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Abstract
By	measuring	 the	 temporal	 consistency,	 or	 repeatability,	 in	 the	 diets	 of	 predators,	
we	can	gain	a	better	understanding	of	the	degree	of	 individual	specialization	in	re-
source	 utilization	 and	 implications	 for	 predator–	prey	 interactions,	 population	 dy-
namics,	and	food	web	structure.	To	measure	repeatability,	we	require	repeated	diet	
estimates	of	individuals	over	time,	such	as	those	derived	from	quantitative	fatty	acid	
signature	analysis	(QFASA),	a	popular	diet	estimation	technique.	However,	diet	esti-
mates	are	often	lengthy	compositional	vectors	with	many	zeros,	as	some	prey	will	not	
be	consumed	by	all	individuals,	precluding	the	use	of	previously	proposed	measures	
of	repeatability.	In	this	paper,	we	propose	a	novel	approach	for	inferring	repeatabil-
ity	for	multivariate	data	and,	 in	particular,	compositional	diet	estimates.	We	extend	
the	commonly	used	measure	of	repeatability	for	univariate	data	to	the	multivariate	
compositional	setting	by	utilizing	the	mean	squares	obtained	from	a	nonparametric	
multivariate	analysis	of	variance,	and	an	appropriate	choice	of	statistical	distance.	Our	
measure	and	its	extension	are	compatible	with	both	balanced	and	unbalanced	data	
sets.	Associated	confidence	 intervals	via	nonparametric	bootstrapping	are	also	de-
veloped	for	the	case	of	QFASA	diet	estimates	that	incorporate	both	sampling	error	
and	measurement	error,	where	the	latter	error	arises	because	the	diets	of	predators	
are	 estimated.	 Simulation	 study	 results	 suggest	 that	 for	 practical	 levels	 of	 repeat-
ability,	our	methods	yield	confidence	intervals	with	the	desired	coverage	probability	
even	when	the	sample	size	relative	to	the	dimension	of	the	data	(i.e.,	number	of	prey	
species	eaten)	is	small.	We	tested	our	methods	using	QFASA	diet	estimates	for	free-	
ranging	Northwest	Atlantic	grey	seals.	Given	the	importance	of	understanding	how	
predator	diets	vary	over	time	and	space,	our	method	may	find	broad	application	to	
other	compositional	diet	estimates,	including	those	derived	from	the	stomach	or	fecal	
contents,	and	stable	isotope	analyses.
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1  |  INTRODUC TION

Estimates	 of	 predator	 diets	 are	 central	 to	 understanding	 many	
areas	of	ecology,	such	as	predation	and	the	structure	of	food	webs.	
Although	 diets	 of	 animal	 populations	 are	 frequently	 presented	 as	
averages	with	individuals	of	a	given	age,	sex,	or	morphology	treated	
as	ecologically	equivalent,	 individuals	within	a	population	can	vary	
substantially	 in	 their	 resource	 use	 (Araújo	 et	 al.,	 2011;	 Bolnick	
et al., 2003, 2011; Estes et al., 2003).	Such	individual	specialization,	
whereby	individuals	use	only	a	subset	of	the	population's	resource	
base,	 is	 of	 considerable	 interest	 because	 of	 its	 potential	 to	 pro-
foundly	affect	the	structure	and	dynamics	of	populations	and	their	
communities	(Araújo	et	al.,	2011;	Bolnick	et	al.,	2011).

One	of	the	challenges	associated	with	understanding	the	empir-
ical	importance	of	individual	specialization,	and	the	factors	that	may	
influence	it,	is	identifying	the	time	scale	over	which	such	specializa-
tion	occurs	(Layman	et	al.,	2015;	Novak	&	Tinker,	2015).	For	species	
with	large	home	ranges	or	foraging	areas	that	are	not	readily	observ-
able,	obtaining	sufficient	numbers	of	repeated	observations	of	diet	
compositions	to	characterize	levels	of	temporal	consistency	within	
individuals	may	be	difficult	or	impossible.	For	these	species,	meth-
ods	 that	 integrate	 dietary	 information	 over	 longer	 periods	 (weeks	
to	months),	 such	 as	 isotopic	 signatures	 or	 fatty	 acid	 (FA)	 profiles,	
can	be	used	to	overcome	this	limitation	(Araújo	et	al.,	2011;	Bolnick	
et al., 2003).

Quantitative	 fatty	 acid	 signature	 analysis	 (QFASA,	 Iverson	
et al., 2004)	is	now	a	widely	applied	approach	to	estimating	a	pred-
ator's	diet	by	comparing	the	FA	profiles	of	metabolically	active	fat	
stores	 of	 predators	 with	 that	 of	 their	 potential	 prey,	 after	 taking	
into	 account	modifications	 due	 to	 FA	metabolism	 in	 the	 predator.	
For	tissues	such	as	blubber	or	adipose,	which	contain	FAs	that	have	
accumulated	over	time,	QFASA	can	provide	an	integrated	record	of	
dietary	intake	over	a	period	of	weeks	to	months	(Budge	et	al.,	2006)	
and	 has	 been	 used	 to	 estimate	 diets	 for	 a	 wide	 range	 of	 marine	
species (Zhang et al., 2020)	 including	 fish	 (Magnone	 et	 al.,	2015),	
seabirds	(Haynes	et	al.,	2015; Iverson et al., 2007),	pinnipeds	(Beck	
et al., 2007;	Bromaghin	et	al.,	2013;	Meynier	et	al.,	2010),	and	polar	
bears	(Galicia	et	al.,	2016; Iverson et al., 2006;	Thiemann	et	al.,	2008).	
In	cases	where	individual	predators	can	be	repeatedly	sampled,	diets	
estimated	using	QFASA	provide	an	opportunity	to	examine	temporal	
consistency	over	multiple	time	scales	(e.g.,	Thiemann	et	al.,	2011).

However,	 assessing	 the	 temporal	 consistency	 of	 QFASA	 diet	
estimates	 is	 complicated	 by	 the	 structure	 of	 the	 estimate	 itself.	
QFASA	yields	an	estimate	of	the	proportion	of	each	prey	species	in	
the	predator's	diet.	The	sum	constraint	of	the	QFASA	estimate	(the	
values	must	sum	to	1)	restricts	the	application	of	common	indices	of	
diet	similarity,	such	as	the	proportion	similarity	index	(see	Novak	&	
Tinker, 2015;	Powell	&	Taylor,	2017),	since	the	resampling	procedures	

used	 for	 hypothesis	 testing	 cannot	 be	 used	on	 estimates	 that	 are	
purely	 compositional.	 Although	measures	 such	 as	 the	 chi-	squared	
contingency analysis (Estes et al., 2003	 or	 Thiemann	 et	 al.,	2011)	
dietary	 change	 index	 have	 been	 used	 to	 examine	 individual	 con-
sistency	in	concurrent,	compositional	diet	estimates	over	different	
time	scales,	these	analysis	methods	are	limited	to	the	comparison	of	
within-	individual	 variation	only	 and,	 therefore,	 do	not	 incorporate	
the	variance	in	resource	use	associated	with	the	population.	Here,	
we	propose	a	 statistical	approach	 for	assessing	 the	 temporal	 con-
sistency	 in	QFASA	diet	estimates	using	an	extension	of	univariate	
repeatability	(that	is,	repeatability	computed	for	data	collected	on	a	
single	variable),	which	accounts	for	the	compositional	nature	of	the	
estimates	and	the	presence	of	essential	zeros	(zeros	corresponding	
to	 the	 absence	 of	 a	 particular	 prey	 item	 in	 the	 diet	 of	 an	 individ-
ual).	Repeatability	 is	defined	as	the	proportion	of	total	variation	in	
measurements	that	can	be	ascribed	to	variation	among	 individuals	
rather	 than	 the	 variation	 among	measurements	within	 individuals	
(Wolak	et	al.,	2012).	Consequently,	repeatability	can	simultaneously	
incorporate the variance in resource use associated with the individ-
ual	and	the	population	and	provide	insight	into	the	extent	to	which	
measurements	are	characteristic	of	individuals.	Higher	repeatability	
estimates	can	indicate	that	there	is	more	variation	among	individuals	
than	within	individuals	(Lessells	&	Boag,	1987),	suggesting	that	there	
is	temporal	consistency	in	resource	use	within	individuals.

While	 various	 approaches	 exist	 to	 measure	 repeatability	 (see	
Wolak	et	al.,	2012	for	a	list	of	references),	it	is	commonly	estimated	
by	 the	 intraclass	 correlation	 coefficient	 (ICC).	 In	 the	 case	of	mea-
surements	on	a	single	variable	(or	univariate	measurements),	where	
the	only	systematic	source	of	variability	occurs	among	 individuals,	
Lessells	 and	Boag	 (1987)	 provide	 the	widely	 accepted	 formula	 for	
estimating	 ICC.	When	the	observations	within	 individuals	differ	 in	
some	systematic	way,	such	as	through	a	possible	season	or	year	ef-
fect	(see	McGraw	&	Wong,	1996	for	a	more	extensive	discussion	on	
what	constitutes	a	systematic	source	of	variance),	a	two-	way	model	
(a	model	with	both	row	and	column	effects	or,	equivalently,	a	model	
with	two	factors)	is	more	appropriate.	Estimating	ICC	for	the	univar-
iate	two-	way	case	is	discussed	in	McGraw	and	Wong	(1996),	and	our	
approach	is	an	extension	of	this	work.	We	propose	obtaining	a	point	
estimate	of	repeatability	using	the	mean	squares	computed	from	the	
nonparametric	multivariate	 analysis	 of	 variance	 (MANOVA)	devel-
oped	 by	 Anderson	 (2001).	 The	 nonparametric	MANOVA	 requires	
the	 calculation	 of	 distances	 between	 the	 multivariate	 responses.	
To	 handle	 the	 compositional	 diet	 vectors	 and	 the	 essential	 zeros,	
we	use	 the	chi-	square	 (CS)	measure	of	distance,	 as	 recommended	
in	 Stewart	 (2017)	 for	 QFASA	 applications.	 While	 the	 extension	
of	 the	 ICC	 definitions	 in	 McGraw	 and	Wong	 (1996),	 reviewed	 in	
Section	2.1,	 to	 the	multivariate	 setting	 in	 this	manner	 is	 relatively	
straightforward,	we	are	not	aware	of	repeatability	being	computed	
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in	this	way	previously.	We	consider	the	balanced	case	in	which	there	
are	no	missing	values	and	the	number	of	measurements	 (diet	esti-
mates)	per	individual	is	constant,	as	well	as	the	unbalanced	case	in	
which	the	number	of	measurements	per	individual	is	allowed	to	vary.

In	addition	to	the	point	estimation	of	repeatability,	we	consider	
the	development	of	confidence	intervals	 (CIs)	that	properly	reflect	
the	 various	 sources	 of	 variability	 in	 the	 QFASA	 diet	 estimates.	
Although	 rarely	 estimated,	 exact	 CIs	 for	 the	 population	 value	 of	
ICC	based	on	the	F	distribution	have	been	available	for	some	time	
(Wolak	et	al.,	2012).	For	non-	normal	univariate	data	with	individu-
als	or,	more	generally,	clusters	as	the	only	factor	(analogous	to	the	
one-	way	ANOVA	setting),	Ukoumunne	et	al.	(2003)	proposed	using	
nonparametric	bootstrap	CIs	 involving	a	variance	stabilizing	trans-
formation.	In	our	work,	nonparametric	bootstrapping	is	also	used	to	
provide	CIs	for	the	true	repeatability	in	a	population.

Using	 simulated	 datasets,	 we	 examine	 the	 performance	 of	 our	
proposed	measure	 of	 repeatability	 and	 associated	 confidence	 inter-
vals	 (CIs)	with	 respect	 to	coverage	probability	and	confidence	 inter-
val	 lengths	 (where	the	 length	of	 the	 intervals	 reflects	how	precisely	
we	can	estimate	repeatability)	and	then	apply	our	methods	for	both	
balanced	and	unbalanced	designs	to	QFASA	diet	estimates	from	free-	
ranging	northwest	Atlantic	 grey	 seals	 (Halichoerus grypus).	A	 further	
statistical	complexity	in	the	unbalanced	case	is	that	the	sample	size	is	
small	relative	to	the	dimension	of	the	diet	estimates.	The	grey	seal	is	
an	upper-	trophic	level	marine	predator	that	inhabits	temperate	waters	
on	both	sides	of	the	North	Atlantic	Ocean.	In	the	Northwest	Atlantic,	
the	grey	seal	has	a	broad	continental	shelf	distribution	from	the	Gulf	
of	Maine	north	to	the	Gulf	of	St.	Lawrence	with	the	largest	breeding	
colony	on	Sable	 Island	 (den	Heyer	et	 al.,	2021).	Adult	 grey	 seals	on	
Sable	 Island	make	repeated	foraging	trips	to	shallow	offshore	banks	
on	the	Eastern	Scotian	Shelf	with	a	few	traveling	into	the	Gulf	of	St.	
Lawrence	and	south	to	the	Gulf	of	Maine	(Austin	et	al.,	2006;	Breed	
et al., 2006, 2009; Lidgard et al., 2012).	A	fine-	scale	spatial	and	tem-
poral	analysis	of	the	movements	of	adults	provided	clear	evidence	of	
within-	year	fidelity	to	presumed	foraging	locations,	suggesting	some	
levels	of	predictability	 in	prey	distribution	and	possibly	diet	 (Lidgard	
et al., 2020).	Repeated	tracking	of	21	adults	also	indicates	that	individ-
uals	exhibit	similar	movements	and	foraging	distributions	over	years	
further	suggesting	that	there	may	be	temporal	consistency	in	the	diet	
(W.	D.	Bowen	and	C.	E.	den	Heyer,	unpublished	data).	While	this	work	
focuses	on	calculating	repeatability	and	its	CIs	for	diets	estimated	by	
QFASA,	it	can	be	extended	to	other	multivariate	data	sets,	including	
diet	estimates	derived	from	other	methods,	provided	an	appropriate	
distance	measure	is	chosen.

2  |  METHODS

2.1  |  Point estimation of repeatability

To	 set	 the	 notation,	 consider	 the	 univariate	 balanced	 setting	 in	
which	we	have,	in	concept,	a	population	of	predators	and	for	each,	k 
measurements	taken	over	time.	Due	to	only	having	one	observation	

per	 treatment	 (or	 “cell”),	we	make	 the	necessary	assumptions	 that	
there	is	no	interaction	between	the	predators	and	the	time	points,	
and	that	the	levels	of	the	time	factor	are	fixed.	Note,	however,	that	
this	 latter	assumption	has	no	effect	on	the	definition	of	 ICC	or	 its	
estimator,	but	the	interpretation	and	generalization	may	depend	on	
whether	the	levels	are	actually	fixed	or	random.	Following	McGraw	
and	Wong	(1996),	we	define	the	ICC	(denoted	by	ρ)	for	this	two-	way	
model	setting	as

where �2
s
	denotes	the	variability	in	the	univariate	seal	measurements,	

�t =
√
t2
j
∕(k − 1) with tj denoting the jth	time	effect,	and	�2

e
 is the vari-

ability	in	the	residual	effects.
For	a	 random	sample	of	n predators with k	measurements	per	

predator,	 the	 estimate	 of	ρ	 is	 based	 on	 the	mean	 squares	 chosen	
in	such	a	way	that	substituting	their	expectation	(that	 is,	replacing	
them	with	their	population	average)	yields	ρ.	For	the	two-	way	mixed	
effect	model,	McGraw	and	Wong	(1996)	provide	the	following	esti-
mate	of	ρ:

where	the	mean	squares	can	be	obtained	from	the	output	of	a	tradi-
tional	randomized	block	two-	way	ANOVA.

For	 the	 analogous	 multivariate	 setting	 where	 measurements	
are now M	 dimensional	 vectors,	 an	estimate	of	ρ	 can	be	deduced	
by	defining	the	sums	of	squares	as	distances	between	the	pertinent	
multivariate	predator	measurements.	This	approach	for	computing	
sums	of	 squares	 is	 the	basis	 of	 the	nonparametric	MANOVA	pro-
posed	 in	 Anderson	 (2001),	 a	widely	 accepted	method	 of	 carrying	
out	a	MANOVA	in	the	ecological	community,	particularly	when	the	
data	do	not	meet	the	traditional	MANOVA	assumption	requirements	
such	as	multivariate	normality.	An	advantage	of	the	nonparametric	
MANOVA	 is	 that	 the	computed	pseudo	F statistic relies only on a 
symmetric	distance	(or	dissimilarity)	matrix,	and	any	distance	(or	dis-
similarity)	measure	can	be	used.	While	not	needed	for	the	calcula-
tion	of	ρ,	permutations	are	used	to	determine	the	distribution	of	the	
F	statistic	and	to	test	whether	factors	are	significant.	The	function	
adonis in the R package vegan (Oksanen et al., 2017)	performs	the	
permutational	MANOVA,	as	it	is	often	called.	For	a	random	sample	
of	n predators, each with k	multivariate	repeated	measurements,	we	
then	estimate	ρ using Equation (2)	with	the	mean	square	values	de-
rived	from	the	adonis	output,	which,	in	turn,	requires	the	computa-
tion	of	a	distance	matrix	between	all	predator	measurements.

In	 our	 example	 data	 sets,	 the	 predator	measurements	 for	 the	
ith	 individual	 are	 QFASA	 diet	 estimates,	 henceforth	 denoted	 as	
pi1, … , pik, where the mth	 component	 of	 pij (denoted pijm)	 is	 the	
QFASA	estimate	of	�ijm,	the	true	proportion	of	species	m in the diet 
of	 the	 individual	 i	 at	 time	 j.	Note	 that	 i = 1, … , n and j = 1, … , k. 
Details	of	the	QFASA	model	can	be	found	in	Iverson	et	al.	 (2004).	

(1)� =
�2
s

�2
s
+ �t + �2

e

,

(2)�̂ =
MSs −MSe

MSs + (k − 1)MSe +
k

n

(
MSt −MSe

)
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Briefly,	QFASA	uses	a	 library	of	FA	profiles	 (referred	 to	as	 “signa-
tures”),	 which	 are	 vectors	 of	 proportions	 that	 summarize	 the	 FA	
composition	of	 individual	predator	 and	prey	 lipids.	Calibration	 co-
efficients,	derived	from	controlled	feeding	studies,	are	used	to	ac-
count	for	the	differential	metabolism	of	ingested	FAs	by	predators.	
Following	the	application	of	the	calibration	coefficients,	the	model	
estimates	the	mixture	of	mean	prey	FA	signatures	that	minimizes	a	
statistical	measure	of	distance	between	the	modeled	and	observed	
predator	 signature.	 This	 proportional	mixture	 is	 then	weighted	by	
the	proximate	fat	content	(i.e.,	relative	FA	contribution)	of	each	prey	
species	to	estimate	their	proportions	in	the	predator's	diet.

In	 order	 to	 compute	 �̂	 for	 QFASA	 diet	 estimates	 using	 the	
nonparametric	 MANOVA	 methodology,	 we	 require	 a	 measure	 of	
distance	suitable	for	compositional	data.	While,	in	general,	the	rec-
ommended	distance	measure	 for	 compositional	data	 is	Aitchison's	
distance	 (Martín-	Fernández	et	al.,	1998),	 this	distance	measure	 in-
volves	 logarithms	and	hence	 is	not	compatible	with	compositional	
data	such	as	ours	where	there	is	an	abundance	of	zeros,	each	aris-
ing	 from	an	estimated	absence	of	a	 species	 in	 the	predator's	diet.	
Recently	Stewart	(2017)	proposed	using	the	CS	distance	to	measure	
the	distance	between	compositional	data	with	zeros,	and	in	partic-
ular	QFASA	diet	estimates,	and	it	 is,	consequently,	the	measure	of	
distance	that	we	have	chosen	to	adopt	for	this	application.	The	CS	
distance	between	two	diet	estimates,	say	p1 and p2	were	defined	in	
Stewart	(2017)	as

where

Calculation	of	the	CS	distance	in	R	can	be	carried	out	using	the	func-
tion chisq.dist in the package QFASA	(Stewart	et	al.,	2021).	Note	the	
CS	distance	in	Equation (3)	does	not	involve	a	“column	standardiza-
tion”	over	predator	measurements	and	so	 is	different	from	the	CS	
distance	 used	 in	 correspondence	 analysis	 (Greenacre,	 2011)	 and	
cited	 in	 some	ecological	publications	 (see	Warton	et	al.,	2012,	 for	
example).

As	yet	we	have	only	discussed	the	balanced	case	 in	which	k is 
fixed	for	each	predator.	When	missing	values	occur	 (as	 is	the	case	
for	 the	second	data	set	 in	Section	3.1),	we	propose	using	an	aver-
age k	value,	similar	to	the	approach	used	by	Lessells	and	Boag	(1987)	
for	 the	 simple	 univariate	 one-	way	 ANOVA	 setting.	 Lessells	 and	
Boag	 (1987)	 do	 not	 recommend	 the	 arithmetic	mean	 but	 rather	 a	
modified	value	that	reduces	to	k	in	the	balanced	setting.	Sokal	and	
Rohlf	(2012)	have	more	recently	proposed	using	the	harmonic	mean	
in	this	case	(see	Chapter	9,	p.	212),	and	we	have	chosen	to	use	this	
representative	value	of	k	here.	In	addition	to	adjusting	the	value	of	k 
in Equation (2),	we	also	need	to	modify	the	denominator,	specifically	

the	degrees	of	freedom,	in	the	mean	square	formulae	since	they	rely	
on k.	We	 propose	 the	 following	 estimator	 of	 ρ	 in	 the	 unbalanced	
setting, which incorporates these changes:

where dfs = n − 1, dft = k̃ − 1, dfe =
�∑n

i=1
ki − 1

�
− dfs − dft ,	 ki 

denotes	 the	 number	 of	 predator	 diets	 for	 the	 ith predator and 
k̃ = n∕

∑n

i
1∕ki.	Note	 that	 the	 change	 to	 the	mean	 squares	 that	we	

suggest	is	not	required	in	Lessells	and	Boag	(1987)	because,	in	the	one-	
way setting, k	is	not	needed	in	their	computation.	Furthermore,	when	
ki = k for i = 1, … , n, Equation (4)	reduces	to	Equation (2).

Although	the	sums	of	squares	can	be	computed	using	the	adonis 
function,	a	subtlety	is	that	the	order	in	which	the	terms	are	entered	
into	the	model	now	matters,	and	we	calculate	�̃	by	entering	the	pred-
ator	 factor	 first	 followed	by	the	time	factor.	Note	 that	 for	our	ex-
ample,	the	effect	on	the	repeatability	if	time	is	entered	first	is	fairly	
minor.	The	estimates	 �̂ and �̃	 can	be	computed	using	 the	 function	
comp.rep	 in	 the	QFASA	R	package	 (Stewart	et	al.,	2021).	The	esti-
mates,	however,	are	bias-	adjusted,	and	the	need	for	this	modifica-
tion	is	discussed	below.

2.2  |  Interval estimation

The	estimators	given	in	Equations (2)	and	(4)	are	point	estimators	of	
ρ,	the	true	or	population	repeatability,	which	we	more	precisely	de-
fine	below.	Given	that	the	estimates	will	vary	from	sample	to	sample	
and	that	the	diets	of	the	predators	need	to	be	estimated,	confidence	
intervals	(CIs)	for	ρ	that	accurately	reflect	these	sources	of	error	are	
needed.	Because	our	framework	is	nonparametric,	we	estimate	the	
distribution	 of	 our	 estimators	 for	ρ	 using	 resampling	methods.	 To	
motivate	our	CI	algorithms,	we	begin	with	a	discussion	of	the	various	
sources	of	error	inherent	in	repeated	measurement	of	QFASA	data.	
To	simplify	the	discussion,	we	focus	on	the	balanced	setting,	but	we	
use	the	identical	approach	when	there	is	missing	data.

Given	a	population	of	predators	of	interest	at	k	points	in	time,	
let �11,�12, … ,�1k ,�21,�22, … ,�2k , …	 denote	 the	 actual	 diets	 of	
these	predators.	We	are	then	interested	in	�(�),	the	true	repeatabil-
ity	in	this	population,	which	we	define	to	be	the	ICC	based	on	the	
actual/true	diets.	Since	in	practice	the	actual	diets	are	unknown	and	
estimated	by	QFASA,	we	define	�(p)	to	be	the	conceptual	ICC	of	the	
corresponding	 population	 of	QFASA	diet	 estimates.	We	 estimate	
�(�)	from	a	sample	of	k	QFASA	diet	estimates	for	each	of	n preda-
tors,	which	we	denote	by	 �̂(p).	Error	in	our	estimator	 �̂	arises	from	
two	sources	which	we	refer	to	as	(1)	sampling	error	and	(2)	measure-
ment	error.	The	sampling	error	is	simply	the	result	of	using	a	sample	
of	n	predators	to	estimate	�(�)	rather	than	the	entire	population	of	
predators,	since	another	sample	of	n	predators	would	presumably	
yield	another	estimate	of	�(�).	The	second	source	of	error,	which	
we	have	 termed	the	measurement	error,	 can	be	attributed	 to	 the	
fact	that	the	actual/true	diets	of	the	predators	are	not	known	but	

(3)CS
�
p1, p2

�
=
√
2M

�
M�

m=1

rm

�1∕2

,

rm =

⎧⎪⎪⎨⎪⎪⎩

0 if p1m=p2m=0�
p1m∑M

c=1
p1c

−
p2m∑M

c=1
p2c

�2

p1m∑M

c=1
p1c

+
p2m∑M

c=1
p2c

otherwise.

(4)�̃ =
SSs ∕dfs − SSe ∕dfe

SSs ∕dfs +
(
k̃ − 1

)
SSe ∕dfe +

k̃

n

(
SSt ∕dft − SSe ∕dfe

)
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are	estimated	via	QFASA	and	that	the	prey	FA	signatures,	calibra-
tion	coefficients,	 and	prey	 fat	 content	used	 in	QFASA	estimation	
are	all	subject	to	sampling	variability.	The	distinction	between	the	
various	sets	of	diets,	as	well	as	the	associated	notation,	is	depicted	
in Figure 1.

If	 we	 ignore	 for	 the	 moment	 the	 measurement	 error	 (that	 is,	
we	assume	that	�(�) = �(p)),	we	can	estimate	the	sample-	to-	sample	
variability	in	�̂(p)	in	a	straightforward	manner	using	a	nonparametric	
bootstrap	in	which	the	predators	are	sampled	with	replacement	and,	
for	each	sample	of	predators,	the	corresponding	k diets are selected 
to	be	part	of	the	bootstrap	sample.	This	approach	for	bootstrapping	
clustered	(albeit	univariate)	data	was	recommended	in	Ukoumunne	
et al. (2003).	 Specifically,	 for	 each	 of	 R	 bootstrapped	 samples	 of	
predator	 diets,	we	 compute	 �̂∗r, r = 1, … ,R	 and	CIs	 based	 on	 the	
bootstrap	distribution	of	the	�̂∗	can	then	be	computed.

In	the	more	realistic	setting	in	which	the	QFASA	diet	estimates	
are	merely	estimates	of	the	true	diets,	we	need	to	account	for	the	dif-
ference	between	�(�) and �(p),	which	we	call	the	bias.	Our	approach,	
detailed	below,	 for	 incorporating	the	bias	 involves	shifting	our	CIs	
by	an	estimate	of	the	bias.	Note	that	in	Stewart	and	Field	(2011),	CIs	
for	the	true	diet	of	a	predator	were	developed,	and	they	also	had	to	
be	shifted	by	an	estimated	amount	due	to	a	bias	in	the	QFASA	diet	
estimates.

To	 incorporate	 measurement	 error	 into	 our	 bootstrap	 proce-
dure,	we	use	pseudo-	predators.	From	the	outset	of	QFASA,	pseudo-	
predators	 have	 been	 used	 in	 QFASA	 applications	 as	 a	 means	 of	
assessing	new	methodology	for	QFASA	by	allowing	researchers	to	
simulate	samples	of	FA	signatures	 representative	of	 real-	life	pred-
ator	signatures	but	with	specifically	chosen	diets.	Various	versions	
of	 the	 basic	 pseudo-	predator	 algorithms	 developed	 in	 Iverson	
et al. (2004)	 now	 exist	 and	 have	 been	 used	 for	 a	 variety	 of	 pur-
poses	 (Bromaghin	 et	 al.,	 2016;	 Bromaghin,	 Budge,	 Thiemann,	 &	
Rode, 2017;	Stewart,	2013, 2017;	Stewart	&	Field,	2011).	The	core	
idea	 is	 to	create	a	FA	signature	by	sampling	a	prey	FA	 library	pro-
portionately	based	on	a	given	diet	vector	of	proportions	considered	
to	be	the	“true”	diet.	The	diet	of	the	pseudo-	predator	can	then	be	
estimated	using	QFASA,	yielding	a	simulated	diet	vector.

Rather	than	resampling	the	diet	estimates	obtained	from	our	orig-
inal	sample	of	predators,	we	propose	adding	measurement	error	by	
bootstrapping	the	estimated	diets	of	pseudo- predators, where their 
diets	are	determined	from	the	diet	estimates	of	our	original	sample.	
More	specifically,	 for	n	 sampled	predators	with	diet	estimates	de-
noted	by	pi11, … , pi1k … , pin1 … , pink in Figure 1, we generate corre-
sponding pseudo- predators depicted as y∗

11
, … , y∗

1k
… , y∗

n1
… , y∗

nk
 

in Figure 2.	 The	 estimated	 diets	 of	 the	 pseudo-	predators,	
p∗
11
, … , p∗

1k
… , p∗

n1
… , p∗

nk
,	 are	 then	bootstrapped	R	 times	and	 the	

entire procedure, as shown in Figure 2, is repeated B	times,	yielding	
estimates	�̂∗∗br(p), r = 1, … ,R, and b = 1, … ,B.	Note	that	b	indexes	
the	number	of	generated	samples	of	pseudo-	predators.

Using	 the	 bootstrap	 samples,	 we	 compute	 the	 bootstrap	 stu-
dentized	T	and	BCa	intervals	in	Davison	and	Hinkley	(1997).	In	gen-
eral,	 for	 a	 parameter	of	 interest,	 say	�,	 being	 estimated	by	T with 
variance V,	 the	 bootstrap	 studentized	T	 intervals	 use	 a	 bootstrap	
approximation	 to	 the	 distribution	 of	 Z = (T − �)∕V1∕2	 instead	 of	
the	usual	normal	approximation.	Confidence	limits	then	follow	and	
are	 analogous	 to	 the	 Student-	t	 confidence	 limits	 for	 a	 population	
mean.	Note	that	an	estimate	of	the	standard	error	(V1∕2)	 is	needed	
and	 we	 use	 the	 “jackknife”	 function	 in	 the	 bootstrap	 R	 package	
(Tibshirani,	2019)	 to	 accomplish	 this.	 Percentile	methods	 offer	 an	
alternative	bootstrapped-	base	approach	to	interval	estimation	and	
the	BCa	intervals,	in	particular,	incorporate	bias	and	skewness	cor-
rection	 factors.	 In	 Rizzo	 (2012),	 BCa	 is	 referred	 to	 as	 the	 “better	
bootstrap	 confidence	 interval,”	 and	 we	 have	 therefore	 chosen	 to	
investigate	these	intervals	in	addition	to	the	simpler	T intervals. The 
bias	and	acceleration	factors	were	estimated	as	in	Rizzo	(2012),	with	
jackknife	replicates	being	used	to	estimate	the	acceleration	factor.	
Note	that	 in	Figure 2,	 the	bootstrap	confidence	 intervals	estimate	
�∗(p),	the	population	version	of	�̂∗(p).	We	need	to	therefore	account	
for	the	difference	between	�∗(p) and �(p),	and	subsequently,	the	dif-
ference	between	�(p) and �(�), where �(�)	is	ultimately	our	parame-
ter	of	interest.	Let	d1 = �∗(p) − �(p) and d2 = �(p) − �(�).	We	estimate	
d1	by	comparing	the	mean	of	the	B	estimates,	 �̂

∗b
(p), with �̂(p).	We	

also	make	 the	 assumption	 that	d1 = d2 = d	 so	 our	 estimate	 of	 the	
common	bias	d is

F I G U R E  1 Illustration	of	repeatability	framework	and	notation	where	�ij denotes the true diet, and pij	the	corresponding	QFASA	diet	
estimate,	of	the	ith	predator	at	time	j, i = 1, … , n and j = 1, … , k.	The	QFASA	diet	estimate	of	the	mth	predator	in	the	sample	is	denoted	by	
pimj ,m = 1, … , n. The notation �( ⋅ ) and �̂( ⋅ )	is	used	to	represent	the	true	versus	sample	repeatability,	respectively,	and	is	measured	by	the	
intraclass	correlation	coefficient.
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F I G U R E  2 Illustration	of	bootstrap	
framework	where	pimj	denotes	the	QFASA	
diet	estimate	of	the	mth predator in 
the	sample,	m = 1 … , n .	The	sample	
repeatability	is	denoted	by	�̂(p), the 
repeatability	of	the	diets	of	the	pseudo-	
predators	by	�̂∗(p)	and	the	repeatability	
in the rth	bootstrap	sample	by	�̂∗∗r(p). 
Repeatability	is	measured	by	the	intraclass	
correlation	coefficient	and	the	bootstrap	
samples	attempt	to	capture	the	sampling	
error.	Confidence	intervals	are	obtained	
by	repeating	the	procedure	B	times.

F I G U R E  3 Comparison	of	estimated	
coverage	probabilities	(and	corresponding	
margin	of	errors	for	coverage)	for	95%	
bootstrap	T	and	BCa	confidence	intervals,	
with	and	without	bias	correction	for	
two	sample	sizes	(20	and	50)	and	two	
simulated	time	periods	corresponding	to	
various	values	of	repeatability	denoted	
by	ρ.
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Note	 that	 this	 is	 analogous	 to	 the	 bootstrap	 estimate	 of	 bias	
(Davison	&	Hinkley,	1997).	Our	total	bias	 is	 then	2d, which is esti-
mated	by	2d̂,	and	our	CIs	are	shifted	(the	bias	is	subtracted	from	the	
end	points)	by	this	amount.	In	our	applications,	this	bias	was	found	
to	be	negative	(see	Section	3)	so	by	subtracting	the	bias,	we	are,	in	
effect,	adding	its	absolute	value	to	the	end	points	of	the	CIs.

It	is	important	to	note	that	if	�̂(p) is reported on its own (that is, 
without	the	accompanying	interval),	we	require	only	an	estimate	of	
d2,	 the	difference	between	�(p) and �(�), and so, our intervals are 
shifted	by	d̂ in Equation (5).	We	recommend	this	adjustment	if,	as	is	
the	usual	case,	the	diets	are	estimated	with	error.

In	 summary,	 the	 bias-	adjusted	 estimate	 of	 �̂(p) is �̂(p) − d̂, and 
the	corrected	bootstrap	CIs	are	

(
Lboot − 2d̂,Uboot − 2d̂

)
, where Lboot 

and Uboot	 denote	 the	 lower	 and	upper	CI	 bootstrap	 limits,	 respec-
tively.	The	bias-	corrected	CIs	are	computed	in	the	QFASA	R	package	
(Stewart	et	al.,	2021)	through	the	function	comp.rep	if	the	parameter	
CI	is	set	to	“TRUE.”

2.3  |  Simulation study

We	applied	a	simulation	study	to	assess	the	accuracy	and	precision	
of	our	proposed	measure	of	repeatability	in	the	context	of	QFASA	
diet	estimates,	where	our	measure	estimates	the	repeatability	of	a	
sample	of	n × k	diet	estimates	from	a	conceptual	population	of	diets	
with	 true	 repeatability	�(�).	We	created	a	 simulated	population	of	
diets	(as	described	below)	by	generating	five	different	large	“grids”	
of	 population	 diets	 corresponding	 to	 five	 different	 values	 of	�(�), 
where	each	grid	is	similar	to	what	is	depicted	in	the	upper	left-	hand	
corner	of	Figure 1,	 and	 sampled	 repeatedly	 from	each	grid.	Then,	
to	simulate	observing	QFASA	diet	estimates	rather	than	the	actual	
diets,	we	generated	pseudo-	predators	from	each	sample	of	selected	
diets	and	computed	their	QFASA	diet	estimates.	Finally,	we	obtained	
95%	CIs	for	�(�)	based	on	the	diet	estimates,	using	the	methods	in	
Section	2.2,	and	computed	(1)	the	proportion	of	time	the	intervals	
included	the	true	repeatability	(�(�))	or	the	associated	coverage prob-
ability	and	(2)	the	average	length	(or	width)	of	the	intervals,	where	
the	length	of	an	individual	interval	is	simply	the	difference	between	
the	upper	limit	and	lower	limit.	Coverage	probabilities	near	0.95	are	
desired,	as	well	as	CIs	that	are	not	too	wide	to	be	useful	in	practice	
since	shorter	CIs	reflect	more	precise	knowledge	about	our	param-
eter	of	interest.

To	create	the	grids	of	population	diets,	each	with	an	associated	
value	of	� = �(�),	we	 first	 took	an	average	of	 the	FALL/WINTER	
grey	seal	QFASA	diet	estimates	described	in	Section	2.4 and then 
modified	this	average	diet	systematically.	Specifically,	the	average	
was	transformed	using	the	isometric	log-	ratio	(ilr)	transformation	
(Egozcue	et	al.,	2003),	a	commonly	used	and	recommended	trans-
formation	for	compositional	data	based	on	its	mathematical	prop-
erties,	and	a	measure	of	variability	was	also	obtained	from	the	ilr	

transformed	diet	estimates.	To	obtain	5	grids	of	diets	with	differ-
ent	 corresponding	 values	 of	�(�),	 we	modified	 the	 transformed	
base	 diet	 through	 the	 addition	 of	 1000	 chosen	 “row	effects,”	 2	
“column	 effects”	 (corresponding	 to	 k = 2),	 and	 normal	 random	
error.	 The	 2000	 diet	 estimates	 were	 then	 transformed	 back	 to	
compositions.	The	row	effect	was	generated	from	a	multivariate	
normal	distribution	with	mean	given	by	a	vector	of	zeros	and	the	
covariance	matrix	 given	 by	 a	 diagonal	matrix	with	 diagonal	 ele-
ments	obtained	from	the	estimated	variances	in	the	real-	life	diet	
estimates,	as	previously	described.	Since	we	were	interested	in	5	
increasing	values	of	ρ	with	the	minimum	value	near	0	and	the	max-
imum	value	near	1,	for	each	of	the	1000	diets,	the	column	effect	
was ±	 a	 constant	 times	 the	mean	 diet	 vector.	 The	 repeatability	
was	computed	using	Equation (2)	for	each	grid	of	2000	diets	and	
the	 resulting	 values	 of	 ρ were � = 0.051, 0.261, 0.510, 0.709, and 
0.947.

The	algorithm	for	yielding	a	single	confidence	interval	is	compu-
tationally	demanding;	therefore,	there	were	practical	limitations	on	
n, B, R, and k,	as	well	as	the	number	of	simulations	that	could	be	run.	
To	this	end,	we	ran	our	simulations	in	parallel	with	5	cores	and	exam-
ined	only	modest	values	of	n (n = 20 or n = 50; Figure 3),	with	k = 2 ,	
B = 100, and R = 100.	We	surmise	that	results	would	improve	with	
increasing n,	 but	 as	 the	 computational	 burden	 also	 increases	with	
sample	 size,	 it	was	not	 feasible	 to	examine	 large	values.	We	were	
also	limited	in	the	number	of	total	simulations	we	could	reasonably	
run	(in	particular	for	n = 50),	and	this	was	set	to	100	for	both	sample	
sizes,	resulting	in	coverage	probabilities	with	an	associated	margin	of	
error	of	approximately	4%.

2.4  |  Quantifying grey seal diets

2.4.1  |  Seal	samples

Full-	depth	blubber	biopsies	were	collected	between	1993	and	2015	
from	220	adult,	free-	ranging,	grey	seals	(90	males,	130	females)	on	
Sable	Island,	NS,	Canada	(43°55′N,	60°00′W)	following	the	methods	
described	in	Beck	et	al.	 (2007).	Samples	were	collected	during	the	
molt	(May–	June,	SPRING),	in	September–	October	(FALL),	or	during	
the	 annual	 breeding	 season	 (December–	January,	WINTER)	 as	 part	
of	studies	examining	diet,	energetics,	foraging	distribution,	and	be-
havior	(Austin	et	al.,	2006;	Beck	et	al.,	2007;	Breed	et	al.,	2006; Lang 
et al., 2009, 2011; Lidgard et al., 2003, 2020;	Mellish	et	al.,	1999; 
Noren	et	al.,	2005).	 Individuals	were	either	sampled	at	 two	differ-
ent	periods	within	the	same	calendar	year	(SPRING	and	subsequent	
WINTER	or	FALL	and	subsequent	WINTER,	Table 1)	or	in	the	same	
period	 (WINTER)	 over	multiple	 years	 (Table 2).	 In	 the	 latter	 case,	
note	that	from	Table 2,	there	are	several	missing	values.	Prey	FAs	are	
deposited	in	blubber	over	time	(Cooper,	2004; Iverson et al., 2004)	
such	that	the	FA	composition	of	grey	seal	blubber	represents	the	in-
tegrated	diet	over	the	preceding	two	to	three	months.	Thus,	samples	
collected	during	the	SPRING,	FALL,	and	WINTER	periods	described	
above	will	 reflect	 the	 integration	 of	 the	 diet	 consumed	 in	 spring,	

(5)d̂ =
1

B

B∑
b=1

�̂
∗b
(p) − �̂(p).
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late	summer,	and	fall/early	winter,	respectively.	Details	of	the	sam-
ple	processing	methods	can	be	found	 in	Budge	et	al.	 (2006).	Note	
that	over	the	course	of	lactation,	female	grey	seals	do	not	mobilize	
blubber	FAs	in	a	uniform	manner	(Arriola	et	al.,	2013),	therefore,	all	
blubber	samples	collected	from	lactating	females	during	the	breed-
ing	season	(WINTER)	were	collected	prior	to	day	6	postpartum.	All	
procedures	 used	 on	 study	 animals	were	 conducted	 in	 accordance	
with	the	legal	requirements	of	the	Canadian	Council	on	Animal	Care	
following	 the	Guidelines	on	 the	Care	and	Use	of	Wildlife.	All	pro-
cedures	 were	 approved	 by	 Dalhousie	 University's	 Committee	 on	
Laboratory	Animals	 and	by	Fisheries	 and	Oceans	Canada's	 animal	
care	committee.

2.4.2  |  Prey	library

For	the	QFASA	estimation	of	seal	diets	(see	QFASA	Diet	Estimates	
below)	we	used	a	prey	database	(“library”)	comprised	of	1735	indi-
viduals	FA	signatures	from	21	species	of	fish	and	invertebrates	that	
were	 collected	within	 the	main	 foraging	 range	of	 the	Sable	 Island	
grey	 seals	 (Northwest	 Atlantic	 Fisheries	 Organization	 4	 Subarea,	
excluding	the	Gulf	of	St	Lawrence	estuary).	The	21	prey	species	in-
cluded	in	the	library	(Table 3)	are	those	known	to	be	eaten	by	grey	

seals	based	on	previous	stomach	content	and	fecal	analyses	(Bowen	
et al., 1993;	Bowen	&	Harrison,	1994)	or	prey	that	was	reasonably	
abundant	and	found	at	depths	at	which	grey	seals	are	known	to	for-
age	(Beck	et	al.,	2003a, 2003b).	Details	of	prey	collection	and	pro-
cessing	can	be	found	in	Budge	et	al.	(2002).

Following	 an	 exploratory	 analysis	 to	 determine	 whether	 the	
FA	 signatures	 of	 the	 selected	 prey	 contained	 any	 hidden	 struc-
ture	 (see	Bromaghin,	Budge,	&	Thiemann,	2017)	 some	prey	spe-
cies	within	the	set	were	subdivided	 into	smaller	clusters	prior	to	
estimating	 seal	 diets	 (Table 3).	 American	 plaice	 (Hippoglossoides 
platessoides)	were	separated	into	two	clusters	based	on	size	(small,	
≤25	 cm,	 and	 large,	>25 cm).	 Pollock	 (Pollachius virens)	were	 sep-
arated	 into	 two	clusters	based	on	observed	substructure	among	
the	FA	signatures	although	the	proximate	cause	for	the	substruc-
ture	was	unclear	(there	was	no	relationship	to	differences	in	size,	
season,	or	collection	location).	Substructure	in	the	FA	signatures	
based	on	seasonal	variation	(collection	months)	was	found	in	four	
species	 (Atlantic	butterfish,	Peprilus triacanthus;	Atlantic	herring,	
Clupea harengus; capelin, Mallotus villosus; and longhorn sculpin, 
Myoxocephalus octodecemspinosus).	 Based	 on	 the	 identified	 sub-
structure	for	these	four	species,	the	FA	signatures	from	individual	
prey	collected	 in	March,	April,	and	May	were	used	to	model	 the	
diets	 of	 seals	 sampled	 in	 SPRING	 (see	 Table 3,	Modeling	 Set	 1)	
while	the	FA	signatures	of	individual	prey	collected	from	July	on-
ward	were	used	to	model	the	diets	of	seals	sampled	in	FALL	and	
WINTER	(Table 3,	Modeling	Set	2).

2.4.3  |  QFASA	diet	estimates

The	diet	of	each	grey	seal	at	each	sampling	point	was	estimated	using	
QFASA	 following	 the	methods	 of	 Iverson	 et	 al.	 (2004).	 The	 diets	
were	modeled	using	the	calibration	coefficients	developed	for	grey	
seals (see Iverson et al., 2004).	We	used	the	“Dietary”	FA	subset,	as	
defined	in	Iverson	et	al.	(2004),	excluding	16:3n-	1,	16:4n-	3,	22:n-	6,	
and	 the	20:1	 isomers.	The	FAs	16:3n-	1,	16:4n-	3,	 and	22:n-	6	were	
not	 identified	 across	 all	 samples	 in	 the	 data	 set	 and	were,	 there-
fore,	removed	from	all	analyses.	The	calibration	coefficients	for	the	
20:1	isomers	for	grey	seals	(and	other	phocid	seals)	are	very	small,	
which	can	create	calibrated	predator	FA	signatures	with	values	for	
these	 isomers,	which	 are	 outside	 the	 range	of	 values	 observed	 in	
the	 potential	 prey	 resulting	 in	 estimation	 issues	 (see	 Bromaghin	
et al., 2015).	For	the	six	prey	species	whose	FA	signatures	were	sub-
divided	 into	clusters	prior	 to	QFASA	modeling	 (see	Section	2.4.2),	
the	QFASA	diet	estimates	for	the	clusters	 (where	applicable)	were	
summed	 to	 give	 a	 single	 proportion	 for	 that	 prey	 species	 prior	 to	
calculating	repeatability.

The	diet	estimates	for	the	individuals	sampled	at	two	different	
periods	within	the	same	calendar	year	(SPRING/WINTER	or	FALL/
WINTER,	 Table 1)	 are	 shown	 in	 Tables	 S1 and S2, respectively. 
Individual	seals	appear	only	once	in	the	full	data	set	(i.e.,	either	sam-
pled	at	SPRING	and	WINTER	or	FALL	and	WINTER)	across	all	years.	
Diet	estimates	for	the	24	females	sampled	in	WINTER	over	multiple	

TA B L E  1 Number	of	adult	grey	seal	males	and	females	sampled	
twice	within	the	same	calendar	year	by	year.

Year

SPRING/WINTER FALL/WINTER

Male Female Male Female

1993 4 3

1994 1 4

1995 4 5 1 3

1996 9 7 5 5

1997 7 5 3 2

1998 7 2 4

1999 3 3 6 4

2000 4 4

2001 5

2004 6 3

2009 7 9

2010 6 8

2011 15

2012 5 9 2

2013 4 5

2014 4 5

Total 54 66 36 42

Note:	SPRING/WINTER,	individuals	sampled	during	the	molt	in	May–	
June	(SPRING)	and	then	again	during	the	subsequent	breeding	season	
(December–	January,	WINTER).	FALL/WINTER,	individuals	sampled	
in	September–	October	(FALL)	and	then	again	during	the	subsequent	
breeding	season	(WINTER).	Individual	seals	appear	only	once	in	the	
data	set	(i.e.,	either	sampled	at	SPRING/WINTER	or	FALL/WINTER)	
across all years.
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years (Table 2)	are	shown	in	Table	S3.	Given	that	the	diet	estimates	
are	of	length	21	(as	there	are	21	potential	prey	species	in	the	diet),	
we consider n = 24	to	be	a	relatively	small	sample	size.

3  |  RESULTS

Estimated	coverage	probabilities	for	95%	confidence	intervals	for	ρ, 
along	with	error	bars	reflecting	the	4%	margin	of	errors,	are	given	
in Figure 3.	The	 first	 row	corresponds	 to	n = 20 while the second 
row pertains to n = 50.	The	coverage	with	and	without	the	bias	cor-
rection	 is	 illustrated	 for	comparison	purposes.	Recall	 that	 the	bias	
adjustment	 is	 needed	 to	 account	 for	 the	 measurement	 error	 due	
to	using	QFASA	diet	estimates.	The	solid	 line	at	0.95	indicates	the	
target	coverage	and,	after	being	corrected	for	measurement	error,	
all	 intervals	appear	to	yield	reasonably	high	coverage	except	when	
ρ	 is	extremely	large	(that	is,	for	� = 0.95).	Note	that	when	� = 0.71, 
the	bias	correction	greatly	improves	the	coverage	probability	in	all	
cases,	 but	 the	 improvement	 is	 insufficient	 for	� = 0.95.	While	 we	
may	potentially	conclude	that	estimating	repeatability	when	tempo-
ral	consistency	is	very	high	may	be	problematic,	repeatability	as	high	
as	0.95	seems	unlikely	in	practice.	Furthermore,	while	the	coverage	
of	the	intervals	is	lower	than	the	target	coverage	of	0.95,	when	ρ is 

large,	 the	upper	bound	of	the	 intervals	 is	 typically	near	this	value.	
Specifically,	on	average,	the	upper	 limit	of	both	the	T	and	BCa	CIs	
was	0.95	 for	n = 20	 and	0.93	 for	n = 50.	The	bias-	corrected	T and 
BCa	intervals	are	similar	for	both	sample	sizes	and	the	coverage	at	
n = 50	 is	 generally	 either	 roughly	 the	 same	 or	 larger	 than	 that	 at	
n = 20,	except	for	when	� = 0.95.

The	average	width	of	the	intervals	 is	compared	in	Table 4. The 
widths	suggest	that	confidence	intervals	appear	to	be	largest	for	val-
ues	of	ρ	near	0.5	and	increasing	the	sample	size	noticeably	reduced	
the	length	of	the	intervals	on	average.	The	T	and	BCa	intervals	ap-
pear	to	be	of	similar	lengths.

In Figure 4	the	absolute	value	of	the	average	estimated	bias	(see	
Equation 5)	over	the	100	simulated	samples	 is	plotted	against	ρ. It 
is	clear	that	the	bias	(in	magnitude)	increases	as	the	true	value	of	ρ 
increases	and	in	a	seemingly	linear	manner.	This	bias	(resulting	from	
measurement	error)	is	not	affected	by	the	sample	size.

3.1  |  Grey seal diets

We	 applied	 our	 proposed	measures	 of	 repeatability	 for	 composi-
tional	 data	 for	 both	balanced	 and	unbalanced	designs	 to	 the	 grey	
seal	 QFASA	 diet	 estimates.	 The	 diet	 estimates	 for	 individuals	

Seal ID

Year

Total1999 2000 2001 2002 2003 2004 2006

Hg12 · · 2

Hg23 · · · · 4

Hg32 · · 2

Hg112 · · · 3

Hg132 · · · · 4

Hg501 · · · 3

Hg505 · · · · 4

Hg825 · · · 3

Hg2675 · · · · 4

Hg3250 · · · 3

Hg3263 · · 2

Hg3625 · · · 3

Hg3817 · · · · 4

Hg3994 · · · 3

Hg4374 · · · 3

Hg4377 · · · 3

Hg4388 · · · 3

Hg4391 · · · · · 5

Hg4393 · · · · 4

Hg4404 · · · 3

Hg4489 · · · · · 5

Hg4491 · · · · · 5

Hg4735 · · · · 4

Hg6035 · · 2

TA B L E  2 Number	of	samples	for	each	
of	24	adult	grey	seal	females	sampled	
across	multiple	years	during	the	breeding	
season	(December–	January,	WINTER).
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sampled	 at	 two	 different	 periods	 within	 the	 same	 calendar	 year	
(SPRING/WINTER,	 Table	 S1;	 FALL/WINTER,	 Table	 S2)	were	 used	
to	 estimate	 repeatability	 (balanced	 design)	 across	 seasons	 within	
years	(seasonal	repeatability).	The	diet	estimates	for	the	24	females	
sampled	in	WINTER	over	multiple	years	(Table	S3)	were	used	to	es-
timate	 repeatability	 (unbalanced	 design)	 across	 years	 (interannual	
repeatability).

3.1.1  |  Seasonal	repeatability	in	diet

Recall	 that	 to	 obtain	 CIs	 for	 repeatability,	we	 generate	 pseudo-	
predators	 by	 setting	 the	 “true”	 diet	 in	 the	 pseudo-	predator	

algorithm	to	be	the	QFASA	diet	estimates.	Pseudo-	predators	are	
then	generated	by	sampling	proportionately	from	an	appropriate	
prey	database.	For	repeatability	across	the	SPRING/WINTER	seal	
diets,	we	generated	pseudo-	predators	and	obtained	CIs	using	both	
the	prey	database	used	to	estimate	SPRING	diets	(Set	1,	Table 3)	
and	 the	 prey	 database	 used	 to	 estimate	 the	 FALL	 and	WINTER	
diets	(Set	2,	Table 3)	in	order	to	determine	how	the	choice	of	prey	
database	affects	the	estimates	of	CIs.	For	repeatability	across	the	
FALL/WINTER	diets,	only	the	prey	set	used	to	estimate	FALL	and	
WINTER	diets	(Set	2,	Table 3)	was	used	to	generate	the	pseudo-	
predators.	 The	 point	 estimates	 of	 repeatability	 and	 CIs	 (all	 of	
which	have	been	adjusted	by	an	estimate	of	bias)	 are	presented	
in Table 5.

TA B L E  3 Prey	species	(“prey	library”)	used	in	QFASA	to	estimate	the	diet	composition	of	adult	grey	seals.

Common name Scientific name Cluster

Modeling Set 1 Modeling Set 2

n Lipid (%) n
Lipid 
(%)

Forage Fish Atlantic	butterfish Peprilus triacanthus March 49 12.3

July–	September 26 8.1 26 8.1

Capelin Mallotus villosus March–	May 135 4.7

July 27 7.7 27 7.7

September 21 9.7

Atlantic	herring Clupea harengus March 108 2.3

July–	September 121 10.1 121 10.1

Atlantic	mackerel Scomber scombrus 32 5.1 32 5.1

Northern	sand	lance Ammodytes dubius 148 5.3 148 5.3

Snake	blenny Lumpenus lumpretaeformis 18 2.4 18 2.4

Gadids Atlantic	cod Gadus morhua 109 2.5 109 2.5

Pollock Pollachius virens Group	1 35 1.9 35 1.9

Group	2 18 3.6 18 3.6

Silver	hake Merluccius bilinearis 58 1.6 58 1.6

White	hake Urophycis tenuis 80 1.3 80 1.3

Flatfish American	plaice Hippoglossoides 
platessoides

Small	(<25 cm) 67 2.9 67 2.9

Large (>25 cm) 67 1.8 67 1.8

Winter	flounder Pseudopleuronectes 
americanus

50 2.0 50 2.0

Witch	flounder Glyptocephalus 
cynoglossus

24 1.9 24 1.9

Yellowtail	flounder Limanda ferruginea 156 2.2 156 2.2

Skates Smooth	skate Malacoraja senta 33 2.5 33 2.5

Thorny skate Amblyraja radiata 83 2.6 83 2.6

Winter	skate Leucoraja ocellata 40 1.5 40 1.5

Other Redfish Sebastes sp. 54 7.1 54 7.1

Longhorn sculpin Myoxocephalus 
octodecemspinosus

March–	April 45 2.1

September 25 4.0

Sea	raven Hemitripterus americanus 71 2.0 71 2.0

Invertebrates Northern	shortfin	
squid

Illex illecebrosus 35 3.0 35 3.0

1689 1398
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Bootstrap	parameters	were	set	to	B = 50 and R = 100	 for	both	
the	 SPRING/WINTER	 and	 FALL/WINTER	 repeatability	 to	 accom-
modate	the	large	sample	sizes.	Specifically,	as	the	algorithm	requires	
distances	between	all	pairs	of	observations	to	be	calculated	for	each	

bootstrap	sample,	the	larger	the	sample	size,	the	slower	it	is	to	ob-
tain	 the	 intervals.	Note	 that	with	 these	settings,	CIs	are	based	on	
50 × 100 = 5000	bootstrap	samples.

The	 repeatability	 across	 the	 SPRING/WINTER	 diet	 estimates	
was	 low	 indicating	 little	 temporal	 consistency	 in	 the	diets	of	 indi-
viduals	 between	 spring	 and	 the	 subsequent	 fall/early	 winter	 pe-
riod.	For	the	SPRING/WINTER	comparison,	the	T	and	BCa	intervals	
were	almost	identical	regardless	of	the	choice	of	prey	modeling	set	
(Table 5).	In	contrast	to	the	repeatability	for	SPRING/WINTER,	the	
repeatability	 across	 the	 FALL/WINTER	 diets	 was	 high	 indicating	
that	there	is	a	temporal	consistency	in	the	diets	of	individuals	over	
the	period	from	late	summer	to	fall/early	winter.

3.1.2  |  Interannual	repeatability	in	diet

Bootstrap	T	and	BCa	95%	confidence	intervals	were	computed	for	
the	QFASA	diet	estimates	of	the	24	individual	female	grey	seals	sam-
pled	in	2–	5	different	WINTER	seasons	in	Table 2.	As	k	is	not	fixed,	
this	is	an	example	of	an	unbalanced	setting	with	missing	values	and,	
thus, Equation (4)	 was	 used	 to	 calculate	 repeatability.	 Results	 are	
given in Table 6.	The	prey	set	used	to	estimate	FALL	and	WINTER	
diets	(Modeling	Set	1,	Table 3)	was	used	to	obtain	the	CIs.

As	before,	 the	results	are	very	similar	 for	 the	T	and	BCa	 inter-
vals.	The	bias	was	large	in	this	example	(�̂(p)	was	shifted	upwards	by	
0.247)	and	the	intervals	were	shifted	by	double	this	amount	due	to	ρ 
being	large	and,	we	surmise,	more	repeated	measurements.	The	in-
terannual	repeatability	was	high	indicating	that	there	was	a	temporal	
consistency	across	years	in	the	diets	of	these	individuals	during	the	
fall/early	winter	period	prior	to	the	start	of	the	breeding	season.

4  |  DISCUSSION

Here,	we	 propose	 a	 statistical	 approach	 for	 assessing	 the	 tempo-
ral	consistency	 in	compositional	diet	estimates	using	a	measure	of	

TA B L E  4 Comparison	of	average	confidence	interval	lengths	for	95%	bootstrap	T	and	BCa	confidence	intervals	for	two	sample	sizes	(20	
and	50)	and	two	simulated	time	periods	corresponding	to	various	values	of	repeatability	denoted	by	ρ.

� = 0.05 � = 0.26 � = 0.51 � = 0.71 � = 0.95

n = 20 n = 50 n = 20 n = 50 n = 20 n = 50 n = 20 n = 50 n = 20 n = 50

T .141 .080 .267 .158 .287 .184 .249 .169 .123 .089

BCa .132 .080 .274 .161 .289 .187 .249 .174 .122 .093

F I G U R E  4 Plot	of	the	magnitude	of	the	average	estimated	bias	
in	the	repeatability	estimates	over	the	simulations	versus	the	true	
values	of	repeatability	denoted	by	ρ.
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TA B L E  5 Estimated	repeatability	(�̂)	and	95%	T	and	BCa	
confidence	intervals	for	the	true	seasonal	repeatability	in	the	diets	
of	grey	seals.

Seasons
Prey 
set Type n �̂ 95% CI

Spring/
Winter

Set	1 T 120 0.293 (0.235,	0.355)

BCa 120 .293 (0.235,	0.356)

Spring/
Winter

Set	2 T 120 .293 (0.237,	0.356)

BCa 120 .293 (0.237,	0.357)

Fall/Winter Set	2 T 78 .617 (0.544,	0.686)

BCa 78 .617 (0.542,	0.686)

TA B L E  6 Estimated	repeatability	(�̂)	and	95%	T	and	BCa	
confidence	intervals	for	the	true	interannual	repeatability	in	the	
diets	of	female	grey	seals	between	1999	and	2006.

n �̂ Type 95% CI

24 .725 T (0.634,	0.831)

BCa (0.633,	0.825)
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repeatability	for	the	multivariate	setting.	In	contrast	to	indices	that	
have	previously	been	used	to	examine	individual	consistency	in	con-
current,	compositional	diet	estimates	over	different	time	scales	(e.g.,	
Estes et al., 2003;	Thiemann	et	al.,	2011),	our	approach	provides	a	
means	of	simultaneously	incorporating	the	variance	in	resource	use	
associated	with	both	the	individual	and	the	population,	providing	an	
empirical	measure	of	 the	 extent	 to	which	 compositional	 diet	 esti-
mates	are	characteristic	of	individuals.	Our	measure	can	be	applied	
to	situations	in	which	the	sample	sizes	are	small	relative	to	the	num-
ber	of	potential	prey	species	in	the	diet	and	we	further	developed	
an	 extension	 that	 can	 accommodate	 unbalanced	 designs	 (missing	
values).	While,	in	general,	missing	observations	are	statistically	chal-
lenging	to	deal	with,	they	are	common	in	real-	life	data	sets	and	this	
extension,	therefore,	allows	our	methods	to	be	more	widely	applied.	
A	critical	component	of	our	approach	 is	 the	use	of	an	appropriate	
distance	measure.	By	choosing	the	chi-	square	distance	measure	we	
do	not	have	 to	modify	or	 condition	on	 	 the	 zeros	 in	 the	diet	esti-
mates,	as	has	been	done	in	the	literature	with	problematic	zeros	in	
compositional	data	(Palarea-	Albaladejo	&	Martín-	Fernández,	2008, 
2013;	Stewart	&	Field,	2011).

When	 the	 diet	 of	 predators	 is	 estimated	 using	 QFASA,	 we	
found	that	our	estimate	of	repeatability	may	be	biased	due	to	the	
QFASA	diet	estimates	being	highly	variable	estimates	of	the	true	
unknown	 diets.	 More	 specifically,	 our	 estimate	 of	 repeatability	
tends	to	be	consistently	smaller	than	ρ	and	the	magnitude	of	the	
bias	increases	with	increasing	values	of	ρ.	Our	CI	methods	adjust	
for	 this	bias	and,	even	when	n	 is	 small	 relative	 to	 the	dimension	
of	the	diet	estimates,	appear	to	perform	well.	Our	measure	of	re-
peatability	 can	easily	be	applied	 to	compositional	diet	estimates	
derived	from	other	methods	such	as	stomach	content	or	scat	anal-
ysis,	for	example,	as	well	as	to	other	fields	of	applications	where	
compositional	 measurements	 over	 time	 have	 been	 collected.	 In	
applications	beyond	QFASA,	CIs	 that	 incorporate	sampling	error	
could	be	developed	in	a	relatively	straightforward	analogous	man-
ner;	however,	our	approach	for	incorporating	measurement	error	
into	the	CI	algorithm	is	unique	to	QFASA	diet	estimates	and	this	
component	of	 the	CI	methodology	cannot	be	extended	 to	other	
applications.

We	applied	our	proposed	measure	of	repeatability	to	QFASA	
diet	estimates	of	free-	ranging	grey	seals	in	the	Northwest	Atlantic.	
The	results	of	the	seasonal	comparisons	indicate	that	there	is	low	
temporal	consistency	in	the	diets	of	individual	grey	seals	between	
the	spring	and	fall/early	winter	but	a	relatively	high	level	of	tem-
poral	 consistency	 in	 individual	 diets	 in	 the	 period	 between	 late	
summer	and	fall/early	winter	of	a	given	year	 (Table 5).	These	re-
sults	are	consistent	with	seasonal	changes	 in	grey	seal	diets	ob-
served	 in	 cross-	sectional	 comparisons	 of	 QFASA	 diet	 estimates	
(Beck	et	al.,	2007)	and	with	the	seasonal	shifts	observed	in	stable	
isotope	 values	 across	 grey	 seal	 tissues	 (Hernandez	 et	 al.,	2019).	
Although	our	results	are	consistent	with	previously	observed	sea-
sonal	shifts	in	grey	seal	diets,	the	present	analysis	did	not	consider	
the	potential	 influence	of	factors	such	as	sex	or	changes	 in	pop-
ulation	abundance	on	the	patterns	of	seasonal	repeatability.	The	

diets	of	male	and	female	grey	seals	are	known	to	differ	with	males	
typically	having	more	diverse	diets	than	females	(Beck	et	al.,	2007; 
Tucker	&	Iverson,	2007).	In	addition,	the	diet	estimates	used	in	the	
present	study	cover	a	period	of	significant	growth	for	this	popu-
lation	(den	Heyer	et	al.,	2021),	and	thus,	potential	changes	in	the	
level	of	 intraspecific	competition	may	be	occurring	which	 is	pre-
dicted	to	influence	the	degree	of	individual	specialization	(Araújo	
et al., 2011).	Future	analyses	examining	the	influence	of	these	fac-
tors	on	the	levels	of	seasonal	repeatability	will	be	required	to	more	
fully	understand	the	time	scales	over	which	individual	consistency	
in the diet is occurring in grey seals.

The	high	level	of	repeatability	in	the	QFASA	diet	estimates	of	in-
dividual	females	during	winter	sampling	across	years	(Table 6)	is	also	
in	keeping	with	the	individual	consistency	observed	in	the	isotopic	
niches	 of	 grey	 seals	 (Hernandez	 et	 al.,	2019).	Our	 results	 indicate	
that	there	was	a	strong	individual	consistency	in	the	fall/early	winter	
diets	of	the	females	sampled	here.	However,	a	more	detailed	analysis	
of	the	species	composition	of	the	individual	diets	will	be	required	to	
determine	whether	the	high	level	of	repeatability	across	years	is	due	
to	consistent	generalist	diets	or	whether	individual	females	may	be	
specializing	in	a	small	range	of	prey	types	in	the	period	leading	up	to	
the	breeding	season.

A	 downside	 of	 our	 measure	 of	 repeatability	 is	 that	 it	 can	 be	
slow	to	compute,	particularly	when	the	sample	size,	number	of	time	
points,	or	number	of	prey	species	 is	 large.	Since	 the	CI	procedure	
is	 bootstrapped-	based	 and	 requires	 computing	 QFASA	 diet	 esti-
mates,	 it	 is	extremely	computationally	 intensive.	If	CIs	are	desired,	
the	bootstrapping	could	potentially	be	done	in	parallel	to	speed	up	
computations.	While	the	computational	burden	limited	how	exten-
sively	we	could	examine	our	proposed	method	through	simulations,	
the	real-	life	data	sets	provided	additional	validation	and	information	
on	 the	precision	 (as	 reflected	 in	 the	 length	of	 the	CIs)	 likely	 to	be	
observed	in	practice.

The	 conclusions	 drawn	 regarding	 repeatability	 in	 the	 real-	life	
data,	as	well	as	our	simulation	study	results,	suggest	that	our	novel	
measure	of	repeatability	is	useful	and	capable	of	handling	complex	
compositional	data	sets,	such	as	those	comprising	of	diet	estimates.	
Given	 the	 importance	 of	 understanding	 how	 predator	 diets	 vary	
over	time	and	space,	our	method	may	find	broad	application.
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