temporal initial guess.

• Sill: It is the median value of the last five empirical variogram
matrix row/column means for the spatial or temporal
initial guess.

• Range: The spatial range is one-third of the lagged maximum
spatial value and for the temporal case, it corresponds to the
maximum value.

In addition, the spatial and temporal anisotropy was estimated
using a linear model as specified in the gstat implementation.
Finally, the best parsimonious model was found for each
contaminant. Briefly, using the initial variogram parameters,
different spatial, temporal, or joint semivariogram structures
were tested to find the one that best explained the correlated
data description, according to the available implementations
in gstat (metric, separable, productSum, sumMetric, and
simpleSumMetric) (41, 42).

In this context, the best parameter combination was found
testing all possible single, double, or triple semivariogram
combinations (exponential, Gaussian, and spherical), where
the model selection criterion used was to minimize the
weighted mean squared error (see Supplementary Table 3).
Finally, the winner spatio-temporal semivariogram structure
was used to extract final semivariogram parameters (see
Supplementary Table 4).

Last but not least, the integration of both contaminant’s
monitoring representativeness plots and final spatio-temporal
variogram range parameters were used to get a clear picture of
Mexico City pollutant radius representativeness according to the
time evolution monitor station activity. The spatial correlation
range for each pollutant at a particular year was used as a radii
to build a circumference around each monitoring station. Thus,
the union of circles from all monitoring stations within the
network constitute the covered area for a specific pollutant. This
procedure was applied to all years of study to show how covered
area has changed over time.

3. RESULTS

3.1. Spatio-Temporal Data Exploration
Monitoring stations geo-localization are depicted in Figure 7, the
16 boroughs of Mexico City. At first sight, the global picture
makes it clear that not all the contaminants are acquired for each
available station. Second, it seems that for all the contaminants
the south of Mexico City (borough numbers 8, 11, and 12) are
not as well-represented as its northern counterpart.

This concern is related to rural and urban distribution, where
most urban populated boroughs are located to the north of
the city. Indeed, some contaminant stations are located outside
Mexico City. Pollutants, such as PMCO and PM25 are almost
exclusively collected inside Mexico City, whereas the rest have
monitor stations outside the city.

To further explore the data completeness, the monitor station
representativeness plots were generated. In Figure 3, the case of
NO2 is presented for the available stations from the beginning of
2009 until late 2018.

It is clear that there exists block of missing data (in white),
where some of them can be tracked down to the monitoring
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station inauguration (CUA, MON, CAM, NEZ, and so on) in the
mid 2011, or until 2015 for AJM and MGH stations.

As a matter of fact, there are no stations whatsoever that had
not lost track of NO2 at least for some hours (red to yellow cells)
or even had stopped working for a time gap of days, weeks, or
months. The last case, can be pictured for TLI, VIF, ATI, and
ACO to name some stations in the time window including the
beginning of 2016.

The last time pattern can be considered as the complete station
shut down, as depicted by the block of LAG, CES, AZC, TAC, and
TAX, that stopped working at the end of 2010. Fortunately, these
stations are not located neither in the same borough nor close
each other to leave non-measured areas (see Figure 2). However,
this data description level does not represent the extend covered
by each monitoring station.

3.2. Spatio-Temporal Variogram Estimation
Using the available data, sample spatio-temporal variograms
were addressed. These variograms were used to generate the
initial guesses values (Supplementary Table 2). Depending on
the contaminant, the initial guesses are different for the nugget,
range, sill, and stAni. In this context, the nugget is the model
intercept attributable to measurement errors or spatial sources of
variation at distances smaller than the sampling interval or both.

Interestingly, these sources of variations are negligible for CO,
in contrast to the wide range of nugget values (0.03 − 178.67).
In addition, the correlation extends between measurements, also
known as range; in all cases, it is almost the same for all
contaminants and last about 12 years for as far as 21.4 km. The
value for the variogram when the distance reaches the range, also
known as the sill, is as close to the nugget only for CO and departs
from it at most double its value.

Final covariance model weighted mean square error for
all the tested variogram permutations can be found in
Supplementary Table 3. It is worth to mention that the lowest
error for the different covariance structure methods was the one
that included sumMetric for CO, NO2, O3, NO, NOx, PM10, and
PMCO and simpleSumMetric for SO2 and PM2.5. Within these
covariance models, there was no apparent pattern in the winner
variogram model permutation (temporal + spatial + joint).

This is a data-driven approach that required to explore the
complete permutation grid in order to reach a parsimonious
spatio-temporal correlation model. A visual comparison of each
winner covariance model and sample variogram can be found in
Figure 4 for NO2. The rest of variograms for the other pollutants
can be found in Supplementary Figures 9–16.

Regarding ranges from winner models, the case of spatial
correlation is presented in Figure 5A. The spatial range values
measured in kilometer are interpreted as the separation distance
between two measured locations, i.e., monitoring stations, that
from this value onwards, measurements are no longer correlated.

This is, measured values in a given monitoring station will be
correlated with stations located within this range. For instance,
NOx measurements between monitoring locations have the
longest spatial correlation of 84.44 km, followed by NO with
77.15 km. On the contrary, particulate matters PM2.5, PM10, and

SO2 have the shortest ranges, 13, 12.98, and 5.92 km, respectively
(see Supplementary Table 4).

In the case of temporal correlation, ranges are shown in
Figure 5B. PM10 has the longest value of ∼6 months (178.35
days) followed by NOx and NO with ranges of 175.60 and
133.49 days, respectively. These three contaminants differ in
great extent in their correlation measurements in comparison
to CO, PMCO, NO2, PM2.5, S02, and O3 with ranges between
12 and 73 days overall (see Supplementary Table 4). This wider
time correlation window also presents some implications for
environmental control policies, in particular under the scenario
of extraordinary events. For instance, abnormal pollution levels
may correlate with registers several days apart, hence difficulting
emergency decision-making and action taking.

To graphically show the spatial representativeness of each
pollutant, we used spatial ranges reported in Figure 4 that were
obtained as final parameter values of the variogram models
shown in Supplementary Table 4.

For example, for the case of nitrogen dioxide (NO2), a
spatial range of 43.37 km was obtained from the empirical
semivariogram and covariance structuremodeling (see Figure 4).
Thus, for each monitoring station that measured NO2, the
center of a circular area with radii 43.37 is matched to the
station’s location.

To generate a buffer area for NO2 to represent the spatial
influence for measuring this contaminant, circles traced at each
location were joint to define a single border area. This process is
performed for NO2 in the years 2009, 2012, 2015, and 2018.

As seen in Figure 3, for each year, there is a different number
of active monitoring sites. Specifically, in 2009, only 18 sites
collected hourly concentrations for NO2. In 2012, six additional
monitoring stations started collecting data for this contaminant.
For the years, 2015 and 2018 the active sites were 26 and 25,
respectively. In general, an increasing number of active sites
can be seen for all pollutants, starting with the year when
measurements began (see Supplementary Figures 1–8).

Analogously, using the calculated spatial ranges for CO, NO2,
O3, SO2, PM2.5, PM10 NO, NOx, and PMCO, temporal evolution
of representativeness areas are shown in Figure 6.

The different contaminants are color coded and displayed as
columns, while rows are assigned to selected years. By looking
at 2009 year panel, it is noticeable that covered areas between
contaminants differ widely. The largest difference in range can
be seen for SO2 and NOx with the smallest and largest ranges,
respectively (5.92 and 84.44 km).

The representativeness area for SO2 is seen to mostly cover
the north part of the city, while the south is not and for the years
2012, 2015, and 2018, similar patterns were obtained.

As expected, although the number of monitored locations
increased, there is not a significant increase in the covered
area throughout the years due the small range of measurement
correlation. This small range depends on the intrinsic physico-
chemical properties of SO2 and consequently, its diffusion
in the atmosphere, as well as due to the complex traits of
urban environments.

However, regardless of land use, traffic, population density,
and other variables involved for a selected year, it can be
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FIGURE 4 | Tested spatio-temporal semivariograms for NO2. The 2D-sample semivariogram was obtained from the collected data. In addition, the winner fitted
covariance structure models (metric, separable, product sum, sum metric, and simple sum metric) are also presented. In this case, the sum metric structure is the one
that outperforms its competitors.

seen that for the same locations, the representativeness area
for relatively different monitoring networks, these patterns are
pollutant dependent.

Similar patterns of an increasing covered area that goes from
north to south is observed for CO, PM2.5, PM10, and PMCO. It
can be seen in the timeline that for these pollutants in the year
2009 (except for PMCO, which was not registered at the time),
the southern area was not included in the network but, in the
consecutive years this area was extended to almost cover the
entire city.

For NO2, O3, NO, and NOx, regardless of the number of
monitoring stations in 2009, because of the large correlation
of measurements (ranges), the representativeness area of the
network accounts for the whole city and a considerable
percentage of the VMMA. Thus, although monitoring stations
were added to the network, no significant change is observed for
the successive years.

The complete spatio-temporal evolution for these
contaminants depicted in Supplementary Figure 17, from
years 2009 to 2018, makes clear that regardless of the increase in
monitoring stations and their siting location, since 2009 there
has been an adequate coverage of the city.

In Figure 6, we present the case of CO and NO2. The case
of well-represented monitoring networks is shown for NO and
NOx in Figure 7 as example of pollutants with long spatial
correlation, 77.15 and 84.44 km, respectively (see Figure 5).
In other words, the amount and selected location for these
monitors to construct the network can be considered as effective.
It even has shown improvement since throughout the years (see
Figure 6).

Another aspect of the NO and NOx networks is that their
representative area clearly exceeds the city’s territory, which is
beneficial for both, Mexico City and the VMMA. A relevant issue
of this extended coverage is that monitoring stations installed
in one of the 16 boroughs in Mexico city are able to capture
the influence of pollution from sources outside the city, as
these pollutants can eventually move toward the city due to
dispersion phenomena.

Additionally, these results allow us to establish neighborhood
limits for interpolation purposes. To select the proper number
of monitoring stations required to estimate concentration values
at unmeasured locations, we can refer to spatial and temporal
ranges of correlation to determine which stations have to be
included in the analysis.
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FIGURE 5 | Spatio-temporal range panel. The horizontal or vertical bars stand for the winner covariance structure semivariogram range for each contaminant: CO2,
O3 SO2, PM2.5, PM10, NO, NOx , and PMCO. (A) Spatial range depicted by horizontal bars. The bigger the bar, the more distance it will be required to find
non-correlated data points. (B) Temporal range is depicted in vertical bars. Note that the two contaminants with the biggest spatial range (NO and NOx ) are almost the
ones with the biggest time range but for PM10.

An interesting comparison between a well-represented
network and one with lack of representativeness is displayed in
Figure 8. The full time evolution of the network coverage for SO2

and PM2.5 is shown in Figure 6, and their status in year 2018 can
be seen in Figure 8.

In the case of SO2, the central and north parts of the city
are almost covered, which is not the case from the center to the
south. Additional 15 stations located outside the city, i.e., in the
VMMA, are partially connected to the network in the north and
four are disconnected.

The current status of PM2.5 representation area shows an
improvement compared with previous years as seen in Figure 6.
For the year 2018 as presented in Figure 8, there is a complete
coverage of Mexico City’s surface. All areas of individual stations
are connected and opposite to SO2, this area includes the south.

4. DISCUSSION

4.1. General Discussion
Air quality assessment is essential for public health, individual,
and general population wellness. People’s quality of life is strongly
determined by the levels of contamination. Hence, to deliver
reliable measurements of air pollutants in time and space is of
outmost importance. In this work, based on spatio-temporal
correlations of monitoring stations of nine air pollutants in
Mexico City, we have been able to evaluate whether the location
of those stations is adequate to cover the surface of the city.

The analysis showed that the distribution and the number
of the monitoring stations is sufficient to evaluate the majority
of pollutants, with the exception of sulfur dioxide (SO2).
The spatial range of monitoring station for SO2 is shorter
than the other pollutants. The problem does not occur in
all zones of the city, and it is constrained to the southern
part, as shown in Figures 2, 6, 8. The southern part of
Mexico City has a large rural region, and concomitantly,
the population density is also short. It is possibly the
reason for which there is a limited number of stations in
that zone.

Regarding SO2, this compound is mainly generated by
industrial activity, which is carried into the northern side of
Mexico City, and SO2 levels in the south are likely due to the
dispersion of this pollutant.

With respect to NO and NOx, and PM2.5, whose high levels
are crucial in terms of individual and public health, the first two
pollutants are well-measured and estimated; however, this is not
the case of PM2.5 and SO2 as the spatial ranges of the monitoring
stations for these pollutants are short.

Notwithstanding, in the case of PM2.5 monitoring stations, the
AJU station (43), which is the southernmost located one, it is able
tomeasure PM2.5, and given this, themonitoring stations are able
to measure this pollutant cover almost the entire surface of the
city. In terms of public policies, an economic and at-hand option
to increase the measured surface of SO2 stations is to enable the
AJU station with SO2 capacity.
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FIGURE 6 | Contaminant representatives radius. The panel is arranged in a
matrix style, where the columns correspond to CO and NO2 and the rows to
years of measurement. In this configuration, each cell represents the Mexico
City and the corresponding working monitoring stations. In addition, the
contaminant representativeness zone was created by the union of circles with
the radius equivalent to the spatial range.

It is worth to mention that the metropolitan areas are
not isolated; contamination could arrive from external places.
For instance, during May 2019, Mexico City experimented
an unusual environmental challenge due to an elevated
concentration of PM2.5 and O3 (44). Several forest fires have
taken place in the Tepozteco National Park and Ajusco National
Park, which are both located in the southern border of Mexico
City. With this in mind, we state that it is necessary to have
also monitoring stations in the periphery of the city to be able
to establish, based on spatio-temporal criteria, models to predict
contamination indexes and have a better plan for reducing the
occurrence of these episodes.

To establish an appropriate methodology to measure air
pollutants in time and space, several factors must be taken
into account. The correlation between pollutant concentration
and health should be carefully evaluated in order to avoid
misinterpretations. In what follows, we will discuss some relevant
elements that need to be observed.

Depending on the type of pollutant, the residence time in the
atmosphere may vary fromminutes to weeks. For example, ultra-
fine PM (< 0.1µm) remains suspended in the air in the range

of minutes to hours. Conversely, PM10 may remain suspended
fromminutes to hours [Air quality criteria for particulate matter,
Washington, DC, US Environmental Protection Agency, 2004
(http://cfpub.epa.gov/ncea/cfm/partmatt.cfm)].

Additionally, photochemical transformations due to sunlight
radiation, meteorology, or several other factors should be
taken into account in the assessment and the concomitant
establishment of public policies.

With this approach, we do not only provide a protocol to
measure and estimate areas of representativeness for several
pollutants, but also provide suggestions for public policies that
are not expensive or logistically complicated. These suggestions
may have an impact on the evaluation of the air quality inMexico
City, and hence to help to increase the quality of life of people
living in this place.

4.2. Extended Dispersion of Emissions: The
Case of NO and NOx
Due to the particular environmental and infrastructural
conditions of Mexico City, we have registered a phenomenon of
overdispersion (evidenced by wider spatial correlation lengths)
of certain pollutants, in particular NO and NOx as it was shown
in Figure 7. Large amount of nitrogen oxides have been directly
related to industrial activity-based von fossil fuels (45).

Due to the specific features of NO and NOx in terms
of relatively small particle sizes, low aggregation and cluster
formations, and other intrinsic physicochemical characteristics,
nitric oxide emissions may become over-dispersive under certain
atmospheric conditions. This has relevant implications because
NOx emissions lead to the formation of secondary pollutants,
contributing, for instance, to high concentrations of atmospheric
ozone (46). Aside from these issues, NOx emissions may also
contribute to the deposition of NO3 creating environmental
problems, such as ecosystem acidification.

NO and NOx overdispersion also poses additional challenges
to regulation and inspection policy. This is so, since in large
metropolitan areas, such as Mexico City, extended spatial
presence also means that attributing emissions to chemical plants
and industries may require deeper inspections and effective
scheduling of these (47).

Aside from direct effects of nitric oxides, ozone and particulate
matters contribute to important morbidity and mortality. NO,
NOx, and their secondary pollutants may constitute, via
widespread exposure, relevant risk-increasing factors to
conditions, such as preeclampsia, systemic inflammation,
increase in oxidative stress, and cardiovascular events (48, 49). In
the case of nitrogen oxides, even causal relationships have been
established (50–52). These and other associations with public
health concerns will be further discussed in the next subsection.

4.3. Public Health Implications
The results just discussed may have important implications in
the development of successful HIA programs. HIA programs
are aimed at the identification, mitigation, and optimization of
the impacts that non-health sector policies may have on public
health (53).
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FIGURE 7 | Representativeness areas for NO and NOX . Covered areas for NO and NOx are shown for 2018. Monitoring stations (colored dots) report hourly
concentrations of these and other pollutants. In this case, both exhibit long spatial correlations, which in turn indicates a higher correlation between distant
monitor stations.

FIGURE 8 | Representativeness areas for SO2 and PM2.5. A comparison of covered areas for SO2 and PM2.5 is shown for the year 2018. Monitoring stations (colored
dots) report hourly concentrations of these and other pollutants. A different coverage pattern that depends on the spatial range of each pollutant can be seen for SO2

and PM2.5. In the case of SO2, some monitoring stations seem isolated outside the city limits while for PM2.5 most of the city surface is well-represented.

Risk quantification used to be mainly based on toxicological
or biomedical studies, but more recently the scope of HIAs has
broadened to incorporate more general social determinants of
health (54).

As it was shown here, using large-scale empirical data from
the monitoring network itself, some of the actual challenges have
to do with the fact that the radii of coverage are actually different
from the various pollutants (see Figure 6).
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It is worth mentioning that the regions in that figure
correspond to the empirical distribution of air pollutants as
given by the characteristic environmental conditions of the
metropolitan area of Mexico City and the particular monitoring
technology available there.

These facts are indeed matter of current interest, since air
pollution in large Latin American cities has become a source
of special concerns in recent times. According to a report
from the Pan American Health Organization (PAHO) (34),
the leading causes of urban air pollution in the Americas are
fossil fuels in industry and transportation. The aforementioned
report states that in the case of the Mexico City metropolitan
area, transportation alone is responsible for some 12% of PM10

particles, 30% of PM2.5, 5.06% of SO2, a staggering 98% of CO,
79% of nitrogen oxides (NOx), as well as 31% of the volatile
organic compounds (34).

As discussed, even if Mexico City has implemented some
regulatory systems to reduce air particle concentrations, the
results have not been enough to comply with national and
international standards. This may be due to the fact that
programs approved by policy makers have relied on inadequate
air quality measurements.

In these terms, PAHO has been stated that . . . there is a
clear need for better monitoring systems to analyze trends using
more exhaustive, continuous, reliable and complex data and
methodologies that are comparable between countries, so that
better intervention measures could be adopted to control air
pollution . . . (34). Our analysis, as presented here, aims to
diagnose some aspects of what is missing and what can be
improved in terms of the spatio-temporal representativeness of
the air quality monitoring stations in the metropolitan area of
Mexico City.

Improving our HIA programs and policy is extremely
relevant, in particular considering the steady decline in, say PM10
particulate levels, that had been observed from the early 2000s in
Mexico City was overturned by a dramatic increase during the
years 2008 and 2009. Even if another decrease has been observed
since then, we are still lagging to reach the WHO recommended
levels. Mexico was, in fact, the country with more deaths due
to outdoor air pollution than other countries in the Americas
(20,496 in 2012) according to a recent survey (55).

4.4. Implications for Intervention Policy
Recalling Figure 6, it is noticeable that intervention policy has
indeed improved the quality of monitoring stations for most (but
not all) of the pollutants considered.

The metropolitan area of Mexico City has been covered well
for ozone levels monitoring since 2009. This, however, was not
the case for PM2.5 which was poorly covered in the Southside of
the city in 2009 and by 2018 has almost complete coverage. A
similar case happens to CO levels monitoring which was almost
uncovered in 2009 and is well-covered since 2018. Other cases
are still worse, more striking in the case of SO2 levels, which
were poorly covered in the Southside of the city in 2009 and
still remains not covered there up to date. This is not to be
disregarded since the Southside of Mexico City consists mostly

of residential areas with the industrial zones more widely present
in the north and east sides of the metropolitan area.

By looking at Figure 6 and Supplementary Figure 1, one
can observe that SO2 monitoring station facilities have indeed
improved in number and effectiveness. However, due to the
different coverage features of the stations for the different
pollutants, these efforts have been insufficient to date. This is why
spatio-temporal representation studies, such as the present are
relevant for public policy making.

All the aforementioned facts highlight the relevance of data-
driven efforts to improve health impact assessments. Aside from
air quality monitoring, there are other data-centered measures
that must be implemented, such is the case of exposure evaluation
which is indeed essential to calculate risk levels.

A number of epidemiological methodologies have been
developed to assess population exposure to air pollutants. Most
of them are based on the consideration of the radial distance
from stations within the local monitoring networks, used as a
proxy to the proximity of population subjects within the study
groups (56). It should be noted that besides using monitoring
data for health impact assessment, modeling method using air
quality models is also used to assess HIA.

Since pollutant concentrations in urban environments
may vary widely, geostatistical approaches to environmental
epidemiology have gained even more relevance (57, 58). The
present study aims to present a practical approach to this problem
based on the information already gathered in the existing
monitoring stations in the Mexico City metropolitan area.

It is expected that data-centered studies, such as this one,
will motivate public policy makers to strengthen the monitoring,
data gathering and data analysis strategies in large urban
environments, such as the metropolitan area of Mexico City.

We are aware of the many challenges that effective
environmental assessment has, from economic, logistic and
political, but also for technical and analytical reasons. However,
we also believe that there are good reasons to be confident that
this kind of studies will be relevant for the construction of new,
more efficient models of policy making.
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