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Background: Bladder cancer has become the tenth most diagnosed cancer
worldwide. The prognosis has been shown to differ between non-muscle invasive
bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). We aimed to
identify signature genes that are associated with the invasiveness and survival of bladder
cancer and to identify potential treatments.

Methods: We downloaded gene expression profiles of bladder cancer from the Gene
Expression Omnibus database to identify differentially expressed genes and perform
weighted gene co-expression network analysis. Functional enrichment was analyzed
by GO and KEGG analyses. Hub genes were identified from the significant module.
Another dataset was also acquired to verify the expression of hub genes. Univariate
and multivariate Cox regression analyses were applied to the dataset downloaded
from The Cancer Genome Atlas database. Risk scores were calculated and the effect
was evaluated by Kaplan-Meier survival analysis. A nomogram was constructed and
validated using training and testing samples, respectively. Analysis of the tumor immune
microenvironment was conducted with the CIBERSORT algorithm.

Results: In total, 1,245 differentially expressed genes (DEGs) were identified. A distinct
module was identified that was significantly correlated to invasiveness. The genes within
this module were found to be significantly associated with extracellular exosomes,
GTPase activity, metabolic pathways, etc. Three hub genes (VSIG2, PPFIBP2, and
DENND2D) were identified as biomarkers of invasiveness; two of these (PPFIBP2 and
DENND2D) were closely associated with prognosis. The risk score was regarded as
an independent prognostic factor. The nomogram was associated with acceptable
accuracy for predicting 1- and 5-year overall survival. The infiltrating levels of resting
NK cells, activated natural killer (NK) cells, CD8+ T cells, activated memory CD4+ T
cells, and T follicular helper cells, were significantly higher in the group with lower risk
scores. The group with higher risk scores showed predominant infiltration by regulatory
T cells (Tregs).
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Conclusion: We successfully identified three signature genes related to invasiveness
and constructed a nomogram of bladder cancer with acceptable performance.
Differences suggested by risk scores between groups of patients showing diverse
patterns of immune cell infiltration may be beneficial for selecting therapeutic
approaches and predicting prognosis.

Keywords: bladder cancer (BLCA), invasiveness, weighted gene co-expression network analysis (WGCNA),
nomogram, tumor immune microenvironment

INTRODUCTION

Bladder cancer (BLCA) has become the tenth most commonly
diagnosed type of cancer worldwide, with approximately 573,000
new cases per year, a morbidity of 3.0%, and 213,000 deaths;
the mortality rate associated with BLCA is 2.1% (Sung et al.,
2021). In clinical diagnosis, approximately 75% of patients with
bladder cancer are diagnosed with non-muscle invasive bladder
cancer (NMIBC); the others are diagnosed with muscle invasive
bladder cancer (MIBC); diagnosis is made according to whether
the tumor invades the muscular layer of the bladder (Avgeris
et al., 2018). The postoperative recurrence rate of NMIBC exceeds
70%; approximately 15% of these patients progress to MIBC.
The postoperative recurrence rate of patients with MIBC can
exceed 50% after radical cystectomy (RC), and many patients
can die from this disease (Kotolloshi et al., 2021; Zhang et al.,
2021). Because of the different prognoses and biological pathways
underlying NMIBC and MIBC, a range of different treatment
strategies may be required (Nouhaud et al., 2021). Therefore, it
is crucial and beneficial to identify genes or features that are of
prognostic value and to establish a prognostic model that could
identify potential treatments and predict prognoses.

In this study, we analyzed mRNA expression data relating
to BLCA from the Gene Expression Omnibus (GEO) database
using differential gene expression analysis and weighted gene
co-expression network analysis (WGCNA). Then, we identified
the genes in the significant module that was most relevant
to invasiveness and analyzed these genes using pathway and
functional enrichment analyses. We also identified survival-
associated hub genes and clinical signatures to predict the
prognoses of patients with BLCA and developed a robust
prognostic model to help direct treatment strategies and
decision-making in the clinical treatment of BLCA patients.
Finally, we investigated the diversity of tumor immune cell
infiltration between different groups of patients with different risk
scores. Figure 1 shows a flowchart of the entire study process.

MATERIALS AND METHODS

Data Download and Processing
The GSE13507 microarray dataset features the gene expression
profile of patients with BLCA (Lee et al., 2010) and contains
102 NMIBC samples and 63 MIBC samples. This dataset was
downloaded from the GEO database.1 We also downloaded
the GSE120736 dataset (Song et al., 2019) which contains 78

1https://www.ncbi.nlm.nih.gov/geo/

NMIBC samples and 61 MIBC samples; this was used to
verify the expression profiles of the signature genes. We also
downloaded a standardized RNA-seq fragments per kilobase
per million mapped reads (FPKM) dataset for BLCA from The
Cancer Genome Atlas (TCGA) database2 in order to construct
a reliable prognostic model and investigate the tumor immune
microenvironment (TIME).

The Identification of DEGs Between
NMIBC and MIBC Samples
We utilized the “limma” package downloaded from
Bioconductor3 in R to analyze differentially expressed genes
(DEGs) between NMIBC and MIBC samples. In order to select
significant DEGs, we first normalized gene expression levels and
then set the adjusted P-value to < 0.05 and the | log2 fold change|
to > 0.5 as thresholds.

Weighted Gene Co-expression Network
Analysis
We used all of the genes in the GSE13507 dataset for WGCNA;
this was performed using the “WGCNA” R package (Langfelder
and Horvath, 2008). Our aim was to explore the relationships
between significant expression modules and invasiveness. We
created a sample clustering tree to detect and eliminate an
outlier and set the soft thresholding power value to 9 in order
to obtain a scale-free network. The resulting adjacency matrix
derived from the gene expression set was then converted to a
topological overlap matrix (TOM) for module clustering. We
set 30 as the minimum number of genes in each module, and
similar modules were merged with a threshold cut-off of 0.25.
Next, we generated a hierarchical clustering dendrogram; distinct
colors were assigned to diverse branches to reveal different
modules. The vital clinical trait was then integrated into the
eigengene network as an auxiliary node to explore the connection
between the trait and the modules. Module-trait associations
were then evaluated by analyzing the correlation between module
membership (MM) and gene significance (GS). Modules that
were highly correlated with invasiveness were selected and
extracted to perform subsequent analysis.

Enrichment Annotation Analysis
Genes identified in the crucial module were then analyzed
by Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis.

2https://portal.gdc.cancer.gov/
3http://www.bioconductor.org/
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FIGURE 1 | A flowchart depicting the entire study process.

For this, we used the Database for Annotation, Visualization,
and Integrated Discovery (DAVID)4 an adjusted P < 0.05 was
considered significant.

Hub Genes
To ensure quantity and accuracy, genes in the most significant
module (with | MM| > 0.86 and | GS| > 0.42), as determined by
WGCNA, were recognized as hub genes. Kaplan-Meier survival
analyses were also adopted to determine the differences in overall
survival (OS) between groups of hub genes when expressed at
high and low levels.

Identification of Prognostic Signature
Genes
We used a TCGA dataset with a complete set of clinical
features (n = 351) to identify genes that were relevant to
prognosis. Univariate Cox regression analysis was applied to
explore the prognostic value of hub genes. After filtration, genes

4https://david.ncifcrf.gov

with P < 0.1 were selected for multivariate Cox regression
analysis to evaluate the interactions between prognosis-related
genes; this was carried out with the “survival” package in
the R environment.

Establishment of a Prognostic Model
Next, a prognostic risk score model was developed based on
prognosis-associated genes, expression levels, and coefficients.
The risk score was calculated using an established formula
(Sullivan et al., 2004), as follows:

Risk Score =
n∑

i = 1

Coefficienti × Expressioni

Based on the median risk score, we separated all samples
from TCGA dataset into two different groups. We carried out
multivariate Cox regression analysis again and calculated hazard
ratios (HRs) to identify the independence of the risk score for
predicting overall survival.
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Construction and Validation of a
Nomogram
Samples from TCGA dataset (with a complete set of clinical
features) were divided into training (n = 252) and testing
(n = 99) cohorts randomly. A nomogram derived from the
training dataset was constructed by the “rms” package in R
with the following clinical features: age, gender, risk score, T
stage, and N stage. We created calibration plots to examine
the predictive performance of the nomogram. A receiver
operating characteristic (ROC) curve was derived from the
testing cohort and used to check the accuracy of the nomogram
based on a prognostic model; this was performed with the
“survivalROC” package in R.

Investigation of the Tumor Immune
Microenvironment
TIME analysis was applied to samples from TCGA dataset;
this was carried out with the “CIBERSORT” analytic tool. We
determined the proportions of 22 different tumor-infiltrating
immune cells; P < 0.05 was considered to be the level of
statistical significance (Newman et al., 2015). We also used the
Wilcoxon rank-sum test to detect significant differences in the
proportions of immune cell infiltration between low- and high-
risk groups of patients.

Statistical Analysis
R software (version 4.0.3), and a range of tools within the R
environment, were used for statistical analysis. We employed
univariate and multivariate Cox regression analyses to determine
prognostic factors. Kaplan-Meier curves were utilized to compare
the OS of different groups, and statistical significances were
verified with the log-rank test. Two groups of independent
non-parametric samples were evaluated by the Wilcoxon rank-
sum test.

RESULTS

A Comparison of DEGs Between NMIBC
and MIBC Samples
Samples from the GSE13507 dataset were normalized and
separated according to invasiveness. We identified 1245 DEGs
(780 upregulated genes and 465 downregulated genes) using
specific cut-off criteria (adjusted P < 0.05 and | log2 fold change|
> 0.5) (Figures 2A,B).

The Construction of Weighted Gene
Co-expression Network
WGCNA was adopted on samples from the GSE13507 dataset
in order to identify genes related to invasiveness. A sample
clustering tree was obtained, and an outlier (GSM340606) was
detected and eliminated (Figure 3A). Next, we needed to set
an appropriate soft threshold; power values ranged from 1 to
20 and a power (β) of 9 was selected to obtain a scale-free
network (Figure 3B). The scale-free topology fitting index R2

reached 0.85 (Figure 3C), thus fulfilling the requirements of
scale-free topology. TOM was transformed from an adjacency
matrix for clustering modules. Using the dynamic tree cutting
and merging method and taking 0.25 as the cut-off point
and 30 as the minimum number of genes, we merged similar
modules. This strategy ultimately revealed 24 modules from
18,575 genes (Figure 3D). Correlation factors were calculated
and then displayed as a heatmap (Figure 4A). The midnight-blue
module, containing 240 genes (Supplementary Table 1), were
highly correlated with invasiveness (correlation coefficient =–
0.51; P = 2 × 10−12) and grade (correlation coefficient = −0.44;
P = 3 × 10−9). The trait was then rescaled, using MIBC
as the reference; the connection between the invasiveness and
each module is shown in Figure 4B and Supplementary
Figure 1. There was a strong correlation between the midnight-
blue module and phenotype (correlation coefficient = 0.69;
P = 2.9× 10−35), as shown by Figure 4C.

Function and Pathway Enrichment
Annotation Analysis of the Significant
Module
Next, we employed GO and KEGG analyses to explore the
function and pathway enrichment of the genes involved. The
genes in the midnight-blue module were significantly related
to protein homodimerization activity, integral component of
Golgi membrane, extracellular exosome, lipid metabolic process,
epithelial cell differentiation, positive regulation of GTPase
activity, negative regulation of transforming growth factor beta
receptor signaling pathway, and thymic T cell selection, etc.
(Figure 5A, P < 0.05). KEGG pathway analysis identified
significant enrichment in metabolic pathways; valine, leucine and
isoleucine degradation; and ovarian steroidogenesis (Figure 5B,
P < 0.05).

The Identification of Hub Genes From the
Significant Module
Hub genes were selected using specific criteria (| MM| > 0.86,
and | GS| > 0.42). Three genes were identified: VSIG2, PPFIBP2,
and DENND2D (Supplementary Table 2). The expression levels
of hub genes in the NMIBC and MIBC groups were visualized
as violin plots (Figures 6A–C) using the “ggstatsplot” R package
and validated with the GSE120736 dataset (Figures 6D–F);
this analysis demonstrated good levels of consistency. The
clinicopathological characteristics of patients in the two GEO
cohorts are shown in Table 1. Kaplan-Meier survival curves were
used to demonstrate the differences in OS between the low- and
high- expression groups of hub genes (Figures 6G–I).

The Identification of Prognostic
Signature Genes
Hub genes extracted from the midnight-blue module were then
subjected to univariate Cox regression (Table 2). The exclusion
criterion was set to P > 0.1. Multivariate Cox regression was
then applied to the hub genes that passed the exclusion criterion
(Figure 7A). The clinical characteristics of patients in TCGA
cohort used for analysis are shown in Supplementary Table 3.
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FIGURE 2 | Differentially expressed genes between patients with non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC) displayed
as a heatmap (A) and a volcano map (B).

FIGURE 3 | Construction of a weighted co-expression network. (A) An outlier (GSM340606) was detected and eliminated by sample clustering. (B) β = 9 was
selected as the soft threshold. (C) Validation of the scale-free topology network. (D) The dynamic tree cutting and merging method resulted in the identification of 24
modules.
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FIGURE 4 | (A) A heatmap was created to display the relationships between modules and traits; correlation coefficients and P-values are also shown for each
module. (B) Invasiveness was integrated into the eigengene network to explore the connection between the trait and modules. (C) Correlation between module
membership (MM) and gene significance (GS).

PPFIBP2 and DENND2D were identified as the hub genes that
had the most influence on prognosis.

Establishment of a Prognostic Model
Based on Hub Genes
Next, we calculated the risk score for each sample used
expression levels of hub genes and coefficients, as follows:
Risk Score = (0.06219 × VSIG2) + (−0.20005 × PPFIBP2) +
(−0.29484 × DENND2D). The risk score, based on invasiveness,
was regarded as an independent prognostic factor for survival,
as demonstrated (Figure 7B). According to the median risk
score in TCGA cohort, we separated patients into different

groups (Figure 7C). The overall survival of low-risk patients was
significantly longer than that of high-risk patients, as indicated by
survival analysis (Figure 7D).

Construction and Validation of a
Nomogram for Predicting Prognosis of
Patients With Bladder Cancer
To predict the prognosis of patients with BLCA, we developed
a nomogram using the training cohort from TCGA dataset
(Figure 7E). Consequently, 1- and 5-year OS can be estimated
according to the total number of points; the risk score had the
greatest weighing in this calculation. A patient with a lower
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FIGURE 5 | GO and KEGG enrichment analysis. (A) GO analysis for genes in significant modules, including biological process (BP), cellular component (CC), and
molecular function (MF). (B) KEGG enrichment analysis for genes in the significant modules.

risk score, T stage, N stage, or age, has a higher likelihood
of a better prognosis. 0.67375977 was found as the C-index
for the nomogram. Acceptable consistency between nomogram
predictions and actual 1- and 5-year OS was determined by
calibration curves (Figures 7F,G). In addition, we also developed
time-dependent ROC curves for the established nomogram
using the testing cohort (Figure 7H); the area under the
curve (AUC) values for 1- and 5-year OS were 0.756 and
0.739, respectively.

Association of Risk Score With Immune
Cell Infiltration in the Tumor
Microenvironment
The proportions of 22 types of immune cells were determined
for different groups of BLCA patients (Figure 8A). We then
compared the abundances of tumor-infiltrating immune cells
in groups with different levels of risk scores (Figure 8B). The
infiltrating levels of resting NK cells, activated natural killer (NK)
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FIGURE 6 | The expression of hub genes (VSIG2, PPFIBP2, and DENND2D) in the GSE13507 dataset (A–C) and the GSE120736 dataset (D–F). Kaplan-Meier
survival curves for patients with different expression levels of hub genes (G–I). The expression levels of groups were classified according to the median gene
expression value.

cells, CD8+ T cells, activated memory CD4+ T cells, and T
follicular helper cells, were significantly higher in the low-risk
group. The high-risk group showed predominant infiltration by
regulatory T cells (Tregs).

DISCUSSION

BLCA is associated with morbidity and mortality rates of 3.0
and 2.1% worldwide, respectively (Sung et al., 2021). Because of
the diverse range of biological mechanisms that exist between
NMIBC and MIBC, it is important that we consider whether
to provide different treatment strategies. Previous studies have

established multiple prognostic models (Chen et al., 2021; Xu
et al., 2021). Furthermore, Yan et al. (2020) built an eight-
gene signature to predict OS in patients with BLCA using
WGCNA. Qiu et al. (2020) and Shen et al. (2020) also constructed
prognostic models based on immune-associated genes; however,
none of these established prognostic models were based on
invasiveness. Identifying biomarkers relating to the invasiveness
of BLCA and using these biomarkers to establish a prognostic
model may provide new options for treatment selection and the
prediction of prognosis.

In the present study, we aimed to identify signature genes
associated with invasiveness and construct a prognostic model
based on these signature genes. In total, we identified 1245
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TABLE 1 | Basic clinical characteristics of patients in the GEO datasets.

Variables GSE13507 GSE120736 P-value

Patients 165 139

Type

NMIBC 102 (61.8) 78 (56.1) 0.313

MIBC 63 (38.2) 61 (43.9)

Gender

Female 30 (18.2) 24 (17.3) 0.835

Male 135 (81.8) 115 (82.7)

Size

<3 cm 69 (41.8) 58 (41.7) 0.776

≥3 cm 89 (53.9) 80 (57.6)

NA 7 (4.2) 1 (0.7)

Tumor number

Single 98 (59.4) 88 (63.3) 0.198

2–7 45 (27.3) 48 (34.5)

>8 21 (12.7) 3 (2.2)

NA 1 (0.6)

Stage

Ta 24 (14.5) 37 (26.6) 0.676

T1 78 (47.3) 41 (29.5)

T2–T4 63 (38.2) 61 (43.9)

TABLE 2 | Univariate Cox regression analysis of hub genes.

Hub genes Beta HR (95% CI for HR) Wald P-value

VSIG2 –0.055 0.95 (0.89–1) 3.5 0.062

PPFIBP2 –0.21 0.81 (0.71–0.92) 10 0.0016

DENND2D –0.33 0.72 (0.6–0.86) 13 0.00 035

DEGs, thus illustrating clear differences in gene expression
between NMIBC and MIBC. A specific module, containing 240
genes, was identified by WGCNA, and found to be significantly
associated with invasiveness. Several vital pathways were revealed
by functional enrichment analysis. Three hub genes (VSIG2,
PPFIBP2, and DENND2D) were extracted from this module; two
of these genes (PPFIBP2, DENND2D) played an important role
in prognosis as protective factors. We established a prognostic
model and presented this model as a nomogram based on
the prognosis-associated signatures. Further validation of the
nomogram, with calibration curves and time-dependent ROC
curves, suggested an acceptable level of accuracy. As well
as identifying new biomarkers related to invasiveness and
developing a prognostic model, we also used TIME to investigate
potential treatment options.

The midnight-blue module was mainly associated with
metabolic-related activities, showed by GO functional analysis;
this was consistent with the results derived from KEGG pathway
enrichment analysis. Analyses showed that several pathways were
enriched, including epithelial cell differentiation, and negative
regulation of transforming growth factor beta receptor signaling
pathway that inhibits the progression of tumor metastasis,
as described previously (Tan et al., 2017; Lyu et al., 2019).
The current analyses also identified enrichment in positive
regulation of GTPase activity, thymic T cell selection, and
extracellular exosome, etc.

Three hub genes (VSIG2, PPFIBP2, and DENND2D) were
identified as biomarkers that showed upregulation in patients
with NMIBC and downregulated in patients with MIBC. VSIG2
is expressed in the thymus and may be related to antigen
presentation (Kariuki et al., 2010). The function of VSIG2 in
cancer has not been described previously, although this gene may
serve as a potential biomarker for BCLA. The PPFIBP2 product is
known to be associated with axon guidance and the development
of neuronal synapses (Iyama et al., 2017). The protein encoded by
PPFIBP2 is liprin-β2; previous studies have shown that low levels
of liprin-β2 is associated with a poor prognosis for urothelial,
renal, prostate, lung, head, and neck cancers (Tan et al., 2008; Wu
et al., 2018). Tumor cell migration, invasion, and progression, are
controlled by the ERK pathway (Ueoka et al., 2000; Reddy et al.,
2003). ERK2 is a major facilitator of cell migration and invasion
within the tumor microenvironment; liprin-β2 represents a
specific target for ERK2. Liprin-β2 can inhibit cell migration and
invasion and acts downstream of ERK2. Consequently, liprin-
β2 may act by facilitating the transporting of anti-migratory
molecules or by halting the recycling of pro-invasive molecules.
ERK2 is also known to drive invasiveness by inhibiting liprin-
β2 (von Thun et al., 2012). DENND2D is considered to act as a
tumor suppressor gene and has been implicated in several types
of cancer, including hepatocellular, lung, esophageal, and gastric
cancer (Ling et al., 2013; Hibino et al., 2014; Kanda et al., 2014,
2015). DENND2D is a regulator of Rab GTPases and is highly
associated with carcinogenesis and the progression of cancer.
In addition, several Rab GTPase family members are known to
influence the secretion of exosomes via the trans-Golgi network
or inducible vesicular transporting (Ponnambalam and Baldwin,
2003; Ostrowski et al., 2010). Adjacent cells can take up exosomes
derived from cancer cells, which are able to induce pathways that
are involved in the initiation and progression of cancer (Rink
et al., 2005; Henderson and Azorsa, 2012). MiR-1246 in tumor
exosomes can directly target and downregulate DENND2D, as
reported previously (Sakha et al., 2016). DENND2D is also
involved in the miR-522-induced migration and invasion of non-
small cell lung cancer cells by targeting DENND2D (Zhang et al.,
2016). Higher expression levels of PPFIBP2 and DENND2D are
known to be associated with lower levels of tumor invasiveness
and a better prognosis; our present findings were consistent with
these earlier observations.

TIME plays a key role in tumor initiation and progression;
furthermore, immunotherapy is often performed as a component
of neoadjuvant therapy (Lyu et al., 2020). We assessed tumor
immune cell infiltration to explore potential therapies and other
prognostic factors, and we then investigated the differences in
TIME between different groups. The proportions of resting NK
cells, activated NK cells, CD8+ T cells, activated memory CD4+
T cells, and Tfh cells, were significantly higher in the low-
risk group, thus indicating a better prognosis. In contrast, the
proportion of Tregs was lower in the low-risk group than in
the high-risk group. NK cells are known to kill adjacent cells
that express surface markers that are associated with oncogenic
transformation (Shimasaki et al., 2020). By secreting cytokines
and chemokines, NK cells may induce T cell infiltration and
inflammation; they may also prevent metastasis by eliminating
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FIGURE 7 | (A) A Forest map of hub genes, as determined by multivariate Cox regression analysis. (B) A Forest map of risk score and other clinical features, as
determined by multivariate Cox regression analysis. (C) Risk score distribution, survival status, and an expression heatmap for the three hub genes. (D) Kaplan-Meier
survival curves for patients in the low- and high-risk groups. (E) Nomogram for predicting the 1- and 5-year OS of patients with BLCA. (F,G) A calibration curve of the
constructed nomogram for predicting 1- and 5-year OS. (H) The time-dependent ROC curves for the constructed nomogram using the test data.
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FIGURE 8 | (A) The proportion of infiltrating immune cells, as estimated by the CIBERSORT algorithm. (B) A box plot of immune cells in the low- and high-risk
groups.

circulating tumor cells (Fauriat et al., 2010; Gooden et al., 2011;
Lopez-Soto et al., 2017; Malmberg et al., 2017). In pancreatic
cancer, memory CD4+ T cells are closely related to gemcitabine
resistance (Gu et al., 2020). A similar association may exist for
BLCA, although further validation is still needed. Patients with
a high proportion of CD8+ T cells are more likely to show a
favorable response to neoadjuvant chemotherapy (Green et al.,
2017). In triple-negative breast cancer, tumors with high levels of
infiltrating CD8+ T cells and memory CD4+ T cells might result
in a better prognosis (Matsumoto et al., 2016; Oshi et al., 2020);
this is consistent with BLCA. A high abundance of CD8+ T cells
is closely related to high expression levels of multiple immune
checkpoint molecules, thus implying that treatment involving
immune checkpoint inhibitors may be effective (Oshi et al., 2020).
Tfh cells are an independent subset of CD4+ T cells derived
from naïve T cells that localize to lymphoid follicles and mediate
the selection, proliferation, and survival of B cells to generate
antibody signals (Eivazi et al., 2016). Tregs constitutively express

CTLA-4 and are able to suppress the activation of leukocytes and
maintain immune homeostasis (Lu et al., 2017). Patients with
high levels of Tregs infiltration may respond effectively to therapy
involving ipilimumab and tremelimumab (Simeone et al., 2014;
He et al., 2017).

In summary, we successfully identified signature genes
associated with invasiveness and used these genes to establish
a reliable prognostic model for BLCA. These gene signatures
represent potential biomarkers and targets for prognosis and
treatment. Risk score acted as an independent prognostic factor
and could guide the selection of therapy involving immune
checkpoint inhibitors. However, there were some limitations
to this study that need to be considered. First, further
laboratory experiments are still required to validate the potential
mechanisms underlying the action of the signature genes and
TIME. Second, our sample size was not sufficient; therefore, we
were unable to detect additional risk signatures associated with
invasiveness in patients with BLCA.
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CONCLUSION

In conclusion, we identified three signature genes associated
with the invasiveness of BLCA; two of these showed strong
associations with prognosis. We also constructed a prognostic
risk model that featured the three signature genes and
other clinical features; this model showed acceptable levels of
performance. Differences in TIME between the patient groups
showing different risk scores were also analyzed to guide the
selection of therapeutic approaches and to help predict prognosis.
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