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ABSTRACT Microarrays have now gone from obscurity to being almost ubiquitous in biological research.
At the same time, the statistical methodology for microarray analysis has progressed from simple visual
assessments of results to novel algorithms for analyzing changes in expression profiles. In a
micro-RNA (miRNA) or gene-expression profiling experiment, the expression levels of thousands of
genes/miRNAs are simultaneously monitored to study the effects of certain treatments, diseases, and develop-
mental stages on their expressions. Microarray-based gene expression profiling can be used to identify genes,
whose expressions are changed in response to pathogens or other organisms by comparing gene expression in
infected to that in uninfected cells or tissues. Recent studies have revealed that patterns of altered microarray
expression profiles in cancer can serve as molecular biomarkers for tumor diagnosis, prognosis of disease-
specific outcomes, and prediction of therapeutic responses. Microarray data sets containing expression
profiles of a number of miRNAs or genes are used to identify biomarkers, which have dysregulation in normal
and malignant tissues. However, small sample size remains a bottleneck to design successful classification
methods. On the other hand, adequate number of microarray data that do not have clinical knowledge can
be employed as additional source of information. In this paper, a combination of kernelized fuzzy rough
set (KFRS) and semisupervised support vector machine (S3VM) is proposed for predicting cancer biomarkers
from one miRNA and three gene expression data sets. Biomarkers are discovered employing three feature
selection methods, including KFRS. The effectiveness of the proposed KFRS and S3VM combination on the
microarray data sets is demonstrated, and the cancer biomarkers identified from miRNA data are reported.
Furthermore, biological significance tests are conducted for miRNA cancer biomarkers.

INDEX TERMS Cancer biomarkers, feature selection, kernelized fuzzy rough set, microarray data,
semisupervised SVM, successive filtering.

I. INTRODUCTION
Developing simple data mining tests that allow early cancer
detection is one of the top priorities in cancer research field.
Such tests will impact patient care and outcome through
disease screening and early detection. Large number of gene
expression/miRNA data and their diverse expression patterns
indicate that they are likely to be involved in a broad spectrum
of human diseases. For example, the miRNAs found based
on the combinations of computational and experimental
techniques [1] can be potentially used to study their involve-
ment in different diseases. It has been found in several
studies that some miRNAs are differentially expressed in

normal and cancerous tissues. This finding suggests possible
links between miRNAs and oncogenesis [2]. Furthermore,
some miRNAs are differentially expressed in tissue-specific
tumors, which indicate that it might be possible to diagnose
the cancer type from these onco-miRNA signatures. Hence
the development of suitable machine learning techniques for
finding onco-miRNAs that target onco-genes is an important
task that could provide alternate ways of diagnosis and ther-
apy of the diseases.
Microarray data analysis methods can be broadly grouped

into unsupervised, supervised and semisupervised methods.
Unsupervised analysis or class discovery is an unbiased
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analysis of microarray data. No prior class information is used
and clustering methods are employed to group the samples.
Extensive studies for gene expression analysis lead to dif-
ferent methodological techniques including gene clustering
and gene marker identification [3]–[8]. A wide variety of
clustering techniques in the field of computational biology,
bioinformatics, soft computing and geoscience can be found
in [9]–[11].

In the case of supervised analysis, previous knowledge
is taken into account. Often tumor samples for microarray
studies come fromwell-defined groups, for example good and
poor prognosis patients. The aim is then to identify genes or
develop a model that is able to assign patients to the good
or poor prognosis class based on the microarray data, of its
corresponding tumor. A few examples of modeling strate-
gies are naive Bayesian (NB) classifiers [12]–[14] decision
trees [15], support vector machines [16], [17] and k-nearest
neighbor (KNN) classifiers [18], [19].

On the other hand, semisupervised methods are also being
used for gene classification by jointly employing both labeled
and unlabeled data [20]. Microarray data are being exploited
for semisupervised gene expression analysis leading to a
better understanding of genetic signatures in cancers and
improve treatment strategies including peptide identification
in shotgun proteomics [21], protein classification [22], pre-
diction of transcription factor-gene interaction [23] and gene
expression based cancer subtypes discovery [24]–[29].
Amicroarray dataset is s×t two dimensional matrixM = mij,
consisting of s samples and t biomolecules. Each element
represents the expression level of the jth microarray for
ith sample. To identify biomarkers for semisupervised
classification, the problem is modeled as a feature selec-
tion problem where the genes or miRNAs are considered as
features.

Selection of informative genes [30] is an important part for
the analysis of microarray data. Successful feature selection
has several advantages in such situations where thousands of
features are involved. First, dimension reduction is employed
to reduce the computational cost. Second, reduction of noises
is performed to improve classification accuracy. Finally,
extraction of more interpretable features or characteristics
that can be helpful to identify and monitor the target diseases.

In this work, we have investigated several feature selection
methods namely kernelized fuzzy rough set (KFRS) [31], [32],
fuzzy preference based rough set (FPRS) [33] and consis-
tency based feature selection (CBFS) [34]. Subsequently,
different tumor types are predicted based on these selected
microarray biomarkers using our recently proposed trans-
ductive (semisupervised) SVM (TSVM) [24] and compared
with the performances of the traditional supervised methods
including SVM [35], KNN [36] and naive Bayesian
classifiers [37]. The proposed method (KFRS + TSVM)
outperforms (CBFS+TSVM) [24], (FPRS + TSVM) [25]
as well as KNN and naive Bayes classifiers in combination
with these feature selection techniques on the four publicly
available microarray datasets (i.e., three gene-expression and

one miRNA datasets). Experimental results of the proposed
method have proved to be effective based on the comparative
study conducted on these microarray datasets. Furthermore,
we have investigated how the selectedmiRNAs are associated
with different types of cancer.
The rest of the article is organized as follows: The

next section briefly introduces ISVM/TSVM algorithms.
Proposed technique is provided in section III. Section IV
describes the datasets and preprocessing. Section V presents
results and discussion followed by conclusion in section VI.

II. BASIC IDEAS OF INDUCTIVE AND
TRANSDUCTIVE SVM
A. INDUCTIVE SVM
Inductive SVM (ISVM) is a general class of learning archi-
tecture originated in modern statistical learning theory [35].
Given a training dataset, the SVM training algorithm obtains
the optimal separating hyperplane in terms of generalization
error. In a binary classification problem, let S = [(xi, yi)],
i = 1, 2, . . . , l be the set of training examples, where
yi ∈ {±1} is the label associated with input pattern xi. In a
learning problem, the task is to estimate a function f from
a given class of functions that correctly classifies unseen
examples (x, y) by computing the sign(f (x)). In the case of
pattern recognition, this means that given some new patterns
x ∈ χ , the classifier predicts the corresponding y ∈ {±1}.
Following nonlinear transformation, the parameters of the

decision function f (x) are determined by the following mini-
mization problem:

min [ψ(w, ξ )] =
1
2
||w||2 + C

l∑
i=1

ξi (1)

subject to

yi(φ(xi).w+ b ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l (2)

whereC is a user-specified, positive, regularization parameter
in Eqn. (1), The variable ξi are the so called slack variables.
The cost function in Eqn. (1) constitutes the structural risk,
which balances empirical risk. The regularization parameter
C controls this trade off.

B. TRANSDUCTIVE SVM
To alleviate the problem of small-size training set, transduc-
tive SVM was proposed in [35]. Compared to traditional
SVM (also called inductive SVM), TSVM is often more
promising and can provide better performance. TSVM seeks
largest separation in presence of both labeled and unlabeled
data through regularization. At the initial iteration, the stan-
dard SVM is used to obtain an initial discriminating hyper-
plane based on the labeled data alone. The trained SVM
is then used to obtain the labels of the unlabeled samples.
These are called semilabeled samples. Subsequently, useful
transductive samples are selected from the semilabeled sam-
ples according to a given criterion. A hybrid training set
is thus obtained consisting of the original labeled and
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transductive sets. The resulting hybrid training set is then
used at the next iteration to find a more reliable separating
hyperplane and the process is repeated. We describe the
semisupervised SVM (S3VM) approach as follows.

Given a set of independent, identically distributed labeled
examples S = [(xi, yi)], i = 1, 2, . . . , l and another set of
unlabeled examples V = [(xj)], j = l + 1, l + 2, . . . , n from
the same distribution, the hyperplane separates both labeled
and transductive samples with the maximal margin and is
derived by minimizing:

min [ψ(w, ξ, ξ∗)] =
1
2
||w||2 + C

l∑
i=1

ξi +

d∑
j=1

ξ∗j , (3)

subject to

yi(φ(xi).w+ b ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l

yj(φ(xj).w+ b ≥ 1− ξ∗j , ξ∗j ≥ 0, j = 1, . . . , d (4)

In order to handle the nonseparable and transductive samples,
similar to standard ISVMs, the slack variables ξi and ξ∗j and
associated penalty values C and C∗ of both the labeled and
transductive data objects are introduced. d is the number
of extracted semilabeled samples in the transductive process
(d ≤ n − l). Like ISVM, training the TSVM corresponds to
solving the above optimization problem.

Finally, the decision function of the TSVM after setting the
Lagrange multipliers αi and α∗j is formulated as:

f (x) = sgn[
l∑
i=1

yiαik(x, xi)+
d∑
j=1

y∗j α
∗
j k(x, x

∗
j )+ b] (5)

where the function k(., .) = φ(.), φ(.) is called the kernel
function.

C. KERNEL FUNCTIONS
Using kernels, the optimal margin SVM classifier is turned
into a high performance classifier by implicitly mapping the
input vector into a high dimensional feature space. Some
commonly used kernels to develop different SVM and other
kernel based classifiers satisfyingMercer’s condition [38] are
as follows.

1) Linear Kernel:

k(xi, xj) = xi.xj (6)

2) Polynomial kernel:

k(xi, xj) = (γ xi.xj + r)d (7)

3) RBF kernel:

k(xi, xj) = exp(−γ ||xi − xj||2 (8)

4) Sigmoid kernel:

k(xi, xj) = tanh(γ xi.xj + r) (9)

Eqn. (6) represents a linear kernel that computes a dot product
in feature space. Eqn. (7) is a polynomial kernel where d > 0,

is a constant that defines the kernel order. The RBF kernel is
represented by Eqn. (8) where γ is the weight. On the other
hand, Eqn. (9) shows a particular kind of two-layer sigmoid
neural network which essentially serves as a similarity mea-
sure between xi and xj. It is to be noted that each kernel has
a dot product term (xi. xj) to measure the similarity between
two vectors xi and xj. In this work, RBF kernel function has
been utilized for mapping the input vectors. However, other
kernel functions can be used to design SVM/TSVM.

III. PROPOSED TECHNIQUE
The proposedmethod uses kernelized fuzzy rough set (KFRS)
to find a set of biomarkers from the microarray datasets.
Subsequently, the biomarkers are then used to distinguish
to classes of samples using TSVM. To study the perfor-
mance of the proposedmethod, we have used twowell-known
feature selection methods: fuzzy preference based rough
set (FPRS) and consistency based feature selection (CBFS).
Finally, computational and biological validations have been
performed. Different feature selection methods and TSVM
algorithm have been described as follows.

A. KERNELIZED FUZZY ROUGH SET
FOR FEATURE SELECTION
High level of similarity between kernel methods and rough
sets can be obtained using kernel matrix as a relation [31].
Kernel matrices could serve as fuzzy relation matrices in
fuzzy rough sets. Taking this into account, a bridge between
rough sets and kernel methods with the relational matri-
ces was formed [31]. Kernel functions are used to derive
fuzzy relations for rough sets based data analysis. In this
study, Gaussian kernel approximation has been used to
construct a fuzzy rough set model, where sample spaces
are granulated into fuzzy information granules in terms of
fuzzy T -equivalence relations computed with Gaussian
kernel. The details on kernelized fuzzy rough set model is
available in [31].

Formally, the forward greedy search algorithm based on
Gaussian kernel approximation [32] can be written as:

Input: Sample set U = {z1, z2, . . . , zm}, feature set A,
decision F and stopping threshold ε

Output: reduct red
Step 1: Initialize red to an empty set and β to 0.
Step 2: For each attribute ai ∈ A− red , compute

βi = β{ai}
⋃
red

Step 3: Find the maximal βi and the corresponding
attribute ai

Step 4: Add attribute ai to red if it satisfies

βi − βred (F) > ε

Step 5: Assign βi to βred
Step 6: Repeat steps 2–5 while red 6= A
Step 7: Return red

Initially, the algorithm starts with an empty set of attribute.
Subsequently, it evaluates the remaining attributes at each
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iteration and selects feature producing the maximal fuzzy
dependency β. Algorithm for the computation of dependency
with Gaussian kernel is available in [32]. The algorithm
terminates when adding any of the remaining attributes does
not satisfy step 4 in the above algorithm. The output of the
algorithm is a reduced feature set.

The fuzzy dependency β(F) can be computed as follows:

Input: Sample set U = {z1, z2, . . . , zm}, feature set A,
decision F and parameter δ

Output: dependency β of F to A
Step 1: βA(F)← 0
Step 2: i = 1 to m
Step 3: find the nearest sample xi of zi with a different

class
Step 4: βA(F)← βA(F)+

√
1− [exp(− ||zi−xi||

2

δ
)]2

Step 5: return βA(F)

The algorithmwill remove those features from the data which
would receive low dependency values.

B. FEATURE SELECTION USING FUZZY PREFERENCE
BASED ROUGH SET
Given a universe of finite objects U = {z1, z2, . . . , zm},
a fuzzy preference relation R is regarded as a fuzzy set on the
product set U × U , which is represented by a membership
function µR:U×U → [0, 1]. If the cardinality ofU is finite,
the fuzzy preference relation can be represented by an m×m
matrix (rij)m×m where rij is the preference degree of zi over zj.
If rij = 1/2, it shows that zi and zj are equally preferable;
rij > 1/2 indicates zi is preferred to zj, while rij = 1 means
zi is absolutely preferred to zj. On the other hand, rij < 1/2
shows zj is preferable to zi. Here, the preference matrix rij is
usually regarded to be an additive reciprocal, i.e., rij+rji = 1,
∀i, j ∈ {1, 2, . . . ,m}. In practice, preference structures are
represented by a set of ordinal discrete or numerical values.

Given a universe of finite objectsU = {z1, z2, . . . , zm} and
A = {a1, a2, . . . , an} is a nonempty finite set of attributes to
characterize the objects. The feature value of z is represented
by f (z, a) where a (for example, a1) is a numerical feature.
The upward and downward fuzzy preference relations over
U are formulated as:

r>ij =
1

1+ e−ρ(f (zi,a)−f (zj,a))

and

r<ij =
1

1+ e−ρ(f (zi,a)−f (zj,a))
(10)

where ρ is a user defined positive constant.
The function f (z) = 1

1+e−ρz , is the Logsig sigmoid transfer
function used in neural networks. The forward greedy search
algorithm based on fuzzy preference rough set is available
in [33].

C. CONSISTENCY BASED FEATURE SELECTION
Dash and Liu [34] introduced consistency function that
attempts to maximize the class separability without

deteriorating the distinguishing power of the original fea-
tures. Consistency measure is computed using the prop-
erties of rough sets. Rough sets provide an effective tool
which deals with the inconsistency and incomplete infor-
mation. This measure attempts to find a minimum number
of features that separate classes as consistently as the full
set of features can. In classification, it is used to select a
subset of original features which is relevant for increas-
ing accuracy and performance, while reducing cost in data
acquisition. When a classification problem is defined by
features, the number of features can be very large, many
of which are likely to be redundant. Therefore, a feature
selection criterion is defined to select relevant features.
Class separability constraint is usually employed as one
of the basic selection criteria. Consistency measure can be
used as a selection criterion that heavily depends on class
information and aims to keep the discriminatory power of
the actual features. This measure is defined by inconsis-
tency rate and its method of computation can be found
in [24] and [34].

D. OTHER FEATURE SELECTION TECHNIQUES
The objective of feature selection is to extract a subset of
relevant features which is useful for model generation. Many
mining algorithms don’t perform well with large number
of features. These unwanted features need to be removed
before any mining algorithm is applied. In the process of
feature selection, the nature of training data is usually labeled,
unlabeled or partially labeled leading to the development of
supervised, unsupervised and semisupervised feature selec-
tion algorithms. Depending on how and when the utility
of selected features is evaluated, different approaches are
used in practice, which are broadly divided into three
categories: filter, wrapper and embedded methods. For
example, signal-to-noise-ratio (SNR) [39] uses filtering
scheme to select relevant features. It is a correlation based
feature ranking algorithm used in a forward selection way
to rank features individually in terms of a correlation-
based metric, and then top-ranked features are selected.
Minimum-redundancy-maximum-relevance (mRMR) selects
top-ranking features usually based on mutual information,
correlation, or distance/similarity scores [40]. t-score [41]
is used for binary problem. F-score [42] is used to test if
a feature is able to well separate samples from different
classes by considering between class variance and within
class variance. Feature selection via chi-square test is another,
very commonly used method [43]. This method evaluates the
worth of a feature by computing the value of the chi-squared
statistic with respect to the class label.

E. CLASSIFICATION BY TSVM
In this study, we have applied the TSVM classifier proposed
byMaulik et al. [24] on the selected gene and miRNA subsets
obtained by the different feature selection methods. Training
the TSVM algorithm can be roughly outlined as the following
steps:
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Step 1: Specify C and C∗ and execute an initial
learning using the original training set to obtain a trained
SVM classifier.

Step 2: Compute the decision function values of all the
unlabeled samples using the trained SVM classifier. Obtain
label vector of the unlabeled set. Select all the positive and
negative semilabeled (transductive) samples within the mar-
gin band and add them to the original training set to obtain a
hybrid training set.

Step 3: Retrain the SVM classifier using this hybrid
training set. Obtain the label vector of the unlabeled set. Select
all the positive and negative semilabeled samples within the
margin band.

Step 4: Select the common transductive samples
between the previous and current transductive
samples.

Step 5: Remove the previous transductive samples from
the hybrid training set and add the resultant transductive set
obtained from step 4.

Step 6: Repeat steps 3–5. The algorithm finishes after a
finite number of iterations.

The algorithm is capable of reducing the misclassifi-
cation rate of the transductive samples at each iteration
through a process of successive filtering between the trans-
ductive sets which results in increased accuracy. The SVMs
play the role to separate positive and negative samples,
while the transductive inference successively searches more
reliable discriminant function employing additional unla-
beled samples. Intuitively, unlabeled patterns guide the lin-
ear boundary away from the dense regions. Fig. 1 shows
the effect of the unlabeled patterns to determine maxi-
mum margin. Further details of the algorithm is available
in [24].

FIGURE 1. With labeled data only, the maximum margin is plotted with
dotted lines. With both labeled and newly labeled data (small circles), the
maximum margin boundary would be the one with solid lines.

IV. DATASETS AND PREPROCESSING
This section presents microarray datasets, semisupervised
technique and model selection.

TABLE 1. The number of normal and tumor samples present in each
tissue type.

A. MICROARRAY DATASETS
In this paper, three gene microarray datasets publicly avail-
able at website [44] and one miRNA dataset are used. Since
classification is a typical and fundamental issue in diagnostic
and prognostic prediction of cancer, different combinations
of methods are studied using the four datasets.

1) Small Round Blood Cell Tumors (SRBCT): The Small
round blood cell tumors are four different childhood
tumors named so because of their similar appearance
on routine histology. The number of samples is 83 and
total number of genes is 2308. They include Ewings
sarcoma (EWS) (29 samples), neuroblastoma (NB)
(18 samples), Burkitt’s lymphoma (BL) (11 samples)
and rhabdomyosarcoma (RMS) (25 samples).

2) Diffuse Large B-Cell Lymphomas (DLBCL): Diffuse
large B-cell lymphomas and follicular lymphomas
are two B-cell lineage malignancies that have very
different clinical presentations, natural histories and
response to therapy. The dataset contains 77 samples
and 7070 genes. The subtypes are diffuse large
B-cell lymphomas (DLBCL) (58 samples) and follic-
ular lymphoma (FL) (19 samples).

3) Leukemia: Leukemia is an affymetrix high-density
oligonucleotide array that contains 5147 genes and
72 samples from two classes of leukemia: 47 acute
lymphoblastic leukemia (ALL) and 25 acute myeloid
leukemia (AML).

4) MicroRNA Dataset: We have downloaded a publicly
available miRNA expression dataset from the web-
site: http://www.broad.mit.edu/cancer/pub/miGCM/.
The dataset contains 217 mammalian miRNAs from
different cancer types. From this, we have selected
six datasets consisting of the samples from colon,
kidney, prostate, uterus, lung and breast. Each dataset
is presented by all the 217 miRNAs [45]. Table 1
presents the normal and tumor sample counts of each
of the tissue types. Each sample vector of the datasets
is normalized to have mean 0 and variance 1. The
resulting single dataset contains two classes of sam-
ples, one representing all the normal samples with
32 examples and another representing tumor samples
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having 43 examples. The dataset is first randomized
and then partitioned into training (38 samples) and test
set (37 unlabeled samples).While dividing into training
and test sets, it is ensured that both training and test sets
contain atleast one sample from normal and malignant
samples of each of the tissue types. Feature selection
algorithms are applied on the training set to extract
informative miRNAs.

B. SEMISUPERVISED CLASSIFICATION
For the purpose of semisupervised classification, the training
set is further sub-sampled with different rates to simu-
late ill-posed classification (i.e., the available labeled sam-
ples are often not representative enough of the test data
distribution) problems. For example, using 38 training sam-
ples from miRNA data, training subsets of size 10, 15 and
20 are randomly selected resulting in atleast one sample
(i.e., absence of a sample for each class would reject the
iteration and resample the training set) for each class. For
each size, ten different small training subsets are realized
using a random procedure. The test set is used as unla-
beled set. Accuracy assessment is carried out on the test
set. However, these samples have not been considered for
model selection. The same procedure is followed in case of
gene expression datasets. Moreover, semisupervised classi-
fication is conducted using the training set (38 samples),
while the same test set (37 samples) is used as unlabeled set
(for miRNA data only).

C. MODEL SELECTION AND SVM TRAINING
Once the training samples are gathered (i.e., 50% samples
from the labeled datasets), the next step is to optimize param-
eters C and γ (model selection) of the radial basis func-
tion (RBF) using grid search. It is not known beforehand
which C and γ are the best for one problem [46]. The goal
is to identify good (C , γ ) so that the classifier can accu-
rately predict unknown data. Therefore, a common way is
to use cross-validation because it can prevent the overfitting
problem [46]. A grid search on C and γ is recommended
using cross-validation [46]. In v-fold cross validation, first,
the available training dataset is divided randomly into v equal-
sized subsets. Second, for each model-parameter setting, the
SVM classifier is trained v-times; during each time one of the
v subsets is held out in turn while the remaining subsets are
used to train the SVM. The trained classifier is then tested
using the held-out subset, and its classification accuracy is
recorded. At the end, the classification accuracies are aver-
aged to obtain an estimate of the generalization error of the
SVM classifier.

In usual practice, five, or ten-fold cross validation is
adopted for the tuning of SVM parameters. Therefore, we
have used five-fold (v = 5) cross validation to optimize C
and γ . For the parameters to be tuned, we let each of them
vary among the candidate set {0.1, 0.2, 0.4, 0.8, 1.6, 3.2,
6.4, 12.8} to form different parameter combinations.
Each combination of parameter choices is evaluated using

five-fold cross validation, and the parameters with the best
cross validation accuracy are identified (i.e., model with
smallest generalization error). Consequently, we fixed the
optimal (C , γ ) for SVM training with different training
subsets made up of different samples and with different sizes
for a particular dataset.

V. RESULTS AND DISCUSSION
In this section, performances of the different methods are
presented in terms of average overall accuracies (%) and
standard deviations. To establish the effectiveness and robust-
ness of the proposed method, statistical tests are conducted
using t-statistic [41] and Wilcoxon signed rank test [47].
Moreover, we have usedArea Under ROC (AUC) curves [48],
F-measure [42] to study the performances of different
approaches in case of miRNA data.

A. STATISTICAL SIGNIFICANCE TESTS
To establish that (KFRS + TSVM) (i.e., feature selection
followed by classification) is superior to the other methods,
we have used statistical significance tests such as one tailed
paired t-test [41] and Wilcoxon signed rank test [47] at the
5% significance level. Here, only the t-test is presented as
follows.
The common population variance σ 2 is estimated as:

σ 2
=

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

(11)

where s21, s
2
2, are the sample variances and n1, n2 are sample

sizes. For small samples we use the test statistic

τ =
X1 − X2

σ

√
1
n1
+

1
n2

(12)

where X1,X2 are sample means and τ ∼ t(n1 + n2 − 2).

B. INPUT PARAMETERS
Gaussian RBF kernel function of the form
k(xi, xj) = exp(−γ ||xi−xj||2 where γ is the weight, has been
used to design ISVM/TSVM. Each biomarker is rescaled
between {−1, +1} as recommended in [46] before use with
the classifiers. The value of C∗ is set equal to C . However,
other weighting strategies may also be used. The value of T
is assigned to 10 or, 15 experimentally. For KNN classifier,
the value of k is set to 3.

C. IDENTIFICATION OF CANCER BIOMARKERS
Using the different feature selection techniques, we have
identified cancer biomarkers from the four microarray
datasets including the miRNA data. For instance, top five
miRNA biomarkers that are mostly responsible for distin-
guishing a tumor class from the normal one, are extracted
from the training set by each of the feature selection meth-
ods. For the purpose of illustration, top five miRNA mark-
ers selected by KFRS method and their expression levels
(Up or Down) in tumor cells are reported in Table 2.
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TABLE 2. MicroRNA markers extracted by the KFRS method.

FIGURE 2. The heatmaps of the expression levels of the top five miRNA
biomarkers selected by the KFRS method. Each row represents an miRNA
marker and each column corresponds to a sample. The miRNAs are
rearranged in a way the similarity within class and dissimilarity between
classes are easily recognized.

Fig. 2 depicts the expression levels of the training and test
datasets for five miRNAs. The heatmaps, organized as gene
versus sample matrix, illustrate that the selected miRNAs are
very informative in discriminating the classes. The miRNAs
are indicated on the right side of the images. It appears from
the figure that for both training and test datasets, the selected
miRNAs are differentially expressed in benign and malignant
classes.

D. CLASSIFIER PERFORMANCES
We have explored the performance of (KFRS + TSVM)
combination with eleven other methods. The results are aver-
aged over best ten runs of the classifier for ten different
training subsets of a particular size. The experimen-
tal results produced by different methods in terms of
overall average accuracies and standard deviations are
reported in Table 3 for the microarray datasets. It can
be observed from the table that (KFRS + TSVM) out-
performs (CBFS + TSVM) [24], (FPRS + TSVM) [25]
and other combinations. Best results are shown in bold
face. Confidence levels for the observed differences in
overall accuracies between the (KFRS + TSVM) and
the corresponding method, according to a one-tailed paired
t-test are also provided in Table 3.

TABLE 3. Overall accuracies and standard deviations averaged over
10 runs of the different training subsets made up of 10, 15 and 20 samples
of the four microarray datasets. Superscripts indicate the confidence
levels for the difference in accuracy between the proposed (KFRS + TSVM)
and the corresponding combination of algorithms using T -statistic: 1 is
99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90% and 6 is below 90%.

TABLE 4. Overall performances provided by 12 different methods.
Column 4 indicates the different in accuracies between (KFRS + TSVM)
and the corresponding method Using Wilcoxon signed rank Test : 1 for
p-level <0.05 and 2 otherwise.

Experimental results are summarized in Table 4. The
second column indicates the number of domains in which
(KFRS + TSVM) is more accurate than the correspond-
ing classifier, versus the number in which it is less. For
example, (KFRS + TSVM) is found to be more accurate
than (FPRS + TSVM) across 12 domains and less in zero.
The third column reports the results for those domains where
accuracy difference is significant at the 5% level according to
the t-statistic. For example, the proposed method is signifi-
cantlymore accurate than (FPRS+TSVM) in seven domains.
The forth column shows the p-levels on the 12 accuracy
differences at the 5% level using Wilcoxon signed rank test,
which results in high confidence of the proposed method.
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FIGURE 3. The boxplot showing the accuracies produced by the
ISVM/TSVM algorithms over the best 10 runs for the different training
subsets of size 20 of miRNA dataset.

For instance, p-level of (KFRS + TSVM) is 1 (row 4 and
column 4 element in Table 4 compared to (FPRS + TSVM)
indicating that the difference in accuracies provided by
(KFRS + TSVM) is significant with respect to those
provided by (KFRS + TSVM) to reject null hypothe-
sis at the 5% level. Finally, the overall average accu-
racies of the different methods across all datasets are
shown in the fifth column. Based on the average accuracy
values on the microarray datasets, it appears that the
proposed method is significantly better than the other
methods.

Moreover, for the purpose of illustration, Fig. 3 shows the
boxplot representing the % accuracy over 10 runs of the six
differentmethods. It is evident from the figure that the boxplot
corresponding to (KFRS + TSVM) is situated at the upper
side of the figure, which indicates that (KFRS + TSVM)
results in higher accuracy scores than those produced by the
other techniques.

TABLE 5. Comparison of the different methods using the training set of
size 38 for miRNA dataset.

Next, we have reported the performances of the
ISVM/TSVM algorithms on the test set using the train-
ing set of size 38 of miRNA dataset in Table 5. The test
set has been used as unlabeled set. From the table, it can
be observed that (KFRS + TSVM) and (KFRS + ISVM)
achieved 100.00% and 97.30% accuracies, respectively.

FIGURE 4. ROC curves for different combination of methods.

TABLE 6. Cancer types associated with the microRNA markers obtained
from the cancer miRNA network and miRNA cancer association
database.

This confirms that KFRS method offers statistically
significant miRNA cancer markers providing high per-
formance of the classifiers. However, it is interesting to
observe the significant accuracy difference (8.12%) between
(FPRS + TSVM) and (FPRS + ISVM). Furthermore, ROC
curves in Fig. 4 illustrate the performance of the six dif-
ferent methods. From the figure, it can be seen that the
ROC curve for (KFRS + TSVM) is at 0 false positive
and 1 true positive point. AUC value (1.00) as well as the
F-score statistic (100.00%) provided by the proposed tech-
nique in Table 5 are higher than other five combinations.
From the overall results, it is evident that the proposed
technique obtains good empirical success over other
methods.

E. BIOLOGICAL RELEVANCE
The biological relevance of the miRNA biomarkers has
been studied. First, we have identified validated target
genes of five miRNAs using miRWalk database availa-
ble at http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/.
Thereafter, we have put these validated target genes into
DAVID software available at http://david.abcc.ncifcrf.gov/
as input to find the KEGG pathways. In this way we have
identified 64 significant pathways (p-value <0.05). Further-
more, known cancer associations with the miRNAs obtained
from the recently published cancer-miRNA network [2] and
miRcancer database available at http://mircancer.ecu.edu.
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TABLE 7. Top 5 significant KEGG pathways as discovered using the
database of DIANA lab.

are also reported in Table 6. It is quite interesting to
observe that all the selected markers are found to be
associated with several types of cancer. For example,
hsa-miR-143 is involved in six types of cancer found from the
cancer miRNA network. Likewise, cancer types associated
with four other miRNAs are found from the miRcancer
database.

To study how the selected miRNA markers are involved
in various biological activities, we have observed KEGG
pathway enrichment of the target genes of each of the
miRNAs using TargetScan 5 from DIANA LAB available
at http://diana.cslab.ece.ntua.gr/mirPath. Table 7 shows the
top five significant pathways for the target genes and corre-
sponding p-values as obtained from the database of DIANA
LAB. It can be seen that the KEGG signaling pathway
terms (for example, T cell receptor signaling pathway) are
associated with the four miRNA markers. This signifies that
the selected miRNA markers are indeed involved in different
cancer pathways. When one of the proteins in the pathway
is mutated, it can be stuck in the ‘‘on’’ or ‘‘off’’ position,
which is a necessary step in the development of many cancers.
Moreover, some more specific pathways are noticed within
the top five significant pathways of the miRNA markers. For
example, hsa-miR-143 have target genes that are involved
in the pathways of colorectal and prostate cancers (p-value:
8.19e-05 and 1.27e-04, respectively). There are specific
cancer pathways for the miRNAs. These are Melanoma
(p-value: 5.31e-04) for hsa-miR-143 and Glioma (p-value:
1.30e-03) for hsa-miR-30e. The pathway for renal cell
carcinoma (p-value: 6.10e-03) is found for hsa-miR-185.

These results indicate that the selected miRNA markers
are highly involved in different cancer pathways, sugg-
esting that these are significant miRNA cancer
markers.

VI. CONCLUSION
In this article, we have developed a novel classification model
to explore gene and miRNA cancer datasets using KFRS
followed by semisupervised prediction of cancer markers.
The novelty of this work is two-fold. First, we have demon-
strated that KFRS is capable to extract useful biomarkers
both from gene and miRNA expression datasets. Second, we
have shown that semisupervised learning approach improves
prediction performance with respect to the well-known super-
vised algorithms.
Experimental results on the gene-expression as well as

miRNA datasets of different tissue types, viz, colon, kidney,
prostate, uterus, lung and breast have been demonstrated.
In addition, the identified miRNA signatures are found to be
involved with different types of cancer according to the recent
literatures. Finally, a pathway enrichment study has been con-
ducted that reveals that target genes of the selected miRNAs
are involved in many cancer pathways. This method can also
be used for finding cancer markers from other microRNA and
gene expression data.
Microarray analysis has the potential to predict therapy

response or survival. Class prediction gives the clinician an
unbiased method to predict cancers instead of traditional
methods based on histopathology or empirical clinical data,
which do not always reflect patient outcome. Therefore,
it is necessary to focus more on class prediction because
of its potential to influence the clinical management of
cancer. However, microarray data are high dimensional,
characterized by many variables and few observations.
Moreover, this technique suffers from a low signal-to-noise
ratio, which causes instability in gene signatures. Hence,
to improve prediction accuracy, efficient dimensionality
reduction techniques need to be explored. Furthermore,
inadequate observations of gene/miRNA data result in poor
performance of the traditional supervised methods. This nec-
essarily entails the use of effective semisupervisedmethods in
order to improve prediction accuracy. Our proposed method
that considers both the approaches, can be used to guide
the clinical/translational management of cancer and other
diseases.
As a scope of further development, several issues remain

open to be addressed: 1) integration of other sources of infor-
mation could be important to enhance clinical/translational
research. For example, model development where both clin-
ical variables and gene/miRNA expression can be com-
bined to improve prediction power; 2) different combi-
nation of feature selection methods needs to be investi-
gated to obtain more biologically relevant genetic signa-
tures and 3) the concept of fuzzy set theory could be
introduced in semisupervised learning to improve model
development.

VOLUME 2, 2014 4300211



Chakraborty and Maulik: Identifying Cancer Biomarkers From Microarray Data

ACKNOWLEDGMENT
The authors would like to thank the Associate Editor and the
anonymous reviewers for their valuable suggestions which
have helped to improve the content and orientation of the
paper.

REFERENCES
[1] E. Berezikov, E. Cuppen, and R. H. A. Plasterk, ‘‘Approaches tomicroRNA

discovery,’’ Nature Genet., vol. 38, pp. S2–S7, May 2006.
[2] S. Bandyopadhyay, R. Mitra, U. Maulik, and M. Q. Zhang, ‘‘Development

of the human cancer microRNA network,’’ BMC Silence, vol. 1, no. 1, p. 6,
2010.

[3] S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik, ‘‘An improved
algorithm for clustering gene expression data,’’ Bioinformatics, vol. 23,
no. 21, pp. 2859–2865, 2007.

[4] U. Maulik, A. Mukhopadhyay, and S. Bandyopadhyay, ‘‘Combining
Pareto-optimal clusters using supervised learning for identifying co-
expressed genes,’’ BMC Bioinformat., vol. 10, no. 1, p. 27, 2009.

[5] A. Mukhopadhyay, S. Bandyopadhyay, and U. Maulik, ‘‘Multi-class clus-
tering of cancer subtypes through SVM based ensemble of Pareto-optimal
solutions for gene marker identification,’’ PLoS ONE, vol. 5, no. 11,
p. e13803, 2010.

[6] U. Maulik and A. Mukhopadhyay, ‘‘Simulated annealing based automatic
fuzzy clustering combined with ANN classification for analyzing microar-
ray data,’’ Comput. Oper. Res., vol. 37, no. 8, pp. 1369–1380, Aug. 2010.

[7] A. Mukhopadhyay and U. Maulik, ‘‘Towards improving fuzzy clustering
using support vector machine: Application to gene expression data,’’ Pat-
tern Recognit., vol. 42, no. 11, pp. 2744–2763, Nov. 2009.

[8] U. Maulik, ‘‘Analysis of gene microarray data in a soft computing frame-
work,’’ Appl. Soft Comput., vol. 11, no. 6, pp. 4152–4160, Sep. 2011.

[9] U. Maulik, S. Bandyopadhyay, and A. Mukhopadhyay, Multiobjective
Genetic Algorithms for Clustering: Applications in DataMining and Bioin-
formatics. New York, NY, USA: Springer-Verlag, 2011.

[10] S. Bandyopadhyay, U.Maulik, and J. T.Wang,Analysis of Biological Data:
A Soft Computing Approach. Singapore: World Scientific, 2007.

[11] L.-K. Luo, D.-F. Huang, L.-J. Ye, Q.-F. Zhou, G.-F. Shao, and H. Peng,
‘‘Improving the computational efficiency of recursive cluster elimination
for gene selection,’’ IEEE Trans. Comput. Biol. Bioinformat., vol. 8, no. 1,
pp. 122–129, Jan./Feb. 2011.

[12] A. Keller, M. Schummer, L. Hood, andW. Ruzzo, ‘‘Bayesian classification
of DNA array expression data,’’ Univ. Washington, Seattle, WA, USA,
Tech. Rep. UW-CSE-2000-08-01, 2000.

[13] N. Friedman, M. Linial, I. Nachman, and D. Peer, ‘‘Using Bayesian net-
works to analyze expression data,’’ J. Comput. Biol., vol. 7, nos. 3–4,
pp. 601–620, 2000.

[14] A. Kelemen, H. Zhou, P. Lawhead, and Y. Liang, ‘‘Naive Bayesian clas-
sifier for microarray data,’’ in Proc. IEEE Int. Conf. Neural Netw., vol. 3.
Jul. 2003, pp. 1769–1773.

[15] H.-Y. Chen et al., ‘‘A five-gene signature and clinical outcome in non-
small-cell lung cancer,’’ New England J. Med., vol. 356, no. 1, pp. 11–20,
Jan. 2007.

[16] N. Pochet, F. D. Smet, J. A. K. Suykens, and B. L. R. D.Moor, ‘‘Systematic
benchmarking of microarray data classification: Assessing the role of non-
linearity and dimensionality reduction,’’ Bioinformatics, vol. 20, no. 17,
pp. 3185–3195, Jul. 2004.

[17] S. Ramaswamy et al., ‘‘Multiclass cancer diagnosis using tumor
gene expression signatures,’’ Proc. Nat. Acad. Sci., vol. 98, no. 26,
pp. 15149–15154, 2001.

[18] D. Berrar, I. Bradbury, and W. Dubitzky, ‘‘Instance-based concept learning
from multiclass DNA microarray data,’’ BMC Bioinformat., vol. 7, no. 1,
p. 73, 2006.

[19] N. B. Prasad et al., ‘‘Identification of genes differentially expressed in
benign versus malignant thyroid tumors,’’ Clin. Cancer Res., Off. J. Amer.
Assoc. Cancer Res., vol. 14, no. 11, pp. 3327–3337, 2008.

[20] O. Chapelle, V. Sindhwani, and S. S. Keerthi, ‘‘Optimization techniques
for semi-supervised support vector machines,’’ J. Mach. Learn. Res., vol. 9,
pp. 203–233, Jan. 2008.

[21] L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss,
‘‘Semi-supervised learning for peptide identification from shotgun pro-
teomics datasets,’’ Nature Methods, vol. 4, pp. 923–925, Oct. 2007.

[22] J. Weston, E. Ie, D. Zhou, A. Elisseeff, W. S. Noble, and C. Leslie, ‘‘Semi-
supervised protein classification using cluster kernels,’’ Bioinformatics,
vol. 21, no. 15, pp. 3241–3247, 2008.

[23] J. Ernst, Q. K. Beg, K. A. Kay, G. Balázsi, Z. N. Oltvai, and Z. Bar-Joseph,
‘‘A semi-supervised method for predicting transcription factor-gene inter-
actions in Escherichia coli,’’ PLoS Comput. Biol., vol. 4, p. e1000044,
Mar. 2008.

[24] U. Maulik, A. Mukhopadhyay, and D. Chakraborty, ‘‘Gene-expression-
based cancer subtypes prediction through feature selection and transduc-
tive SVM,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1111–1117,
Apr. 2013.

[25] U. Maulik and D. Chakraborty, ‘‘Fuzzy preference based feature selec-
tion and semisupervised SVM for cancer classification,’’ IEEE Trans.
Nanobiosci., vol. 13, no. 2, pp. 152–160, Jun. 2014.

[26] D. C. Koestler et al., ‘‘Semi-supervised recursively partitioned mixture
models for identifying cancer subtypes,’’ Bioinformatics, vol. 26, no. 20,
pp. 2578–2585, 2010.

[27] I. Steinfeld, R. Navon, D. Ardigò, I. Zavaroni, and Z. Yakhini, ‘‘Clinically
driven semi-supervised class discovery in gene expression data,’’ Bioinfor-
matics, vol. 24, no. 16, pp. 190–197, 2008.

[28] E. Bair and R. Tibshirani, ‘‘Semi-supervised methods to predict
patient survival from gene expression data,’’ PLoS Biol., vol. 2,
pp. 511–522.

[29] H. Huang and H. Feng, ‘‘Gene classification using parameter-free semi-
supervised manifold learning,’’ IEEE Trans. Comput. Biol. Bioinformat.,
vol. 9, no. 3, pp. 818–827, May/Jun. 2012.

[30] J. C. Rajapakse and P. A.Mundra, ‘‘Multiclass gene selection using Pareto-
fronts,’’ IEEE Trans. Comput. Biol. Bioinformat., vol. 10, no. 1, pp. 87–97,
Jan./Feb. 2013.

[31] Q. Hu, D. Yu, W. Pedrycz, and D. Chen, ‘‘Kernelized fuzzy rough sets
and their applications,’’ IEEE Trans. Knowl. Data Eng., vol. 23, no. 11,
pp. 1649–1667, Nov. 2011.

[32] Q. Hu, L. Zhang, D. Chen, W. Pedrycz, and D. Yu. Gaussian Kernel
Based Fuzzy Rough Sets: Model, Uncertainty Measures and Applications.
[Online]. Available: http://www4.comp.polyu.edu.hk/

[33] Q. Hu, D. Yu, and M. Guo, ‘‘Fuzzy preference based rough sets,’’ Inf. Sci.,
vol. 180, no. 10, pp. 2003–2022, 2010.

[34] M.Dash andH. Liu, ‘‘Consistency-based search in feature selection,’’Artif.
Intell., vol. 151, nos. 1–2, pp. 155–176, Dec. 2003.

[35] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA: Wiley,
1998.

[36] J. T. Tou and R. C. Gonzales, Pattern Recognition Principles. Reading,
MA, USA: Addison-Wesley, 1974.

[37] T. M. Mitchel, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[38] B. Schölkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel
Methods: Support Vector Learning. Cambridge, MA, USA: MIT Press,
1999.

[39] T. R. Golub et al., ‘‘Molecular classification of cancer: Class discovery
and class prediction by gene expression monitoring,’’ Science, vol. 286,
no. 5439, pp. 531–537, 1999.

[40] H. Peng, F. Long, and C. Ding, ‘‘Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–1238,
Aug. 2005.

[41] E. Kreyszig, Introductory Mathematical Statistics. New York, NY, USA:
Wiley, 1970.

[42] D. L. Olson and D. Delen, Advanced Data Mining Techniques, 1st ed.
Berlin, Germany: Springer-Verlag, 2008.

[43] H. Liu and R. Setiono, ‘‘Chi2: Feature selection and discretization of
numeric attributes,’’ in Proc. 7th Int. Conf. Tools Artif. Intell., Herndon,
VA, USA, Nov. 1995, pp. 388–391.

[44] [Online]. Available: http://www.biolab.si/supp/bi-cancer/projections/
[45] J. Lu et al., ‘‘MicroRNA expression profiles classify human cancers,

Nature, vol. 435, no. 7043, pp. 834–838, Jun. 2005.
[46] C. Hsu, C. Chang, and C. Lin. (2013). A Practical Guide to Support Vector

Classification. [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/
[47] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods. NJ,

USA: Wiley, 1999.
[48] A. P. Bradley, ‘‘The use of the area under the ROC curve in the evalu-

ation of machine learning algorithms,’’ Pattern Recognit., vol. 30, no. 7,
pp. 1145–1159, Jul. 1997.

4300211 VOLUME 2, 2014



Chakraborty and Maulik: Identifying Cancer Biomarkers From Microarray Data

DEBASIS CHAKRABORTY received the bache-
lor’s degree in electronics and telecommunication
from the University of Calcutta, Kolkata, India,
in 1990. He worked in different companies in
India from 1990 to 1999. He received the mas-
ter’s degree in computer science and engineer-
ing from Bengal Engineering College (Deemed
University), Howrah, India, in 2003. He is cur-
rently an Associate Professor with the Department
of Electronics and Communication Engineering,

Murshidabad College of Engineering and Technology, Baharampur, India.
His research interests include supervised and semisupervised learning, pat-
tern classification, remote sensing, and bioinformatics.

UJJWAL MAULIK (M’99–SM’05) has been a Pro-
fessor with the Department of Computer Science
and Engineering, Jadavpur University, Kolkata,
India, since 2004. He received the bachelor’s
degree in physics and computer science, in 1986
and 1989, respectively, and the master’s and Ph.D.
degrees in computer science, in 1992 and 1997,
respectively. He was the Chair of the Department
of Computer Science and Technology, Kalyani
Government Engineering College, Kalyani, India,

from 1996 to 1999. He was with the Los Alamos National Laboratory, Los
Alamos, NM, USA, in 1997, the University of New South Wales, Sydney,
NSW, Australia, in 1999, the University of Texas at Arlington, Arlington,
TX, USA, in 2001, the University of Maryland at Baltimore, Baltimore, MD,
USA, in 2004, the Fraunhofer Institute for Autonomous Intelligent Systems,
Sankt Augustin, Germany, in 2005, Tsinghua University, Beijing, China,
in 2007, the University of Rome, Rome, Italy, in 2008, the University of
Heidelberg, Heidelberg, Germany, in 2009, the German Cancer Research
Center, Heidelberg, in 2010, 2011, and 2012, the Grenoble Institute of
Technology, Grenoble, France, in 2010, 2013, and 2014, ICM, Warsaw,
Poland, the University of Warsaw, Warsaw, in 2013, the International Center
of Theoretical Physics (ICTP), Trieste, Italy, in 2014, and the University of
Padua, Padua, Italy, in 2014. He has also visited many institutes/universities
around the world for invited lectures and collaborative research. He has
been invited to supervise the Ph.D. students in the well-known university
in France. He has co-authored seven books and over 250 research pub-
lications. He was the recipient of the Government of India BOYSCAST
Fellowship Award in 2001, the Alexander Von Humboldt Fellowship Award
for Experienced Researchers in 2010, 2011, and 2012, and the Senior
Associateship Award of ICTP, Italy, in 2012. He coordinates five Erasmus
Mundus Mobility with Asia programs (European-Asian mobility program).
He has been the Program Chair, the Tutorial Chair, and a program Com-
mittee Member of many international conferences and workshops. He is the
Associate Editor of the IEEE TRANSACTIONS ON FUZZY SYSTEMS and
Information Sciences, and is also on the Editorial Board of many journals,
including Protein and Peptide Letters. In addition, he has served as the Guest
Co-Editor of special issues of journals, including the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION. He is the Founding Member of the
IEEE Computational Intelligence Society Chapter, Kolkata Section, India,
and was a Secretary and Treasurer in 2011, the Vice Chair in 2012, and the
Chair in 2013 and 2014. He is a fellow of the Indian National Academy
of Engineering, the West Bengal Association of Science and Technology,
the Institution of Engineering and Telecommunication Engineers, and the
Institution of Engineers. His research interests include computational intelli-
gence, bioinformatics, combinatorial optimization, pattern recognition, and
data mining.

VOLUME 2, 2014 4300211


