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Abstract
By measuring the temporal consistency, or repeatability, in the diets of predators, 
we can gain a better understanding of the degree of individual specialization in re-
source utilization and implications for predator–prey interactions, population dy-
namics, and food web structure. To measure repeatability, we require repeated diet 
estimates of individuals over time, such as those derived from quantitative fatty acid 
signature analysis (QFASA), a popular diet estimation technique. However, diet esti-
mates are often lengthy compositional vectors with many zeros, as some prey will not 
be consumed by all individuals, precluding the use of previously proposed measures 
of repeatability. In this paper, we propose a novel approach for inferring repeatabil-
ity for multivariate data and, in particular, compositional diet estimates. We extend 
the commonly used measure of repeatability for univariate data to the multivariate 
compositional setting by utilizing the mean squares obtained from a nonparametric 
multivariate analysis of variance, and an appropriate choice of statistical distance. Our 
measure and its extension are compatible with both balanced and unbalanced data 
sets. Associated confidence intervals via nonparametric bootstrapping are also de-
veloped for the case of QFASA diet estimates that incorporate both sampling error 
and measurement error, where the latter error arises because the diets of predators 
are estimated. Simulation study results suggest that for practical levels of repeat-
ability, our methods yield confidence intervals with the desired coverage probability 
even when the sample size relative to the dimension of the data (i.e., number of prey 
species eaten) is small. We tested our methods using QFASA diet estimates for free-
ranging Northwest Atlantic grey seals. Given the importance of understanding how 
predator diets vary over time and space, our method may find broad application to 
other compositional diet estimates, including those derived from the stomach or fecal 
contents, and stable isotope analyses.
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1  |  INTRODUC TION

Estimates of predator diets are central to understanding many 
areas of ecology, such as predation and the structure of food webs. 
Although diets of animal populations are frequently presented as 
averages with individuals of a given age, sex, or morphology treated 
as ecologically equivalent, individuals within a population can vary 
substantially in their resource use (Araújo et al.,  2011; Bolnick 
et al., 2003, 2011; Estes et al., 2003). Such individual specialization, 
whereby individuals use only a subset of the population's resource 
base, is of considerable interest because of its potential to pro-
foundly affect the structure and dynamics of populations and their 
communities (Araújo et al., 2011; Bolnick et al., 2011).

One of the challenges associated with understanding the empir-
ical importance of individual specialization, and the factors that may 
influence it, is identifying the time scale over which such specializa-
tion occurs (Layman et al., 2015; Novak & Tinker, 2015). For species 
with large home ranges or foraging areas that are not readily observ-
able, obtaining sufficient numbers of repeated observations of diet 
compositions to characterize levels of temporal consistency within 
individuals may be difficult or impossible. For these species, meth-
ods that integrate dietary information over longer periods (weeks 
to months), such as isotopic signatures or fatty acid (FA) profiles, 
can be used to overcome this limitation (Araújo et al., 2011; Bolnick 
et al., 2003).

Quantitative fatty acid signature analysis (QFASA, Iverson 
et al., 2004) is now a widely applied approach to estimating a pred-
ator's diet by comparing the FA profiles of metabolically active fat 
stores of predators with that of their potential prey, after taking 
into account modifications due to FA metabolism in the predator. 
For tissues such as blubber or adipose, which contain FAs that have 
accumulated over time, QFASA can provide an integrated record of 
dietary intake over a period of weeks to months (Budge et al., 2006) 
and has been used to estimate diets for a wide range of marine 
species (Zhang et al.,  2020) including fish (Magnone et al.,  2015), 
seabirds (Haynes et al., 2015; Iverson et al., 2007), pinnipeds (Beck 
et al., 2007; Bromaghin et al., 2013; Meynier et al., 2010), and polar 
bears (Galicia et al., 2016; Iverson et al., 2006; Thiemann et al., 2008). 
In cases where individual predators can be repeatedly sampled, diets 
estimated using QFASA provide an opportunity to examine temporal 
consistency over multiple time scales (e.g., Thiemann et al., 2011).

However, assessing the temporal consistency of QFASA diet 
estimates is complicated by the structure of the estimate itself. 
QFASA yields an estimate of the proportion of each prey species in 
the predator's diet. The sum constraint of the QFASA estimate (the 
values must sum to 1) restricts the application of common indices of 
diet similarity, such as the proportion similarity index (see Novak & 
Tinker, 2015; Powell & Taylor, 2017), since the resampling procedures 

used for hypothesis testing cannot be used on estimates that are 
purely compositional. Although measures such as the chi-squared 
contingency analysis (Estes et al.,  2003 or Thiemann et al.,  2011) 
dietary change index have been used to examine individual con-
sistency in concurrent, compositional diet estimates over different 
time scales, these analysis methods are limited to the comparison of 
within-individual variation only and, therefore, do not incorporate 
the variance in resource use associated with the population. Here, 
we propose a statistical approach for assessing the temporal con-
sistency in QFASA diet estimates using an extension of univariate 
repeatability (that is, repeatability computed for data collected on a 
single variable), which accounts for the compositional nature of the 
estimates and the presence of essential zeros (zeros corresponding 
to the absence of a particular prey item in the diet of an individ-
ual). Repeatability is defined as the proportion of total variation in 
measurements that can be ascribed to variation among individuals 
rather than the variation among measurements within individuals 
(Wolak et al., 2012). Consequently, repeatability can simultaneously 
incorporate the variance in resource use associated with the individ-
ual and the population and provide insight into the extent to which 
measurements are characteristic of individuals. Higher repeatability 
estimates can indicate that there is more variation among individuals 
than within individuals (Lessells & Boag, 1987), suggesting that there 
is temporal consistency in resource use within individuals.

While various approaches exist to measure repeatability (see 
Wolak et al., 2012 for a list of references), it is commonly estimated 
by the intraclass correlation coefficient (ICC). In the case of mea-
surements on a single variable (or univariate measurements), where 
the only systematic source of variability occurs among individuals, 
Lessells and Boag  (1987) provide the widely accepted formula for 
estimating ICC. When the observations within individuals differ in 
some systematic way, such as through a possible season or year ef-
fect (see McGraw & Wong, 1996 for a more extensive discussion on 
what constitutes a systematic source of variance), a two-way model 
(a model with both row and column effects or, equivalently, a model 
with two factors) is more appropriate. Estimating ICC for the univar-
iate two-way case is discussed in McGraw and Wong (1996), and our 
approach is an extension of this work. We propose obtaining a point 
estimate of repeatability using the mean squares computed from the 
nonparametric multivariate analysis of variance (MANOVA) devel-
oped by Anderson  (2001). The nonparametric MANOVA requires 
the calculation of distances between the multivariate responses. 
To handle the compositional diet vectors and the essential zeros, 
we use the chi-square (CS) measure of distance, as recommended 
in Stewart  (2017) for QFASA applications. While the extension 
of the ICC definitions in McGraw and Wong  (1996), reviewed in 
Section 2.1, to the multivariate setting in this manner is relatively 
straightforward, we are not aware of repeatability being computed 
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in this way previously. We consider the balanced case in which there 
are no missing values and the number of measurements (diet esti-
mates) per individual is constant, as well as the unbalanced case in 
which the number of measurements per individual is allowed to vary.

In addition to the point estimation of repeatability, we consider 
the development of confidence intervals (CIs) that properly reflect 
the various sources of variability in the QFASA diet estimates. 
Although rarely estimated, exact CIs for the population value of 
ICC based on the F distribution have been available for some time 
(Wolak et al., 2012). For non-normal univariate data with individu-
als or, more generally, clusters as the only factor (analogous to the 
one-way ANOVA setting), Ukoumunne et al. (2003) proposed using 
nonparametric bootstrap CIs involving a variance stabilizing trans-
formation. In our work, nonparametric bootstrapping is also used to 
provide CIs for the true repeatability in a population.

Using simulated datasets, we examine the performance of our 
proposed measure of repeatability and associated confidence inter-
vals (CIs) with respect to coverage probability and confidence inter-
val lengths (where the length of the intervals reflects how precisely 
we can estimate repeatability) and then apply our methods for both 
balanced and unbalanced designs to QFASA diet estimates from free-
ranging northwest Atlantic grey seals (Halichoerus grypus). A further 
statistical complexity in the unbalanced case is that the sample size is 
small relative to the dimension of the diet estimates. The grey seal is 
an upper-trophic level marine predator that inhabits temperate waters 
on both sides of the North Atlantic Ocean. In the Northwest Atlantic, 
the grey seal has a broad continental shelf distribution from the Gulf 
of Maine north to the Gulf of St. Lawrence with the largest breeding 
colony on Sable Island (den Heyer et al.,  2021). Adult grey seals on 
Sable Island make repeated foraging trips to shallow offshore banks 
on the Eastern Scotian Shelf with a few traveling into the Gulf of St. 
Lawrence and south to the Gulf of Maine (Austin et al., 2006; Breed 
et al., 2006, 2009; Lidgard et al., 2012). A fine-scale spatial and tem-
poral analysis of the movements of adults provided clear evidence of 
within-year fidelity to presumed foraging locations, suggesting some 
levels of predictability in prey distribution and possibly diet (Lidgard 
et al., 2020). Repeated tracking of 21 adults also indicates that individ-
uals exhibit similar movements and foraging distributions over years 
further suggesting that there may be temporal consistency in the diet 
(W. D. Bowen and C. E. den Heyer, unpublished data). While this work 
focuses on calculating repeatability and its CIs for diets estimated by 
QFASA, it can be extended to other multivariate data sets, including 
diet estimates derived from other methods, provided an appropriate 
distance measure is chosen.

2  |  METHODS

2.1  |  Point estimation of repeatability

To set the notation, consider the univariate balanced setting in 
which we have, in concept, a population of predators and for each, k 
measurements taken over time. Due to only having one observation 

per treatment (or “cell”), we make the necessary assumptions that 
there is no interaction between the predators and the time points, 
and that the levels of the time factor are fixed. Note, however, that 
this latter assumption has no effect on the definition of ICC or its 
estimator, but the interpretation and generalization may depend on 
whether the levels are actually fixed or random. Following McGraw 
and Wong (1996), we define the ICC (denoted by ρ) for this two-way 
model setting as

where �2
s
 denotes the variability in the univariate seal measurements, 

�t =
√
t2
j
∕(k − 1) with tj denoting the jth time effect, and �2

e
 is the vari-

ability in the residual effects.
For a random sample of n predators with k measurements per 

predator, the estimate of ρ is based on the mean squares chosen 
in such a way that substituting their expectation (that is, replacing 
them with their population average) yields ρ. For the two-way mixed 
effect model, McGraw and Wong (1996) provide the following esti-
mate of ρ:

where the mean squares can be obtained from the output of a tradi-
tional randomized block two-way ANOVA.

For the analogous multivariate setting where measurements 
are now M dimensional vectors, an estimate of ρ can be deduced 
by defining the sums of squares as distances between the pertinent 
multivariate predator measurements. This approach for computing 
sums of squares is the basis of the nonparametric MANOVA pro-
posed in Anderson  (2001), a widely accepted method of carrying 
out a MANOVA in the ecological community, particularly when the 
data do not meet the traditional MANOVA assumption requirements 
such as multivariate normality. An advantage of the nonparametric 
MANOVA is that the computed pseudo F statistic relies only on a 
symmetric distance (or dissimilarity) matrix, and any distance (or dis-
similarity) measure can be used. While not needed for the calcula-
tion of ρ, permutations are used to determine the distribution of the 
F statistic and to test whether factors are significant. The function 
adonis in the R package vegan (Oksanen et al., 2017) performs the 
permutational MANOVA, as it is often called. For a random sample 
of n predators, each with k multivariate repeated measurements, we 
then estimate ρ using Equation (2) with the mean square values de-
rived from the adonis output, which, in turn, requires the computa-
tion of a distance matrix between all predator measurements.

In our example data sets, the predator measurements for the 
ith individual are QFASA diet estimates, henceforth denoted as 
pi1, … , pik, where the mth component of pij (denoted pijm) is the 
QFASA estimate of �ijm, the true proportion of species m in the diet 
of the individual i at time j. Note that i = 1, … , n and j = 1, … , k. 
Details of the QFASA model can be found in Iverson et al.  (2004). 

(1)� =
�2
s

�2
s
+ �t + �2

e

,

(2)�̂ =
MSs −MSe

MSs + (k − 1)MSe +
k

n

(
MSt −MSe

)
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Briefly, QFASA uses a library of FA profiles (referred to as “signa-
tures”), which are vectors of proportions that summarize the FA 
composition of individual predator and prey lipids. Calibration co-
efficients, derived from controlled feeding studies, are used to ac-
count for the differential metabolism of ingested FAs by predators. 
Following the application of the calibration coefficients, the model 
estimates the mixture of mean prey FA signatures that minimizes a 
statistical measure of distance between the modeled and observed 
predator signature. This proportional mixture is then weighted by 
the proximate fat content (i.e., relative FA contribution) of each prey 
species to estimate their proportions in the predator's diet.

In order to compute �̂ for QFASA diet estimates using the 
nonparametric MANOVA methodology, we require a measure of 
distance suitable for compositional data. While, in general, the rec-
ommended distance measure for compositional data is Aitchison's 
distance (Martín-Fernández et al., 1998), this distance measure in-
volves logarithms and hence is not compatible with compositional 
data such as ours where there is an abundance of zeros, each aris-
ing from an estimated absence of a species in the predator's diet. 
Recently Stewart (2017) proposed using the CS distance to measure 
the distance between compositional data with zeros, and in partic-
ular QFASA diet estimates, and it is, consequently, the measure of 
distance that we have chosen to adopt for this application. The CS 
distance between two diet estimates, say p1 and p2 were defined in 
Stewart (2017) as

where

Calculation of the CS distance in R can be carried out using the func-
tion chisq.dist in the package QFASA (Stewart et al., 2021). Note the 
CS distance in Equation (3) does not involve a “column standardiza-
tion” over predator measurements and so is different from the CS 
distance used in correspondence analysis (Greenacre,  2011) and 
cited in some ecological publications (see Warton et al., 2012, for 
example).

As yet we have only discussed the balanced case in which k is 
fixed for each predator. When missing values occur (as is the case 
for the second data set in Section 3.1), we propose using an aver-
age k value, similar to the approach used by Lessells and Boag (1987) 
for the simple univariate one-way ANOVA setting. Lessells and 
Boag  (1987) do not recommend the arithmetic mean but rather a 
modified value that reduces to k in the balanced setting. Sokal and 
Rohlf (2012) have more recently proposed using the harmonic mean 
in this case (see Chapter 9, p. 212), and we have chosen to use this 
representative value of k here. In addition to adjusting the value of k 
in Equation (2), we also need to modify the denominator, specifically 

the degrees of freedom, in the mean square formulae since they rely 
on k. We propose the following estimator of ρ in the unbalanced 
setting, which incorporates these changes:

where dfs = n − 1, dft = k̃ − 1, dfe =
�∑n

i=1
ki − 1

�
− dfs − dft , ki 

denotes the number of predator diets for the ith predator and 
k̃ = n∕

∑n

i
1∕ki. Note that the change to the mean squares that we 

suggest is not required in Lessells and Boag (1987) because, in the one-
way setting, k is not needed in their computation. Furthermore, when 
ki = k for i = 1, … , n, Equation (4) reduces to Equation (2).

Although the sums of squares can be computed using the adonis 
function, a subtlety is that the order in which the terms are entered 
into the model now matters, and we calculate �̃ by entering the pred-
ator factor first followed by the time factor. Note that for our ex-
ample, the effect on the repeatability if time is entered first is fairly 
minor. The estimates �̂ and �̃ can be computed using the function 
comp.rep in the QFASA R package (Stewart et al., 2021). The esti-
mates, however, are bias-adjusted, and the need for this modifica-
tion is discussed below.

2.2  |  Interval estimation

The estimators given in Equations (2) and (4) are point estimators of 
ρ, the true or population repeatability, which we more precisely de-
fine below. Given that the estimates will vary from sample to sample 
and that the diets of the predators need to be estimated, confidence 
intervals (CIs) for ρ that accurately reflect these sources of error are 
needed. Because our framework is nonparametric, we estimate the 
distribution of our estimators for ρ using resampling methods. To 
motivate our CI algorithms, we begin with a discussion of the various 
sources of error inherent in repeated measurement of QFASA data. 
To simplify the discussion, we focus on the balanced setting, but we 
use the identical approach when there is missing data.

Given a population of predators of interest at k points in time, 
let �11,�12, … ,�1k ,�21,�22, … ,�2k , … denote the actual diets of 
these predators. We are then interested in �(�), the true repeatabil-
ity in this population, which we define to be the ICC based on the 
actual/true diets. Since in practice the actual diets are unknown and 
estimated by QFASA, we define �(p) to be the conceptual ICC of the 
corresponding population of QFASA diet estimates. We estimate 
�(�) from a sample of k QFASA diet estimates for each of n preda-
tors, which we denote by �̂(p). Error in our estimator �̂ arises from 
two sources which we refer to as (1) sampling error and (2) measure-
ment error. The sampling error is simply the result of using a sample 
of n predators to estimate �(�) rather than the entire population of 
predators, since another sample of n predators would presumably 
yield another estimate of �(�). The second source of error, which 
we have termed the measurement error, can be attributed to the 
fact that the actual/true diets of the predators are not known but 

(3)CS
�
p1, p2

�
=
√
2M

�
M�

m=1

rm

�1∕2

,

rm =

⎧⎪⎪⎨⎪⎪⎩

0 if p1m=p2m=0�
p1m∑M
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−
p2m∑M
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otherwise.

(4)�̃ =
SSs ∕dfs − SSe ∕dfe

SSs ∕dfs +
(
k̃ − 1
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are estimated via QFASA and that the prey FA signatures, calibra-
tion coefficients, and prey fat content used in QFASA estimation 
are all subject to sampling variability. The distinction between the 
various sets of diets, as well as the associated notation, is depicted 
in Figure 1.

If we ignore for the moment the measurement error (that is, 
we assume that �(�) = �(p)), we can estimate the sample-to-sample 
variability in �̂(p) in a straightforward manner using a nonparametric 
bootstrap in which the predators are sampled with replacement and, 
for each sample of predators, the corresponding k diets are selected 
to be part of the bootstrap sample. This approach for bootstrapping 
clustered (albeit univariate) data was recommended in Ukoumunne 
et al.  (2003). Specifically, for each of R bootstrapped samples of 
predator diets, we compute �̂∗r, r = 1, … ,R and CIs based on the 
bootstrap distribution of the �̂∗ can then be computed.

In the more realistic setting in which the QFASA diet estimates 
are merely estimates of the true diets, we need to account for the dif-
ference between �(�) and �(p), which we call the bias. Our approach, 
detailed below, for incorporating the bias involves shifting our CIs 
by an estimate of the bias. Note that in Stewart and Field (2011), CIs 
for the true diet of a predator were developed, and they also had to 
be shifted by an estimated amount due to a bias in the QFASA diet 
estimates.

To incorporate measurement error into our bootstrap proce-
dure, we use pseudo-predators. From the outset of QFASA, pseudo-
predators have been used in QFASA applications as a means of 
assessing new methodology for QFASA by allowing researchers to 
simulate samples of FA signatures representative of real-life pred-
ator signatures but with specifically chosen diets. Various versions 
of the basic pseudo-predator algorithms developed in Iverson 
et al.  (2004) now exist and have been used for a variety of pur-
poses (Bromaghin et al.,  2016; Bromaghin, Budge, Thiemann, & 
Rode, 2017; Stewart, 2013, 2017; Stewart & Field, 2011). The core 
idea is to create a FA signature by sampling a prey FA library pro-
portionately based on a given diet vector of proportions considered 
to be the “true” diet. The diet of the pseudo-predator can then be 
estimated using QFASA, yielding a simulated diet vector.

Rather than resampling the diet estimates obtained from our orig-
inal sample of predators, we propose adding measurement error by 
bootstrapping the estimated diets of pseudo-predators, where their 
diets are determined from the diet estimates of our original sample. 
More specifically, for n sampled predators with diet estimates de-
noted by pi11, … , pi1k … , pin1 … , pink in Figure 1, we generate corre-
sponding pseudo-predators depicted as y∗

11
, … , y∗

1k
… , y∗

n1
… , y∗

nk
 

in Figure  2. The estimated diets of the pseudo-predators, 
p∗
11
, … , p∗

1k
… , p∗

n1
… , p∗

nk
, are then bootstrapped R times and the 

entire procedure, as shown in Figure 2, is repeated B times, yielding 
estimates �̂∗∗br(p), r = 1, … ,R, and b = 1, … ,B. Note that b indexes 
the number of generated samples of pseudo-predators.

Using the bootstrap samples, we compute the bootstrap stu-
dentized T and BCa intervals in Davison and Hinkley (1997). In gen-
eral, for a parameter of interest, say �, being estimated by T with 
variance V, the bootstrap studentized T intervals use a bootstrap 
approximation to the distribution of Z = (T − �)∕V1∕2 instead of 
the usual normal approximation. Confidence limits then follow and 
are analogous to the Student-t confidence limits for a population 
mean. Note that an estimate of the standard error (V1∕2) is needed 
and we use the “jackknife” function in the bootstrap R package 
(Tibshirani,  2019) to accomplish this. Percentile methods offer an 
alternative bootstrapped-base approach to interval estimation and 
the BCa intervals, in particular, incorporate bias and skewness cor-
rection factors. In Rizzo  (2012), BCa is referred to as the “better 
bootstrap confidence interval,” and we have therefore chosen to 
investigate these intervals in addition to the simpler T intervals. The 
bias and acceleration factors were estimated as in Rizzo (2012), with 
jackknife replicates being used to estimate the acceleration factor. 
Note that in Figure 2, the bootstrap confidence intervals estimate 
�∗(p), the population version of �̂∗(p). We need to therefore account 
for the difference between �∗(p) and �(p), and subsequently, the dif-
ference between �(p) and �(�), where �(�) is ultimately our parame-
ter of interest. Let d1 = �∗(p) − �(p) and d2 = �(p) − �(�). We estimate 
d1 by comparing the mean of the B estimates, �̂

∗b
(p), with �̂(p). We 

also make the assumption that d1 = d2 = d so our estimate of the 
common bias d is

F I G U R E  1 Illustration of repeatability framework and notation where �ij denotes the true diet, and pij the corresponding QFASA diet 
estimate, of the ith predator at time j, i = 1, … , n and j = 1, … , k. The QFASA diet estimate of the mth predator in the sample is denoted by 
pimj ,m = 1, … , n. The notation �( ⋅ ) and �̂( ⋅ ) is used to represent the true versus sample repeatability, respectively, and is measured by the 
intraclass correlation coefficient.
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F I G U R E  2 Illustration of bootstrap 
framework where pimj denotes the QFASA 
diet estimate of the mth predator in 
the sample, m = 1 … , n . The sample 
repeatability is denoted by �̂(p), the 
repeatability of the diets of the pseudo-
predators by �̂∗(p) and the repeatability 
in the rth bootstrap sample by �̂∗∗r(p). 
Repeatability is measured by the intraclass 
correlation coefficient and the bootstrap 
samples attempt to capture the sampling 
error. Confidence intervals are obtained 
by repeating the procedure B times.

F I G U R E  3 Comparison of estimated 
coverage probabilities (and corresponding 
margin of errors for coverage) for 95% 
bootstrap T and BCa confidence intervals, 
with and without bias correction for 
two sample sizes (20 and 50) and two 
simulated time periods corresponding to 
various values of repeatability denoted 
by ρ.
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Note that this is analogous to the bootstrap estimate of bias 
(Davison & Hinkley, 1997). Our total bias is then 2d, which is esti-
mated by 2d̂, and our CIs are shifted (the bias is subtracted from the 
end points) by this amount. In our applications, this bias was found 
to be negative (see Section 3) so by subtracting the bias, we are, in 
effect, adding its absolute value to the end points of the CIs.

It is important to note that if �̂(p) is reported on its own (that is, 
without the accompanying interval), we require only an estimate of 
d2, the difference between �(p) and �(�), and so, our intervals are 
shifted by d̂ in Equation (5). We recommend this adjustment if, as is 
the usual case, the diets are estimated with error.

In summary, the bias-adjusted estimate of �̂(p) is �̂(p) − d̂, and 
the corrected bootstrap CIs are 

(
Lboot − 2d̂,Uboot − 2d̂

)
, where Lboot 

and Uboot denote the lower and upper CI bootstrap limits, respec-
tively. The bias-corrected CIs are computed in the QFASA R package 
(Stewart et al., 2021) through the function comp.rep if the parameter 
CI is set to “TRUE.”

2.3  |  Simulation study

We applied a simulation study to assess the accuracy and precision 
of our proposed measure of repeatability in the context of QFASA 
diet estimates, where our measure estimates the repeatability of a 
sample of n × k diet estimates from a conceptual population of diets 
with true repeatability �(�). We created a simulated population of 
diets (as described below) by generating five different large “grids” 
of population diets corresponding to five different values of �(�), 
where each grid is similar to what is depicted in the upper left-hand 
corner of Figure  1, and sampled repeatedly from each grid. Then, 
to simulate observing QFASA diet estimates rather than the actual 
diets, we generated pseudo-predators from each sample of selected 
diets and computed their QFASA diet estimates. Finally, we obtained 
95% CIs for �(�) based on the diet estimates, using the methods in 
Section 2.2, and computed (1) the proportion of time the intervals 
included the true repeatability (�(�)) or the associated coverage prob-
ability and (2) the average length (or width) of the intervals, where 
the length of an individual interval is simply the difference between 
the upper limit and lower limit. Coverage probabilities near 0.95 are 
desired, as well as CIs that are not too wide to be useful in practice 
since shorter CIs reflect more precise knowledge about our param-
eter of interest.

To create the grids of population diets, each with an associated 
value of � = �(�), we first took an average of the FALL/WINTER 
grey seal QFASA diet estimates described in Section 2.4 and then 
modified this average diet systematically. Specifically, the average 
was transformed using the isometric log-ratio (ilr) transformation 
(Egozcue et al., 2003), a commonly used and recommended trans-
formation for compositional data based on its mathematical prop-
erties, and a measure of variability was also obtained from the ilr 

transformed diet estimates. To obtain 5 grids of diets with differ-
ent corresponding values of �(�), we modified the transformed 
base diet through the addition of 1000 chosen “row effects,” 2 
“column effects” (corresponding to k = 2), and normal random 
error. The 2000 diet estimates were then transformed back to 
compositions. The row effect was generated from a multivariate 
normal distribution with mean given by a vector of zeros and the 
covariance matrix given by a diagonal matrix with diagonal ele-
ments obtained from the estimated variances in the real-life diet 
estimates, as previously described. Since we were interested in 5 
increasing values of ρ with the minimum value near 0 and the max-
imum value near 1, for each of the 1000 diets, the column effect 
was ± a constant times the mean diet vector. The repeatability 
was computed using Equation (2) for each grid of 2000 diets and 
the resulting values of ρ were � = 0.051, 0.261, 0.510, 0.709, and 
0.947.

The algorithm for yielding a single confidence interval is compu-
tationally demanding; therefore, there were practical limitations on 
n, B, R, and k, as well as the number of simulations that could be run. 
To this end, we ran our simulations in parallel with 5 cores and exam-
ined only modest values of n (n = 20 or n = 50; Figure 3), with k = 2 , 
B = 100, and R = 100. We surmise that results would improve with 
increasing n, but as the computational burden also increases with 
sample size, it was not feasible to examine large values. We were 
also limited in the number of total simulations we could reasonably 
run (in particular for n = 50), and this was set to 100 for both sample 
sizes, resulting in coverage probabilities with an associated margin of 
error of approximately 4%.

2.4  |  Quantifying grey seal diets

2.4.1  |  Seal samples

Full-depth blubber biopsies were collected between 1993 and 2015 
from 220 adult, free-ranging, grey seals (90 males, 130 females) on 
Sable Island, NS, Canada (43°55′N, 60°00′W) following the methods 
described in Beck et al.  (2007). Samples were collected during the 
molt (May–June, SPRING), in September–October (FALL), or during 
the annual breeding season (December–January, WINTER) as part 
of studies examining diet, energetics, foraging distribution, and be-
havior (Austin et al., 2006; Beck et al., 2007; Breed et al., 2006; Lang 
et al., 2009, 2011; Lidgard et al., 2003, 2020; Mellish et al., 1999; 
Noren et al., 2005). Individuals were either sampled at two differ-
ent periods within the same calendar year (SPRING and subsequent 
WINTER or FALL and subsequent WINTER, Table 1) or in the same 
period (WINTER) over multiple years (Table  2). In the latter case, 
note that from Table 2, there are several missing values. Prey FAs are 
deposited in blubber over time (Cooper, 2004; Iverson et al., 2004) 
such that the FA composition of grey seal blubber represents the in-
tegrated diet over the preceding two to three months. Thus, samples 
collected during the SPRING, FALL, and WINTER periods described 
above will reflect the integration of the diet consumed in spring, 

(5)d̂ =
1

B

B∑
b=1

�̂
∗b
(p) − �̂(p).
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late summer, and fall/early winter, respectively. Details of the sam-
ple processing methods can be found in Budge et al.  (2006). Note 
that over the course of lactation, female grey seals do not mobilize 
blubber FAs in a uniform manner (Arriola et al., 2013), therefore, all 
blubber samples collected from lactating females during the breed-
ing season (WINTER) were collected prior to day 6 postpartum. All 
procedures used on study animals were conducted in accordance 
with the legal requirements of the Canadian Council on Animal Care 
following the Guidelines on the Care and Use of Wildlife. All pro-
cedures were approved by Dalhousie University's Committee on 
Laboratory Animals and by Fisheries and Oceans Canada's animal 
care committee.

2.4.2  |  Prey library

For the QFASA estimation of seal diets (see QFASA Diet Estimates 
below) we used a prey database (“library”) comprised of 1735 indi-
viduals FA signatures from 21 species of fish and invertebrates that 
were collected within the main foraging range of the Sable Island 
grey seals (Northwest Atlantic Fisheries Organization 4 Subarea, 
excluding the Gulf of St Lawrence estuary). The 21 prey species in-
cluded in the library (Table 3) are those known to be eaten by grey 

seals based on previous stomach content and fecal analyses (Bowen 
et al., 1993; Bowen & Harrison, 1994) or prey that was reasonably 
abundant and found at depths at which grey seals are known to for-
age (Beck et al., 2003a, 2003b). Details of prey collection and pro-
cessing can be found in Budge et al. (2002).

Following an exploratory analysis to determine whether the 
FA signatures of the selected prey contained any hidden struc-
ture (see Bromaghin, Budge, & Thiemann, 2017) some prey spe-
cies within the set were subdivided into smaller clusters prior to 
estimating seal diets (Table  3). American plaice (Hippoglossoides 
platessoides) were separated into two clusters based on size (small, 
≤25  cm, and large, >25 cm). Pollock (Pollachius virens) were sep-
arated into two clusters based on observed substructure among 
the FA signatures although the proximate cause for the substruc-
ture was unclear (there was no relationship to differences in size, 
season, or collection location). Substructure in the FA signatures 
based on seasonal variation (collection months) was found in four 
species (Atlantic butterfish, Peprilus triacanthus; Atlantic herring, 
Clupea harengus; capelin, Mallotus villosus; and longhorn sculpin, 
Myoxocephalus octodecemspinosus). Based on the identified sub-
structure for these four species, the FA signatures from individual 
prey collected in March, April, and May were used to model the 
diets of seals sampled in SPRING (see Table  3, Modeling Set 1) 
while the FA signatures of individual prey collected from July on-
ward were used to model the diets of seals sampled in FALL and 
WINTER (Table 3, Modeling Set 2).

2.4.3  |  QFASA diet estimates

The diet of each grey seal at each sampling point was estimated using 
QFASA following the methods of Iverson et al.  (2004). The diets 
were modeled using the calibration coefficients developed for grey 
seals (see Iverson et al., 2004). We used the “Dietary” FA subset, as 
defined in Iverson et al. (2004), excluding 16:3n-1, 16:4n-3, 22:n-6, 
and the 20:1 isomers. The FAs 16:3n-1, 16:4n-3, and 22:n-6 were 
not identified across all samples in the data set and were, there-
fore, removed from all analyses. The calibration coefficients for the 
20:1 isomers for grey seals (and other phocid seals) are very small, 
which can create calibrated predator FA signatures with values for 
these isomers, which are outside the range of values observed in 
the potential prey resulting in estimation issues (see Bromaghin 
et al., 2015). For the six prey species whose FA signatures were sub-
divided into clusters prior to QFASA modeling (see Section 2.4.2), 
the QFASA diet estimates for the clusters (where applicable) were 
summed to give a single proportion for that prey species prior to 
calculating repeatability.

The diet estimates for the individuals sampled at two different 
periods within the same calendar year (SPRING/WINTER or FALL/
WINTER, Table  1) are shown in Tables  S1 and S2, respectively. 
Individual seals appear only once in the full data set (i.e., either sam-
pled at SPRING and WINTER or FALL and WINTER) across all years. 
Diet estimates for the 24 females sampled in WINTER over multiple 

TA B L E  1 Number of adult grey seal males and females sampled 
twice within the same calendar year by year.

Year

SPRING/WINTER FALL/WINTER

Male Female Male Female

1993 4 3

1994 1 4

1995 4 5 1 3

1996 9 7 5 5

1997 7 5 3 2

1998 7 2 4

1999 3 3 6 4

2000 4 4

2001 5

2004 6 3

2009 7 9

2010 6 8

2011 15

2012 5 9 2

2013 4 5

2014 4 5

Total 54 66 36 42

Note: SPRING/WINTER, individuals sampled during the molt in May–
June (SPRING) and then again during the subsequent breeding season 
(December–January, WINTER). FALL/WINTER, individuals sampled 
in September–October (FALL) and then again during the subsequent 
breeding season (WINTER). Individual seals appear only once in the 
data set (i.e., either sampled at SPRING/WINTER or FALL/WINTER) 
across all years.
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years (Table 2) are shown in Table S3. Given that the diet estimates 
are of length 21 (as there are 21 potential prey species in the diet), 
we consider n = 24 to be a relatively small sample size.

3  |  RESULTS

Estimated coverage probabilities for 95% confidence intervals for ρ, 
along with error bars reflecting the 4% margin of errors, are given 
in Figure 3. The first row corresponds to n = 20 while the second 
row pertains to n = 50. The coverage with and without the bias cor-
rection is illustrated for comparison purposes. Recall that the bias 
adjustment is needed to account for the measurement error due 
to using QFASA diet estimates. The solid line at 0.95 indicates the 
target coverage and, after being corrected for measurement error, 
all intervals appear to yield reasonably high coverage except when 
ρ is extremely large (that is, for � = 0.95). Note that when � = 0.71, 
the bias correction greatly improves the coverage probability in all 
cases, but the improvement is insufficient for � = 0.95. While we 
may potentially conclude that estimating repeatability when tempo-
ral consistency is very high may be problematic, repeatability as high 
as 0.95 seems unlikely in practice. Furthermore, while the coverage 
of the intervals is lower than the target coverage of 0.95, when ρ is 

large, the upper bound of the intervals is typically near this value. 
Specifically, on average, the upper limit of both the T and BCa CIs 
was 0.95 for n = 20 and 0.93 for n = 50. The bias-corrected T and 
BCa intervals are similar for both sample sizes and the coverage at 
n = 50 is generally either roughly the same or larger than that at 
n = 20, except for when � = 0.95.

The average width of the intervals is compared in Table 4. The 
widths suggest that confidence intervals appear to be largest for val-
ues of ρ near 0.5 and increasing the sample size noticeably reduced 
the length of the intervals on average. The T and BCa intervals ap-
pear to be of similar lengths.

In Figure 4 the absolute value of the average estimated bias (see 
Equation 5) over the 100 simulated samples is plotted against ρ. It 
is clear that the bias (in magnitude) increases as the true value of ρ 
increases and in a seemingly linear manner. This bias (resulting from 
measurement error) is not affected by the sample size.

3.1  |  Grey seal diets

We applied our proposed measures of repeatability for composi-
tional data for both balanced and unbalanced designs to the grey 
seal QFASA diet estimates. The diet estimates for individuals 

Seal ID

Year

Total1999 2000 2001 2002 2003 2004 2006

Hg12 · · 2

Hg23 · · · · 4

Hg32 · · 2

Hg112 · · · 3

Hg132 · · · · 4

Hg501 · · · 3

Hg505 · · · · 4

Hg825 · · · 3

Hg2675 · · · · 4

Hg3250 · · · 3

Hg3263 · · 2

Hg3625 · · · 3

Hg3817 · · · · 4

Hg3994 · · · 3

Hg4374 · · · 3

Hg4377 · · · 3

Hg4388 · · · 3

Hg4391 · · · · · 5

Hg4393 · · · · 4

Hg4404 · · · 3

Hg4489 · · · · · 5

Hg4491 · · · · · 5

Hg4735 · · · · 4

Hg6035 · · 2

TA B L E  2 Number of samples for each 
of 24 adult grey seal females sampled 
across multiple years during the breeding 
season (December–January, WINTER).
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sampled at two different periods within the same calendar year 
(SPRING/WINTER, Table  S1; FALL/WINTER, Table  S2) were used 
to estimate repeatability (balanced design) across seasons within 
years (seasonal repeatability). The diet estimates for the 24 females 
sampled in WINTER over multiple years (Table S3) were used to es-
timate repeatability (unbalanced design) across years (interannual 
repeatability).

3.1.1  |  Seasonal repeatability in diet

Recall that to obtain CIs for repeatability, we generate pseudo-
predators by setting the “true” diet in the pseudo-predator 

algorithm to be the QFASA diet estimates. Pseudo-predators are 
then generated by sampling proportionately from an appropriate 
prey database. For repeatability across the SPRING/WINTER seal 
diets, we generated pseudo-predators and obtained CIs using both 
the prey database used to estimate SPRING diets (Set 1, Table 3) 
and the prey database used to estimate the FALL and WINTER 
diets (Set 2, Table 3) in order to determine how the choice of prey 
database affects the estimates of CIs. For repeatability across the 
FALL/WINTER diets, only the prey set used to estimate FALL and 
WINTER diets (Set 2, Table 3) was used to generate the pseudo-
predators. The point estimates of repeatability and CIs (all of 
which have been adjusted by an estimate of bias) are presented 
in Table 5.

TA B L E  3 Prey species (“prey library”) used in QFASA to estimate the diet composition of adult grey seals.

Common name Scientific name Cluster

Modeling Set 1 Modeling Set 2

n Lipid (%) n
Lipid 
(%)

Forage Fish Atlantic butterfish Peprilus triacanthus March 49 12.3

July–September 26 8.1 26 8.1

Capelin Mallotus villosus March–May 135 4.7

July 27 7.7 27 7.7

September 21 9.7

Atlantic herring Clupea harengus March 108 2.3

July–September 121 10.1 121 10.1

Atlantic mackerel Scomber scombrus 32 5.1 32 5.1

Northern sand lance Ammodytes dubius 148 5.3 148 5.3

Snake blenny Lumpenus lumpretaeformis 18 2.4 18 2.4

Gadids Atlantic cod Gadus morhua 109 2.5 109 2.5

Pollock Pollachius virens Group 1 35 1.9 35 1.9

Group 2 18 3.6 18 3.6

Silver hake Merluccius bilinearis 58 1.6 58 1.6

White hake Urophycis tenuis 80 1.3 80 1.3

Flatfish American plaice Hippoglossoides 
platessoides

Small (<25 cm) 67 2.9 67 2.9

Large (>25 cm) 67 1.8 67 1.8

Winter flounder Pseudopleuronectes 
americanus

50 2.0 50 2.0

Witch flounder Glyptocephalus 
cynoglossus

24 1.9 24 1.9

Yellowtail flounder Limanda ferruginea 156 2.2 156 2.2

Skates Smooth skate Malacoraja senta 33 2.5 33 2.5

Thorny skate Amblyraja radiata 83 2.6 83 2.6

Winter skate Leucoraja ocellata 40 1.5 40 1.5

Other Redfish Sebastes sp. 54 7.1 54 7.1

Longhorn sculpin Myoxocephalus 
octodecemspinosus

March–April 45 2.1

September 25 4.0

Sea raven Hemitripterus americanus 71 2.0 71 2.0

Invertebrates Northern shortfin 
squid

Illex illecebrosus 35 3.0 35 3.0

1689 1398
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Bootstrap parameters were set to B = 50 and R = 100 for both 
the SPRING/WINTER and FALL/WINTER repeatability to accom-
modate the large sample sizes. Specifically, as the algorithm requires 
distances between all pairs of observations to be calculated for each 

bootstrap sample, the larger the sample size, the slower it is to ob-
tain the intervals. Note that with these settings, CIs are based on 
50 × 100 = 5000 bootstrap samples.

The repeatability across the SPRING/WINTER diet estimates 
was low indicating little temporal consistency in the diets of indi-
viduals between spring and the subsequent fall/early winter pe-
riod. For the SPRING/WINTER comparison, the T and BCa intervals 
were almost identical regardless of the choice of prey modeling set 
(Table 5). In contrast to the repeatability for SPRING/WINTER, the 
repeatability across the FALL/WINTER diets was high indicating 
that there is a temporal consistency in the diets of individuals over 
the period from late summer to fall/early winter.

3.1.2  |  Interannual repeatability in diet

Bootstrap T and BCa 95% confidence intervals were computed for 
the QFASA diet estimates of the 24 individual female grey seals sam-
pled in 2–5 different WINTER seasons in Table 2. As k is not fixed, 
this is an example of an unbalanced setting with missing values and, 
thus, Equation  (4) was used to calculate repeatability. Results are 
given in Table 6. The prey set used to estimate FALL and WINTER 
diets (Modeling Set 1, Table 3) was used to obtain the CIs.

As before, the results are very similar for the T and BCa inter-
vals. The bias was large in this example (�̂(p) was shifted upwards by 
0.247) and the intervals were shifted by double this amount due to ρ 
being large and, we surmise, more repeated measurements. The in-
terannual repeatability was high indicating that there was a temporal 
consistency across years in the diets of these individuals during the 
fall/early winter period prior to the start of the breeding season.

4  |  DISCUSSION

Here, we propose a statistical approach for assessing the tempo-
ral consistency in compositional diet estimates using a measure of 

TA B L E  4 Comparison of average confidence interval lengths for 95% bootstrap T and BCa confidence intervals for two sample sizes (20 
and 50) and two simulated time periods corresponding to various values of repeatability denoted by ρ.

� = 0.05 � = 0.26 � = 0.51 � = 0.71 � = 0.95

n = 20 n = 50 n = 20 n = 50 n = 20 n = 50 n = 20 n = 50 n = 20 n = 50

T .141 .080 .267 .158 .287 .184 .249 .169 .123 .089

BCa .132 .080 .274 .161 .289 .187 .249 .174 .122 .093

F I G U R E  4 Plot of the magnitude of the average estimated bias 
in the repeatability estimates over the simulations versus the true 
values of repeatability denoted by ρ.
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TA B L E  5 Estimated repeatability (�̂) and 95% T and BCa 
confidence intervals for the true seasonal repeatability in the diets 
of grey seals.

Seasons
Prey 
set Type n �̂ 95% CI

Spring/
Winter

Set 1 T 120 0.293 (0.235, 0.355)

BCa 120 .293 (0.235, 0.356)

Spring/
Winter

Set 2 T 120 .293 (0.237, 0.356)

BCa 120 .293 (0.237, 0.357)

Fall/Winter Set 2 T 78 .617 (0.544, 0.686)

BCa 78 .617 (0.542, 0.686)

TA B L E  6 Estimated repeatability (�̂) and 95% T and BCa 
confidence intervals for the true interannual repeatability in the 
diets of female grey seals between 1999 and 2006.

n �̂ Type 95% CI

24 .725 T (0.634, 0.831)

BCa (0.633, 0.825)
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repeatability for the multivariate setting. In contrast to indices that 
have previously been used to examine individual consistency in con-
current, compositional diet estimates over different time scales (e.g., 
Estes et al., 2003; Thiemann et al., 2011), our approach provides a 
means of simultaneously incorporating the variance in resource use 
associated with both the individual and the population, providing an 
empirical measure of the extent to which compositional diet esti-
mates are characteristic of individuals. Our measure can be applied 
to situations in which the sample sizes are small relative to the num-
ber of potential prey species in the diet and we further developed 
an extension that can accommodate unbalanced designs (missing 
values). While, in general, missing observations are statistically chal-
lenging to deal with, they are common in real-life data sets and this 
extension, therefore, allows our methods to be more widely applied. 
A critical component of our approach is the use of an appropriate 
distance measure. By choosing the chi-square distance measure we 
do not have to modify or condition on    the zeros in the diet esti-
mates, as has been done in the literature with problematic zeros in 
compositional data (Palarea-Albaladejo & Martín-Fernández, 2008, 
2013; Stewart & Field, 2011).

When the diet of predators is estimated using QFASA, we 
found that our estimate of repeatability may be biased due to the 
QFASA diet estimates being highly variable estimates of the true 
unknown diets. More specifically, our estimate of repeatability 
tends to be consistently smaller than ρ and the magnitude of the 
bias increases with increasing values of ρ. Our CI methods adjust 
for this bias and, even when n is small relative to the dimension 
of the diet estimates, appear to perform well. Our measure of re-
peatability can easily be applied to compositional diet estimates 
derived from other methods such as stomach content or scat anal-
ysis, for example, as well as to other fields of applications where 
compositional measurements over time have been collected. In 
applications beyond QFASA, CIs that incorporate sampling error 
could be developed in a relatively straightforward analogous man-
ner; however, our approach for incorporating measurement error 
into the CI algorithm is unique to QFASA diet estimates and this 
component of the CI methodology cannot be extended to other 
applications.

We applied our proposed measure of repeatability to QFASA 
diet estimates of free-ranging grey seals in the Northwest Atlantic. 
The results of the seasonal comparisons indicate that there is low 
temporal consistency in the diets of individual grey seals between 
the spring and fall/early winter but a relatively high level of tem-
poral consistency in individual diets in the period between late 
summer and fall/early winter of a given year (Table 5). These re-
sults are consistent with seasonal changes in grey seal diets ob-
served in cross-sectional comparisons of QFASA diet estimates 
(Beck et al., 2007) and with the seasonal shifts observed in stable 
isotope values across grey seal tissues (Hernandez et al.,  2019). 
Although our results are consistent with previously observed sea-
sonal shifts in grey seal diets, the present analysis did not consider 
the potential influence of factors such as sex or changes in pop-
ulation abundance on the patterns of seasonal repeatability. The 

diets of male and female grey seals are known to differ with males 
typically having more diverse diets than females (Beck et al., 2007; 
Tucker & Iverson, 2007). In addition, the diet estimates used in the 
present study cover a period of significant growth for this popu-
lation (den Heyer et al., 2021), and thus, potential changes in the 
level of intraspecific competition may be occurring which is pre-
dicted to influence the degree of individual specialization (Araújo 
et al., 2011). Future analyses examining the influence of these fac-
tors on the levels of seasonal repeatability will be required to more 
fully understand the time scales over which individual consistency 
in the diet is occurring in grey seals.

The high level of repeatability in the QFASA diet estimates of in-
dividual females during winter sampling across years (Table 6) is also 
in keeping with the individual consistency observed in the isotopic 
niches of grey seals (Hernandez et al.,  2019). Our results indicate 
that there was a strong individual consistency in the fall/early winter 
diets of the females sampled here. However, a more detailed analysis 
of the species composition of the individual diets will be required to 
determine whether the high level of repeatability across years is due 
to consistent generalist diets or whether individual females may be 
specializing in a small range of prey types in the period leading up to 
the breeding season.

A downside of our measure of repeatability is that it can be 
slow to compute, particularly when the sample size, number of time 
points, or number of prey species is large. Since the CI procedure 
is bootstrapped-based and requires computing QFASA diet esti-
mates, it is extremely computationally intensive. If CIs are desired, 
the bootstrapping could potentially be done in parallel to speed up 
computations. While the computational burden limited how exten-
sively we could examine our proposed method through simulations, 
the real-life data sets provided additional validation and information 
on the precision (as reflected in the length of the CIs) likely to be 
observed in practice.

The conclusions drawn regarding repeatability in the real-life 
data, as well as our simulation study results, suggest that our novel 
measure of repeatability is useful and capable of handling complex 
compositional data sets, such as those comprising of diet estimates. 
Given the importance of understanding how predator diets vary 
over time and space, our method may find broad application.
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