
Machine learning-based prediction of motor
status in glioma patients using diffusion MRI
metrics along the corticospinal tract
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Christoph Lippert,7,8 Thomas Picht1,2 and Lucius S. Fekonja1,2

Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal de-
tailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the
clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified
with respect to their motor status. We retrospectively included 116 brain tumour patients suffering from either left or right supraten-
torial, unilateral World Health Organization Grades II, III and IV gliomas with a mean age of 53.51+16.32 years. Around 37% of
patients presented with preoperative motor function deficits according to theMedical Research Council scale. At group level compari-
son, the highest non-overlapping diffusionMRI differences were detected in the superior portion of the tracts’ profiles. Fractional an-
isotropy and fibre density decrease, apparent diffusion coefficient axial diffusivity and radial diffusivity increase. To predict motor
deficits, we developed a method based on a support vector machine using histogram-based features of diffusion MRI tract profiles
(e.g. mean, standard deviation, kurtosis and skewness), following a recursive feature elimination method. Our model achieved
high performance (74% sensitivity, 75% specificity, 74% overall accuracy and 77% area under the curve). We found that apparent
diffusion coefficient, fractional anisotropy and radial diffusivity contributed more than other features to the model. Incorporating the
patient demographics and clinical features such as age, tumourWorldHealthOrganization grade, tumour location, gender and resting
motor threshold did not affect the model’s performance, revealing that these features were not as effective as microstructural mea-
sures. These results shed light on the potential patterns of tumour-related microstructural white matter changes in the prediction
of functional deficits.

1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische
Neurochirurgie, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany

2 Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin, Berlin, Germany
3 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
4 Turku Brain and Mind Center, University of Turku, Turku, Finland
5 Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland
6 A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
7 Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
8 Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Correspondence to: Lucius S. Fekonja
Charité - Universitätsmedizin Berlin, Klinik für
Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie
Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
E-mail: lucius.fekonja@charite.de

Keywords: machine learning; support vector machine; tractography; diffusion MRI; corticospinal tract

Received October 16, 2021. Revised March 01, 2022. Accepted May 24, 2022. Advance access publication May 27, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

BBRAIN COMMUNICATIONSAIN COMMUNICATIONS
https://doi.org/10.1093/braincomms/fcac141 BRAIN COMMUNICATIONS 2022: Page 1 of 17 | 1

mailto:lucius.fekonja@charite.de
https://orcid.org/0000-0002-1290-6630
https://orcid.org/0000-0002-8630-1466
https://orcid.org/0000-0003-1973-4410
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/braincomms/fcac141


Abbreviations: AD= axial diffusivity; ADC= apparent diffusion coefficient; BMRC=British Medical Research Council; CCA=
canonical correlation analysis; CSD= constrained spherical deconvolution; CST= corticospinal tract; CV= cross validation;
dMRI=diffusion MRI; DTI= diffusion tensor imaging; FA= fractional anisotropy; FBA=fixel-based analysis; FD= fibre density;
FDR= false discovery rate; FOD= fibre orientation distribution; GBM= glioblastoma; KNN= k-nearest neighbour; KU=kurtosis;
M=mean; Mdn=median; ML=machine learning; MRC=medical research council; PCA=principal component analysis; RD=
radial diffusivity; RFE= recursive feature elimination; RMT= resting motor threshold; ROI=Region of interest; SK= skewness;
STD= standard deviation; SVM= support vector machine; TMS= transcranial magnetic stimulation; WM=white matter

Graphical Abstract

Introduction
Gliomas are known as the most frequent and malignant hu-
man brain tumours, characterized by poor prognosis and
high morbidity.1 Gliomas infiltrating the motor system po-
tentially cause various degrees of damage to the white matter
(WM) architecture andmight lead to substantial motor func-
tion impairments.1,2 Diffusion MRI (dMRI)3,4 has shown
potential by enabling non-invasive delineation of the WM
pathways known as tractography5–9. Tractography has
been frequently used for preoperative planning or analysing
the effects of the tumour onWMand structural connectivity,
for example, to investigate tumour infiltration and its impact
on surrounding tissues.10,11

Along tract statistics enables WM characterization using
various dMRI metrics.12–14. These measures have gained
great interest since they reveal insights into WM develop-
ment, function and disease.15 Along tract diffusion tensor
imaging (DTI)-derived metrics such as apparent diffusion
coefficient (ADC; a measure of the overall diffusivity), axial
diffusivity (AD; the diffusion rate along the main axis of
diffusion), fractional anisotropy (FA; the directional prefer-
ence of diffusion) or radial diffusivity (RD; rate of diffusion
in the transverse direction) and a more complex
dMRI-based metric, namely fibre density (FD) have been
previously used to study tumour-induced local microstruc-
tural changes.16,17 Here, we investigate whether along tract
metrics can be used as predictive features to detect motor
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function impairments. Recently, we have shown that the
segmental DTI-derived metrics, such as ADC and FA are
associated with motor deterioration in patients with brain
tumours.18 Multiple fibre populations are found in up to
90% of the WM voxels and 30–40% of these WM voxels
contain more than three fibre populations.19–22 Moreover,
non-WM contamination is found in more than a third of
the WM voxels23 and multi-tissue constrained spherical de-
convolution (CSD) methods24–27 have been used to account
for it. As a result, CSD-based metrics in addition to DTI
metrics (such as AD, ADC, FA or RD) are critical. By esti-
mating fibre orientation distributions (FODs) in each voxel
based on the expected signal from a single collinearly or-
iented fibre population, CSD can discriminate complex fi-
bre populations.28 Probabilistic tractography algorithms,
such as the iFOD2, have been proposed to overcome the
limitations of tensor-based tractography methods by using
the rich information in FODs.29 A complete picture of the
underlying WM architecture is critical for risk assessment,
neurosurgical planning and as well for prediction models.30

To that end, modern CSD-based FD and fixel-based ana-
lysis (FBA) approaches, in addition to traditional DTI
methods, provide promising opportunities because they
are related to the intra-axonal restricted compartment
that is limited to a given fibre orientation within a vox-
el.31,32 More recently, we used FD for fibre orientation-
specific study of dMRI properties along the tract in relation
to infiltrating tumours,16 which was previously focused on
group-based analyses.31 Yet, research lacks the individual
and tract-specific characterization of WM microstructure
investigating the association between tumour impact on
structural connectivity and clinical assessment.

Machine learning (ML) methods have recently gained re-
markable success in clinical applications such as diagnostic,
prognostic and predictive analytics using various modalities
of MRI scans.33–36

Here, we employedMLmethods using along corticospinal
tract (CST)-related dMRI metrics (e.g. AD, ADC, FA, FD
and RD) to predict motor deficits in patients with motor-
related glioma, focusing on individual diagnosis rather
than GroupWise comparisons. We used ML methods based
on support vector machines (SVMs) which is a powerful
method, easy to interpret and well suitable method to handle
large dimensional data sets.37–39 SVM has been used in vari-
ous clinical applications such as tumour segmentation and
classification, e.g. to distinguish low-grade gliomas from
high-grade gliomas.40–43 In previous studies, glioma grading
has been performed using resting-state functionalMRI44 and
radiomic.45 In addition, it has been used as a tool for non-
invasive prediction of tumour consistency to classify the tu-
mour as soft or firm for preoperative planning.46

Furthermore, it is known as an analysis tool for predicting
the prognosis and survival time of tumour patients using
multi-modal imaging.35,47 Considering our tumour patients’
cohort and multi-modal quantitative assessment of WM
along CST based on dMRI metrics, we investigated our hy-
potheses using SVM-based analysis.

We designed our SVM models with an embedded feature
selection method called recursive feature elimination
(RFE)48,49 using histogram-based features of dMRI-based
tract profiles. The histogram-based analysis is one of the
most useful methods in many neuroimaging applications,
e.g. classification and clustering tasks by which we can sum-
marize and preserve more information from first-order sta-
tistics of the original data than simple averaging of the
data values.50,51 A histogram model can be specified for a
specific image feature type independently of any real image
content.50,51

In addition, we developed an SVM model using principal
component analysis (PCA)-derived52,53 components, regard-
less of histogram-based features. PCA transforms data from
high-dimensional space (all segmental information of
dMRI-based tract profiles) into a low-dimensional space.

Furthermore, patient demographics and clinical variables
including the resting motor threshold (RMT), a transcranial
magnetic stimulation (TMS)-derived neurophysiological
marker, were incorporated and fed into our designed mod-
els. We then assessed the impact of all these features, e.g.
demographics, clinical and microstructural features, on the
performance of the model.

Materials and methods
Patient cohort
We included 116 left- and right-handed adult patients in this
retrospective study (43 females, 73 males, average age=
53.51+16.32, age range= 20–87). Only patients with an
initial diagnosis of supratentorial, unilateral World Health
Organization (WHO) Grades II, III and IV gliomas
(16 WHO Grade II, 23 WHO Grade III and 77 WHO
Grade IV) were included. All tumours were infiltrating or im-
mediately adjacent to M1 and/or the CST either in the left or
right hemisphere. Patients with recurrent tumours, previous
radiochemotherapy or multilocular tumours were not in-
cluded. The motor status was graded preoperatively accord-
ing to the medical research council (MRC) scale for muscle
power. Grade, 0 means no muscle power, and 5 means full
muscle strength. All patients with MRC, 5 were assigned
to the group with motor deficits (Class 1), and others
(MRC= 5) were assigned to the group without motor defi-
cits (Class 0).

Image acquisition
Clinical MRI data were acquired preoperatively at Charité
University Hospital, Berlin, Department of Neuroradiology
over the past years, and data acquisition started before
HARDI techniques were commonly used. The centre per-
formed scans on 3 T Siemens Skyra scanner with dedicated
32-channel head/neck coil. The protocol included whole-
brain high-resolution structural data, contrast-enhanced
T1-weighted images, with TR/TE/TI 2300/2.32/900 ms flip
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angle= 9°, field of view= 256× 256, 192 sagittal slices,
1 mm isotropic resolution, acquisition time: 5 min as well
as a single shell diffusion-weighted volume with TR/TE
7500/95 ms, 2×2×2 mm3 voxels, 128× 128 matrix, 60 ax-
ial slices, with 40 equally distributed orientations for
diffusion-sensitizing gradients at b-value of 1000 s/mm2,
for a total acquisition time of 12 min.

Transcranial magnetic stimulation
Non-invasive functional motor mapping of both ipsilesional
and contralesional hemispheres was performed in each pa-
tient using navigated TMS (nTMS) with NeXimia
Navigated Brain Stimulation (Nexstim Oy, Helsinki,
Finland). Each patient’s head was registered to the structural
MRI and the composite muscle action potentials were cap-
tured by the integrated electromyography unit (sampling
rate 3 kHz, resolution 0.3 mV: Neuroline 720, Ambu). The
muscle activity (motor evoked potential, MEP amplitude≥
50 μV) was recorded by surface electrodes on the abductor
pollicis brevis and first dorsal interosseous. Initially, the first
dorsal interosseous hotspot, defined as the stimulation area
that evoked the strongest MEP, was determined.
Subsequently, the resting motor threshold, defined as the
lowest stimulation intensity that repeatedly elicits MEPs,
was defined using a threshold-hunting algorithm within the
Nexstim eximia software. Mapping was performed at
105% resting motor threshold and 0.25 Hz. All MEP ampli-
tudes. 50 μV (peak to peak) were considered as motor posi-
tive responses and exported in the definitive mapping.54 The
subject-specific positive responses of the first dorsal inter-
osseous were exported as binary 3 mm3 voxel masks per re-
sponse in the T1 image space.

Preprocessing and processing of MRI
data
Preprocessing and processing of MRI data were performed
as described earlier.16 Briefly, all T1 images were linearly (af-
fine) registered to the dMRI data sets using advanced nor-
malization tools (ANTs).55,56 Furthermore, we registered
the human motor area template (HMAT) atlas to subject
space with ANTs using the Symmetric normalization trans-
formation model55,57 to obtain M1 seeding region of inter-
ests (ROIs).55,57 The preprocessing of dMRI data included
the following and was performed within MRtrix358 in se-
quential order: denoising,59 removal of Gibbs ringing arte-
facts,60 correction of subject motion,61 eddy currents62 and
susceptibility-induced distortions63 in FSL,64 and subse-
quent bias field correction with ANTs N4.65 Each dMRI
data set and processing step was visually inspected for out-
liers and artefacts. Scans with excessive motion were initially
excluded based on a predefined threshold (if .10% outlier
slices; however, this was not the case in the current cohort).
We upsampled the dMRI data to a 1.3 mm isotropic voxel
size before computing FODs to increase anatomical contrast
and improve downstream tractography results and

statistics.66 To obtain AD, ADC, FA and RD scalar maps,
we first used diffusion tensor estimation using an iteratively
reweighted linear least squares estimator, resulting in scalar
maps of tensor-derived parameters.3,67 For voxel-wise mod-
elling, we used a robust and fully automated and unsuper-
vised method. This method allowed us to obtain
three-tissue response functions for white and grey matter
and cerebrospinal fluid from our data with the use of spher-
ical deconvolution for subsequent usage in multi-tissue
CSD-based tractography.24,27,68

Tractography
Probabilistic multi-tissue tractography was performed based
on the WM FODs with the iFOD2 algorithm69 as described
earlier,16 with the slight modification of using the above-
mentioned HMAT atlas-derivedM1 seeding ROI.70 In brief,
an inclusion ROI was defined in the medulla oblongata,
tracking parameters were set to default with an FOD ampli-
tude cutoff value of 0.1, a streamline minimum length of 5×
voxel size, and a maximum streamline length of 100× voxel
size. For each CST tractogram, we computed default n=
5000 streamlines per hemisphere. Each streamline per trac-
togram was resampled along its length to 100 equidistant
points. Subsequently, we mapped AD, ADC, FA, FD and
RD scalar metrics along the derived 100 equidistant points
per streamline.

Data preparation
We generated dMRI-based CST profiles, by which AD,
ADC, FA, FD and RDwere quantified at 100 segments along
the CST using the values of the 100 points per streamline. To
create a tract profile that is robust to outliers, we used two
differentmethods and compared the results. In the first meth-
od, we calculated the median (Mdn) values across the 5000
streamlines per tractogram along its 100 segments. In the se-
cond method, we computed the segment-wise weighted
mean (M) of the dMRI measures across streamlines. The
streamline-wise contribution was weighted by the inverse
Mahalanobis distance of the streamlines from the tract
core (M). Streamlines that were more distant from M were
considered less important.15 We used both ipsi- and
contralesional CST profiles as input features (predictor
variables); thus, the dimension of the imaging-based feature
space was 1000 (5metrics× 2 hemispheres× 100 segments=
1000 features).

Statistical analysis
Statistical analysis and data visualization were carried out
using Python 3.8.6. The main packages used were Scipy,71

Seaborn,72 Statsmodels73 andMatplotlib.74 To compare cat-
egorical variables, Fisher’s exact test (when the expected fre-
quency was less than five per category) or Pearson’s χ2 test
(for larger values) were employed. Two-tailed Student’s
t-tests or Mann–Whitney U tests (Wilcoxon rank-sum test)
were performed to compare continuous variables. Effect
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size (r) for Mann–Whitney U statistics was calculated as the
Z-statistic divided by the square root of the number of sam-
ples. A significance level of P, 0.05 was considered as cut-
off. With respect to multiple comparison analyses,
statistically, significant P-values were false discovery rate
(FDR) corrected using the Benjamini–Hochberg proced-
ure.75 For all univariate statistical analyses, Mdn-based tract
profiles were used. Canonical correlation analysis (CCA)
was performed as a multivariate correlation analysis to iden-
tify and measure the association among all dMRI-based ex-
tracted features (both in ipsi- and contralesional
hemispheres) and age.76 This analysis extracts meaningful
information from a pair of data sets, dMRI-based features
and age, by seeking pairs of linear combinations from two
sets of variables with the maximum pairwise correlation.
CCA was performed both on the patient’s cohort and on
each patient’s group (Class 0; Class 1) separately. Amore de-
tailed analysis investigating the associations between each
metric and age was also performed.

SVM classification
SVM has gained a widespread application in the neuroima-
ging context as either classificationor regressionmethod.77,78

An SVM classifier aims to find hyperplanes with maximal
margins between classes. As a supervised ML method, SVM
can be extended to complex instances that are not linearly
separable using so-called kernel tricks.79,80Kernel techniques
map input features from one space to a higher dimensional
feature space in which different classes can be distinguished
by a separating hyperplane. All ML analysis methods should
be balanced between their predictive accuracy and descrip-
tive power.81Accordingly, in the present study,we developed
different models based SVM method using dMRI-based fea-
tures, demographic and clinical variables to predict themotor
status (Class 0; Class1) preoperatively (cf. Fig. 1).

Some segments along tract profiles were missed
(not-a-number value) when the tract profiles were generated.
These missing values were imputed using two different inter-
polation methods82: (i) Mdn and (ii) k-nearest neighbour
(KNN).83 Before fitting a model to our data, imputation of
missing values and feature standardization were performed.
Toenableour classifier to learn from lowandhighvarianceme-
trics, we removed each feature’s M and scaled it to a unit vari-
ance (z-score). Training and test sets within each cross
validation (CV) were standardized separately byM and stand-
ard deviation (STD) derived from the training set to prevent in-
formation leakage between testing and training data sets.

Four different SVM models were trained and tested using
Mdn-based and Mahalanobis-based weighted M tract pro-
files with the above-mentioned interpolationmethods for im-
putation of missing values (SVM_1: Mdn-based imputation
method and Mdn-based tract profile; SVM_2: KNN-based
imputation method and Mdn-based tract profile; SVM_3:
Mdn-based imputation methods and Mahalanobis-based
weighted M tract profile; SVM_4: KNN-based imputation
method and Mahalanobis-based weighted M tract profile).

As a preprocessing step, to reduce the high dimensional
imaging-based feature space, a set of statistical features
was calculated as a high-level representation to measure dif-
ferent properties of dMRI-based tract profiles’ distributions.
Descriptive statistics such asM as a central tendency, STD as
a measure of variability and kurtosis (KU), and skewness
(SK) as measures of shape were extracted as histogram-based
features (Fig. 2). The tract profile statistics were calculated
for ipsi- and contralesional tractograms (4 measures× 5 me-
trics× 2 hemispheres= 40 features) and were fed into the
models. We further incorporated patient demographics and
clinical data such as age, gender, tumour grade, tumour loca-
tion and RMT ratio, fed them into the aforementioned mod-
els, and compared the results.

Themost relevant featureswere selectedusing theRFEmeth-
odbasedonSVM(SVM-RFE).48,49Thismethod recursively re-
moves features that contribute least to the prediction based on
the linear SVM classifier weight coefficients before the actual
learning phase. Subsequently, selected features were used to
train and validate the SVMmodel with a linear kernel.

To investigate how well each dMRI metric (e.g. AD, ADC,
FA, FD, RD) performed in classifying the patients with respect
to their motor status, different SVM models were trained and
tested, e.g. SVM_AD, SVM_ADC, SVM_FA, SVM_FD and
SVM_RD, with KNN-based imputation method for missing
values and Mdn-based tract profile (cf. Table 1). To assess
the predictive power of patient demographics and clinical vari-
ables regardless of imaging-based features (when ignoring the
neuroimaging analysis pipeline), an SVM model
(SVM_clinical)was developedusing only patients’ age, tumour
WHO grade, tumour location, gender and RMT.

Additionally, a model was developed using all values of
ipsi- and contralesional dMRI-based tract profiles without
performing above-mentioned feature extraction method.
To reduce the high-dimensional imaging-based feature space
(1000), PCA52,53 was performed on MdN-based tract pro-
files, and the first four components were fed into an SVM
model with the linear kernel (SVM_5) using KNN-based im-
putation method (cf. Table 1).

We evaluated our models (SVM_1-5; SVM_AD-RD;
SVM_clinical) using nested CV with a 10-fold outer loop
and a 5-fold inner loop. Our model key hyperparameter C
for penalty84 was optimized in the inner CV loop and the
best performing model was applied to the outer CV loop
test set to evaluate the model selected by the inner loop. C
was tested from 0 to 10 with a 0.1 step size.

Our data set was imbalanced because the proportion of
patients with motor deficits to patients without motor defi-
cits was nearly 1 to 2 (cf. Table 2). We used a stratified
10-fold CV to ensure that class distributions in each data
split matched the distribution in the complete training data
set. We additionally assigned the class weights, wj (Class 1:
MRC, 0; Class 0: MRC= 5) inversely proportional to their
respective frequencies as wj = nsamples

nclasses∗ nsamplesj
, where nsamples is

the number of samples, nclasses is the number of classes and
nsamplesj is the number of samples per class.
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Bootstrap aggregating (bagging) has been introduced as a
method to reduce the variance of a given estimator.85

Bagging involves applying an estimator tomultiple bootstrap
samples and voting the results across them. These estimators
can use CV themselves to select fine-tuning parameters trad-
ing off bias and variance of the bootstrap sample-specific
candidate estimators. We used this approach in our models
(SVM_1-4; SVM_AD-RD) with 1000 resampled training
sets per fold of outer loop CV and lastly voted among all
1000 generated models.

We evaluated the performance of our models using the
overall accuracy, the ratio of correctly predicted samples
over the entire cohort, sensitivity, specificity and the area un-
der the receiver operating curve (AUC).

We used various SVM models to predict tumour-related
motor deficits. To this end, four SVM models (SVM_1-4)
were trained using histogram-based features of
dMRI-based CST profiles, and one SVM model (SVM_5)
was trained using four PCA components of segmental

information of dMRI-based CST profiles. Finally, an add-
itional SVM was trained (SVM_Clinical) using clinical and
demographic features.

Data availability
Raw data that support the findings of this study are not pub-
licly available due to information that could compromise the
privacy of the research patients. However, the code we have
used is openly available on https://github.com/CUB-IGL/
Machine-learning-based-prediction-of-motor-status-in-glioma-
patients-using-dMRI-metrics-along-CST.git and is referred to
at the corresponding passage in the article.

Results
Forty-five (37.9%) of the recruited 116 patients presented
with preoperative motor deficits (MRC,5; cf. Table 2).

Figure 1 Visual summary of the machine learning pipeline with nested cross validation and bootstrapping. (A) dMRI-based
extracted features are incorporated with demographic and clinical features and fed into the SVM model. The data set is split into a training and a
test data set accordingly. (B) First, test and training sets are selected per fold of outer loop CV. Next, 1000 new synthetic data sets (Ti) are
generated from training set by randomly sampling from it. Hyperparameters of the classifiers (Ci) are optimized within the inner loop. Finally, the
estimator (Pi) for each of the synthetic sets is found and the prediction (P) is voted across them.
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There were no significant differences in gender (χ2[1, N=
116]= 0.51, p= 6.3e− 1) or hemispheric pathology pos-
ition (χ2[1, N= 116]= 0.08, p= 7.7e− 1) in relation to
motor deficits. Patients with motor deficits (Class 1) were
older (58.64+15.45) than patients without motor deficits
(Class 0) (50.25+15.85), with a highly significant difference
between them (t[114]= 2.83, p= 5e− 3), although amedium
effect was found (g = 5.3e− 1 95% CI = [0.155− 0.914]).
There were no significant differences in tumour locations
and RMT ratio in both ipsi- and contralesional hemispheres
in relation to motor deficits (cf. Table 2). We also found sig-
nificant difference between the glioma WHO Grades III and
IV between patients with and without motor deficits (χ2[1,
N= 116]= 0.86, p= 3e− 2).

Moreover, considering CCA, we found a strong positive
correlation between all dMRI-based extracted features and

age, which was statistically significant (rs(114)= 0.7,
p= 3.3e− 18). The correlation coefficients for the CCA
are provided in Supplementary Table 1. This correlation
was stronger in the group with motor deficits (Class 1; rs-
(45)= 0.93, p= 6.12e− 21). Considering each metrics sep-
arately, the correlation was weaker (AD: rs(45)=−0.59,
p= 1.64e− 5; ADC: rs(45)= 0.64, p= 2.32e− 6; FA: rs-
(45)=−0.42, p= 3.2e− 4; FD: rs(45)=−0.24, p= 0.1;
RD: rs(45)= 0.51, p= 3.54e− 4). In the group without mo-
tor deficits (Class 0), the dMRI-based extracted measures
were negatively correlated to age (rs(71)=−0.89, p=
1.0e− 25). Considering each metrics separately, the correl-
ation was weaker (AD: rs(71)= 0.33, p= 4.0e− 4; ADC: rs-
(71)= 0.53, p= 2.07e− 6; FA: rs(71)=−0.49, p= 1.64e−
5; FD: rs(71)=−0.55, p= 4.87e− 7; RD: rs(71)= 0.58,
p= 1.2e− 7).

Figure 2 Kernel density estimation (KDE) plot. (A) Approximating the underlying probability density function based on KDE for
dMRI-based ipsilesional CST profiles using mean values for patients with and without motor deficits; values are normalized for estimating kernel
density. (B) KDE for a specific patient; a male patient (age: 81 years old) with preoperative motor deficits (Class 1) and gliomaWHOGrade IV in
the left hemisphere. Each plot is annotated with the corresponding histogram-based features (four features: M, STD, SK and KU).
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Group-wise statistical analysis
A comprehensive group-wise analysis was performed over
the entire CST and segment-wise along the 100 segments
to compare the differences in dMRI metrics between the
two patient groups with (Class 1) and without (Class 0) mo-
tor deficits. The violin plots in Fig. 3 show significant differ-
ences in dMRI-based measures in the ipsilesional CST
between the two patient groups.

Figure 4 shows a segment-wise comparison of dMRI me-
trics between the two groups of patients (Class 0; Class 1) in
ipsilesional CST. We found significant segment-wise differ-
ences, surviving FDR correction, between the two groups in
the ipsilesional CST profiles in relation to ADC, AD, FA
and RD metrics. However, no significant segment-wise

differences were found with respect to FD (cf.
Supplementary Table 2). These differences were larger in
ADC andRD, especially in the tracts’middle and peritumour-
al areas. The ipsilesional tract profiles led to larger significant
differences compared with the differences between ipsi- and
contralesional CSTs in group analyses (cf. Supplementary
Table 3). In the latter case, only 6 nodes (93–98th) in the
ADC, 9 nodes (88–96) in FA and 11 nodes (88–98) in RDme-
trics of the ipsilesional tracts showed significant differences
between the two groups (class 0; class 1) mainly at the super-
ior portion (area between the cortex and the internal capsule)
of the CST. Moreover, the significant segments in contrale-
sional tract profiles were only seen in a few segments in AD
and ADC tract profiles (cf. Supplementary Table 4).

Table 1 The overview of all SVM models

Model Input data
Imputation method for

missing values
Method for generating the

tract profile
PCA

components
Histogram-based

features

SVM_1 dMRI metrics Mdn Mdn No Yes
SVM_2 dMRI metrics KNN Mdn No Yes
SVM_3 dMRI metrics Mdn Weighted-mean No Yes
SVM_4 dMRI metrics KNN Weighted-mean No Yes
SVM_5 dMRI metrics KNN Mdn Yes No
SVM_AD dMRI (AD metric) KNN Mdn No Yes
SVM_ADC dMRI (ADC

metric)
KNN Mdn No Yes

SVM_FA dMRI (FA metric) KNN Mdn No Yes
SVM_FD dMRI (FD metric) KNN Mdn No Yes
SVM_RD dMRI (RD metric) KNN Mdn No Yes
SVM_clinical Clinical+

demographic
No No No No

Table 2 Demographic and neuropathological overview of the patient cohort

Patients without motor deficits Class 0 Patients with motor deficits Class 1 P-value

Demographics
Cohort size 71 (62%) 45 (37%) _
Age 50.25+ 15.85 58.64+ 15.45 0.005
Female 25 (35%) 18 (41%) 0.63
Male 47 (65%) 26 (60%) 0.63
Ipsilesional hemisphere
Left 30 (42%) 17 (39%) 0.77
Right 41 (57%) 28 (64%) 0.77
Tumour location
Frontal 35 (49%) 25 (55%) 0.55
Parietal 19 (27%) 12 (27%) 0.91
Insular 10 (14%) 5 (11%) 0.77
Temporal 7 (10%) 3 (7%) 0.73
Glioma WHO grade
II 13 (18%) 3 (7%) 0.8a, 0.05b

III 18 (25%) 5 (11%) 0.8a, 0.03c

IV 40 (55%) 37 (84%) 0.05b, 0.03c

RMT* (V/m)
Ipsilesional hemisphere 33.72+ 7.2 34.64+ 9.15 0.57
Contralesional hemisphere 34.3+ 6.05 35.62+ 8.64 0.37

*Resting Motor Threshold (RMT), TMS-derived neurophysiological marker, indicating cortical excitability
aWHO Grade II versus III.
bWHO Grade II versus IV.
cWHO Grade III versus IV.
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Additionally, we used M, STD, KU and SK as histogram-
based measures of tract profiles and performed group-wise
analyses on eachmeasure for ipsi- and contralesional tract pro-
files (cf. Supplementary Table 5). As shown in Fig. 5A–E, the
M measure over the ipsilesional CST profiles of AD, ADC,
FA and RDwas significantly different between the two patient
groups with and without motor deficits (AD: U= 1000,
p= 3.6e− 4, r= 0.37; ADC: U= 974, p= 2.07e− 4, r= 0.4;
FA: U= 1214, p= 1.5e− 2, r= 0.24; RD: U= 1003,
p= 3.8e− 4, r= 0.42) as well as the KU measure of ipsile-
sional CST profile of FA value (U= 1034, p= 7.1e− 4,
r= 0.35). Further in Fig. 5B and E, STD of ADC and RD pro-
files showed a highly significant increase in the patient group
with motor deficit (ADC: U= 1032, p= 6.8e− 4, r= 0.35;
RD: U= 1065, p= 1.2e− 3, r= 0.33).

Ipsilesional tract profile measures led to larger differences
compared with the contralesional tract profile measures.
Nine ipsilesional tract profile measures (extracted features)
were significantly different between the two patient groups
(see Fig. 5), while only three measures of contralesional tract

profiles were significantly different (cf. Supplementary
Table 5).

SVM classification
SVM_clinical, using all patient demographics and clinical
variables as input features, received a low performance score
(58% accuracy, 82% sensitivity, 43% specificity and 62%
AUC). Among all SVM_AD-RD models, when using micro-
structural measures in relation to each metric separately,
SVM_FA reached the highest accuracy (67%), sensitivity
(60%) and AUC (68%), and SVM_ADC and SVM_RD
reached the highest specificity (80%). The AUC in
SVM_ADC and SVM_AD reached nearly the same score
(67%, Fig. 4).

Considering SVM_1-4 models, using all measures of
dMRI-based tract profiles, the best classifier performance
was achieved with SVM_2, which reached 74% accuracy,
74% sensitivity, 75% specificity and 77% AUC (Table 3).
With the KNN interpolation method, the number of nearest

Figure 3 Violin plots. Violin plots are illustrating the frequency distribution of all segmental values related to AD, ADC, FA, FD and RDmetrics
over the ipsilesional CST. P-values were calculated using a two-tailed Student’s t-test (n= 100*71, Class 0, without motor deficit, MRC= 5; n=
100*45 Class 1, with the motor deficit, MRC, 5); horizontal lines indicate median and quartiles.
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neighbours when K= 10 yielded the best model
performance.

The five most effective features that were selected by
SVM-RFE are FA_KU, FA_SK, RD_KU, ADC_STD and
ADC_M; effect sizes and FDR-corrected P-values were also
calculated (FA_KU: U= 1034, p= 1.1e− 3, r= 0.35;
FA_SK: U= 1413, p= 1.5e− 1, r= 0.11; RD_KU: U=
1377, p= 1.3e− 1, r= 0.13; ADC_STD: U= 1032, p=
1.1e− 3, r= 0.35; ADC_M: U= 974, p= 1.0e− 3, r= 0.4).
Table 4 shows these selected features with their respective
learned weights using SVM_2.

In the last step, patient demographics and clinical features
were integrated into our models (SVM_1-4). The feature se-
lectionmethod did not select them in any of the trained mod-
els (SVM_1-4) and the models’ performances remained
unchanged. The receiver operating characteristic curves for
SVM_1-4, SVM_AD-RD and SVM_clinical are presented
in Fig. 6.

Moreover, we developed a model using all segment-wise
information along ipsi- and contralesional tract profiles for
all dMRI metrics (ADC, RD, AD, FA and FD) with PCA
(SVM_5). This model reached 63% accuracy, 64% sensitiv-
ity, 63% specificity and 70% AUC. Summarizing the SVM
results, we showed that the best model performance was
achieved when we generated a tract profile based on median
values and imputed themissing values with the KNNmethod
(SVM_2). Moreover, our model that included only clinical
and demographic features (SVM_clinical) was less accurate
than the models with microstructural measurements. All
models were trained separately using each modality
(SVM_AD-RD) and were also less accurate than other

models that included imaging features from all modalities
(SVM_1-4). Additionally, our SVM model, which used
PCA components, performed poorly compared with the
SVM_1-4 models.

Discussion
We investigated how glioma-induced microstructural altera-
tions to WM were associated with functional motor deficits
by mapping dMRI metrics along the CST. In segment-wise
group comparison, we found significant differences between
the ipsilesional tract profiles in the two patient groups (Class
0; Class 1) in relation to all dMRI metrics except for FD. The
ipsilateral differences were mainly seen at the level of the gli-
oma (superior portion of the tract), which showed the direct
influence of the tumour area on motor function. However,
tumour impact on tract metrics could also be detected in
areas relatively distant from the tumour and peritumoural
oedema especially in ADC and RD, demonstrating the
spreading of the local tumour effect with respect to themotor
status.

FA and ADC have been largely used to evaluate the WM,
and both lower FA values and higher ADC values are asso-
ciated with WM impairment. FA has been shown to be sen-
sitive to detecting changes in WMwater diffusion in cases of
neuropathology and tends to decrease in areas where tumour
cells have invadedWM.86–88 ADC indicates theMdiffusivity
of water molecules and an increase in ADC has been ob-
served in pathologies accompanied by, e.g. oedema or necro-
sis29,89 and higher values are expected in voxels with low

Figure 4 Line plots. Line plots are illustrating AD, ADC, FA, FD and RD metrics along the ipsilesional tractogram (segment 0=medulla
oblongata; segment 100=M1), for both motor patients’ groups (n= 71, class 0, MRC= 5; n= 45, class 1, MRC, 5). The lines indicate median
values with their 95% confidence interval. The heatmaps demonstrate related FDR corrected P-values, as tested with a two-paired Student’s t-test.
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anisotropy. These metrics have been used to describe specific
types of WM impairments, e.g. demyelination, axonal in-
jury, inflammation or necrosis.90,91 However, these metrics
may be affected by several factors90,91 and they might be
less sensitive to distinguish specific types of WM impair-
ments.90,91 The majority of our cohort with glioblastomas

(GBMs; 77 patients) are characterized by diffuse infiltration
into the normal brain. We observed the greatest elevation in
values along the CST in relation to ADC, which could be ex-
plained by GBMs’ frequently developing within theWMand
spreading throughout the brain along fibres,92 and limited
diffusion because of their tissue properties. However, this

Figure 5 Violin plots. Violin plots are illustrating different histogram-based measures of ipsilesional CST profiles based on (A) AD (mm2/s),
(B) ADC (mm2/s), (C) FA, (D) FD and (E) RD (mm2/s) metrics in in two patient groups (n= 71, Class 0, MRC= 5; n= 45, class 1, MRC, 5). The
analyses were done using Mann–Whitney U-tests.
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explanation should be taken with caution. These results con-
firmed that the ipsilesional CST fibres were affected and cor-
related with the patient’s motor deficits.

Furthermore, AD andRD aremeasures of diffusion in per-
pendicular and parallel directions to the principal axis of dif-
fusion, respectively. The incorporation of these metrics has
been shown to lead to better differentiation between axonal
injury or degeneration (AD) and pathological demyelination
(RD).29,89,93–95 Myelin fragmentation results in an increase
in RD since the myelin sheaths block water diffusion out of
the axon.96 Demyelination could be more of a chronic/
slow process, while axonal degeneration could be a more
acute and potentially clinically more detrimental process.

Several studies in brain tumour patients investigated DTI
metrics as a diagnostic and prognostic biomarker for motor
function.87,97–101 Decreases in FA values were associated
with preoperative motor deficits.87,97,98 Other studies
showed that lower average FA values within the affected
CST as well as higher average ADC values are significantly
associated with postoperative motor deficits.18

Here, we did not see a strong improvement in our SVM
model performance on basis of AD. However, the KU of
tract profile based on RD was highly effective (Table 4).
Besides, we even found differences in segments/regions along
contralesional tract profiles with respect to ADC and AD,
supporting the assumption that contralesional CST may
play a role in the postoperative motor outcome and recovery
of motor function. These results may have implications for
the compensatory strategy of the brain.

SVM analysis
As explained earlier, SVM has been used in various clinical
applications such as tumour segmentation and classifica-
tion,40–43prediction of tumour consistency,46 prediction of
prognosis and survival time of tumour patients using multi-
modal imaging.35,47

Microstructural measures
Considering dMRI-based features within the ipsi- and con-
tralesional CST, we successfully developed several
SVM-based models to classify patients with respect to their
motor deficits (Class 0; Class 1). The best model performance
achieved an AUC of 76.6% (SVM_2). The most effective fea-
tureswere FA_KU, ADC_M,RD_KU, FA_SKandADC_STD.
Accordingly, ADC and FAwere identified as the most relevant
metrics which better accounted for the detection of motor
function impairment.102 These findings are also in line with
our previous studies.16,18 In Fekonja et al.,16 we found FA
and ADCmetrics to be the most relevant metrics for detecting
CST impairments, and in Rosenstock et al.,18 we found that
peritumoural ADC and FAwere strongly associatedwith post-
operative motor deficits (motor outcome).

Here, FD was used to better account for the fibre
orientation-specific microstructural properties in relation
to infiltrating tumours. CSD can distinguish complex fibre
populations in the brain. CSD estimates FODs within each
voxel, based on the expected signal from a single collinearly
oriented fibre population.28 Modern, CSD-based FD and
FBAmethods offer promising opportunities since they are re-
lated to the intra-axonal restricted compartment that is spe-
cific to a certain fibre orientation within a voxel.16,31

However, the stronger contribution of FA and ADC to our
SVM models showed that these metrics are more robust
for detecting motor impairment than FD in typical, clinical
single-shell b= 1000 dMRI sequences, but might perform
better when using multi-shell dMRI data. This finding is con-
sistent with our previous results where ADC and FA pre-
sented higher sensitivity to detect CST impairment in
tumour patients than FD.16

The univariate analysis confirmed our SVMmodel results
to some extent, showing the predictive power of each tract
profile’s measure (input feature) separately. All models
which were trained on each AD, ADC, FA and AD metric
separately, reached a relatively high specificity though they
dealt with low sensitivity. Among them, SVM_FA provides
a higher sensitivity but lower specificity, and SVM_ADC
and SVM_RD provided higher specificity. Combining these
metrics (SVM_2) led to both high sensitivity and specificity.
FA_SK and RD_KU were not significantly different between
the two patient groups, although they were selected as two of
themost effective features. Features identified as significantly
relevant and/or predictively relevant can agree or diverge,
and numerous studies have been conducted demonstrating
the differences between highly predictive and highly signifi-
cant variable sets.103,104 Sometimes a strong predictivity fails

Table 3 SVM_1-4model performances usingMdn versus
KNN interpolation methods and Mdn versus
Mahalanobis-based weighted mean tract profile

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

Mdn-based profile
Mdn interpolation
(SVM_1)

73 73 73 76

KNN interpolation
(k= 10) (SVM_2)

74 74 75 77

Weighted M profile
Mdn interpolation
(SVM_3)

68 66 70 70

KNN interpolation
(k= 10) (SVM_4)

69 66 70 70

Table 4 SVM2 selected features with their respective
learned weights using SVM-RFE

Features Weights

FA_KU 1.29
FA_SK 1.17
RD_KU 1.07
ADC_STD 1.01
ADC_M 0.61
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to be significant, as it only provides supplementary informa-
tion and could increase the predictive power of ML models
just in combination with other features. The SVM_2 model
reached the best performance among all trained
models which showed that the Mdn profile corresponded
to better prediction accuracy in comparison with the
Mahalanobis-based weighted M tract profiles—a method
described in Yeatman et al.15 and Richie-Halford et al.,
that implies the robustness of theMdn method in the specific
case since outlier segments with extreme values do not bias
the Mdn. The superiority of the Mdn profile has been previ-
ously shown in,106 where microstructural models were used
to understand the role of WM in relation to cognitive devel-
opment. Our SVM_1-4 models, which were based on the ex-
tracted features, were more efficient and robust compared
with SVM_5 since these models were less complex in their
design. The high dimensional dMRI data (100 values per
tract profile) and low available number of patient data re-
sulted in lower performance in SVM_5. The variety in gli-
oma location in relation to the CST as well as the low
sample size restricted our analysis when SVM_5 tried to cap-
ture all patterns of microstructural variations. Therefore, we
were not able to detect all segment-wise variations as effi-
ciently as possible in SVM_5. In the SVM_1-4 models, we
were able to summarize the segment-wise information of
dMRI-based CST profiles as different statistical measures
to detect informative glioma-induced microstructural altera-
tions to WM to predict functional motor deficits.

Demographic and clinical features
The SVM model with only demographics and clinical vari-
ables (SVM_clinical), such as age, gender, glioma location,

gliomaWHO grade and RMT ratio, showed a poor perform-
ance (56% accuracy and 62% AUC) while the models with
microstructural measures as input, e.g. SVM_2 (74% accur-
acy and 77% AUC), reached to relatively high performance.
We further assessed the performance of the SVM_1-5 models
integrating patient demographics and clinical features and
saw that none of them affected the SVM models’ perfor-
mances. This could indicate the lower effectiveness of these
features compared with tract profile-based characteristics
(microstructural measures). In addition, the dMRI-based
measures could be associated with different variables. Since
the patient’s age was significantly different between the two
patient groups, it was expected to improve our predictive
models’ performances in combinationwith themicrostructur-
al measures. However, the integration of patients’ age did not
improve the models’ performances. The performed CCA
showed a strong and significant correlation between dMRI
extracted features and age. Interestingly, we found a strong
and significant correlation in the reverse direction for both
motor groups (Class 0; Class 1). This confirms previous find-
ings107–109 in which WM changes in relation to age and its
variation as a function of age were investigated. In a recent
study, age has been accurately predicted by FA and ADC me-
trics.105 These results justify as well that if taking into account
the microstructural measures, age is of critical importance in
distinguishing between the two motor groups.

According to CCA analysis and our SVM results, we could
conclude that the information provided with age was appar-
ently sufficiently covered by dMRI-based extracted features
and thus no additional information was found considering
patients’ age.

In conclusion, SVM_2 was the best model, which showed
that the median-based tract profiles were more accurate than

Figure 6 Receiver operating characteristic (ROC) curves. ROC of the discriminative performance of the SVM_1-4 and SVM_ADC-RD
models show the true positive rate against the false-positive rate for different thresholds in comparison to classifiers with a random performance
level (diagonal, dashed line).
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the M-weighted tract profile. This might be due to the me-
dian being more robust to outliers. The inclusion of demo-
graphic and clinical features did not affect model
performance. This means that the dMRI-based measures
are more powerful than these features in this context. The
SVM_5model performed poorly compared with SVM_2, in-
dicating that the patterns of segmental information could not
be perfectly detected with PCA.

Translational aspect
The body of evidence that preservation of theWM connectiv-
ity is a key to preserving function is steadily growing.
Therefore, not only the presurgical assessment of the spatial
relation of the tumour and the tracts but also a detailed ana-
lysis of the impact the tumour already exerts on the WM is of
great importance. As demonstrated in this study,ML shows a
promising potential to address the microstructural effects of
brain tumours on the WM, which is not accessible with trad-
itional statistical methods, since it allows for discovering pat-
terns in dMRI data and well-approximating complex
relationships. Future studies need to further correlate ML
findingwith functional outcomes to establish new biomarkers
for WM resilience to surgical manipulation with the promise
to become a powerful prognostic tool in future neurosurgery.

Limitations
Tractography suffers from a wide range of limitations that
make its routine use problematic.16,110 Tractograms contain
both false-positive111 and false-negative112 streamlines. In
addition, tractography cannot distinguish between afferent
and efferent connections, and streamlines may terminate im-
properly,58 especially in the case of tumours and oedema.
Furthermore, our results are atlas and tractography algorithm
dependent, since other tractography methods or atlas choices
would possibly result in different tractograms.16 The dMRI
data used for this study consists of a typical clinical single-
shell acquisition and is thus limited for FD measurements
due to incomplete attenuation of apparent extra-axonal sig-
nal.16,113 Furthermore, all patients received preoperative ster-
oids to reduce oedema, which may cause a confounding
effect. However, there is evidence that oedema has no strong
influence on tractography results.18 In addition, the British
Medical Research Council (BMRC)motor status does not ne-
cessarily detect subtle or apractic motor deficits which might
correlate with early tumour effects on the WM. Indeed, the
main limitation of our study is the relatively small sample
size we could include to perform the ML analysis.
Moreover, we binarized motor deficits due to a low number
of samples per class. This led to inaccuracy and affected the
performance of our MLmodels. To develop models perform-
ing multiclass classification which could consider differences
in the degree of motor power (MRC= 1, 2, 3, 4, 5), larger
samples would be needed per class.

A reliable way to evaluate the final ML model is to split the
data into training, validation and test sets. The training set is

used for learning and fitting the model’s parameters, a valid-
ation set is used to tune the model’s hyperparameters, while
the test set is kept as an unseen data set to assess the perform-
ance of the final tunedMLmodel. This procedure offers an un-
biased robust estimate of real model performance.114

However, this approach typically requires a large number of
subjects, which is difficult to recruit in a clinical cohort, be-
cause they usually consist of small sample sizes for many ML
methods. Moreover, to overcome the problem of the curse of
dimensionality, where increasing the number of features re-
quires larger training data to define a generalizable model, a
reasonable sample size for training theMLmodels is necessary.
CV84,115 is a common solution to estimate the model’s per-
formance in case of small sample size or when validation
with a separate data set is not feasible. However, model selec-
tion without nested CV uses the same test data to tune the
model’s hyperparameters and evaluate the model,84 which is
known to yield overly optimistic scores.80 To this end, here
we performed nested CV and bootstrapping methods to en-
hance the generalizability of the ML models as well as to pre-
vent an over-optimistic performance estimate. Nested CV uses
a series of training, validation and test splits and fits the model
iteratively using a pair of nested loops. In the inner loop, an op-
timal set of model’s hyperparameters is found using methods
such as grid search on each training set, and each set of hyper-
parameters is evaluated using k-fold CV. In the outer loop,
generalization error is estimated by averaging test set scores
over several data set splits. Moreover, bootstrap aggregating
(bagging)116 is applied to reduce the variance of a given estima-
tor which uses CV85 itself to select fine-tuning parameters,
trading off bias and variance of the bootstrap sample-specific
candidate estimators. Overall, in the nested CV, the model is
trained only using the training data (with five-fold inner
CV). But the reportedmodel accuracies are obtained using sep-
arate test data sets (with 10-fold CV). Therefore, the final test
scores are computed on a completely independent set of sam-
ples than the training data as shown in Fig. 1.

Conclusion
In this study, we analysed dMRI-basedmetrics to assess micro-
structural WM changes in correlation with the motor status of
patients with gliomas in the motor system. We successfully de-
veloped SVM models to predict motor deficits in a heterogen-
ous multivariate data set. ADC, FA and RD were highly
predictive dMRI metrics. Additionally, we showed that
dMRImetrics are better predictors than demographic and clin-
ical variables, such as age, glioma grade and RMT ratio.
Careful selection and testing of ML modelling are mandatory
to prevent over- or underfitting and misinterpretation of data.
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