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Abstract

In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote
neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect
seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the
hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial
temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for
expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to
control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced
neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata.
Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases.
Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in
TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS)
had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE
patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread
patterns.
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Introduction

Zinc (Zn2+) is an important modulator of glutamatergic

transmission in the central nervous system (CNS) [1], [2], [3].

Zn2+ is concentrated in presynaptic vesicles, along with glutamate,

and released during normal neurotransmission [4], [5], [6], [7],

[8]. Hippocampal neurons are specially rich in vesicular Zn2+,

particularly in the axonal boutons of granule cells, CA3 and CA1

pyramidal cells and prosubicular neurons [5], [6], [7], [9], [10]. In

temporal lobe epilepsy (TLE), one of the most frequent drug-

resistant epilepsies in adults, the hippocampus is associated with

seizure generation [11], [12]. The intense neuronal activity during

seizures can induce high amounts of Zn2+ in the synaptic cleft,

[13], [14] promoting reactive oxygen species (ROS) production,

[15] which can ultimately lead to hippocampal neuronal death

[16], [17], [14], [15], [13]. In fact, studies in hippocampi from

TLE patients who underwent epilepsy surgery have shown

neuronal loss [18], [19], [20], increased glial reaction [21], [22],

[23], [24] and reorganization of mossy fibers axon collaterals into

the inner molecular layer of the granule cell dendrites [25], [19].

This synaptic reorganization of Zn2+-enriched terminals has been

hypothesized to contribute to synchronous firing and epileptiform

activity [19]. Besides the vesicular Zn2+, other intracellular Zn2+

pools are present in neurons [26], [27], which can also contribute

to neuronal death after an insult [28], [29], [27].

Metallothioneins (MTs) are low molecular weight, cystein-

enriched proteins that bound Zn2+ and cadmium. They can be

found in various tissues, in four isoforms [30]. Isoforms I, II and III

are found in the central nervous system (CNS), where the isoforms

I and II are expressed in astrocytes and the isoform III is expressed

only in neurons [31], [32]. MTs participate in Zn2+ homeostasis,

scavenging ROS in the brain [33] and stimulate the expression of

several neurotrophic and antiinflamatory factors [34]. Studies on

rodent models of TLE have shown that MT expression is

increased in the hippocampal formation shortly after seizures

[35], [36] and that high levels of MTs I and II are associated with

reduced neuronal death after seizure-induced damage [37], [36],

[38]. However, some studies with neuronal MT (MT-III) indicate

that MTs could also contribute to neuronal death in some

circumstances [39], [29].
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Since MT-I/II levels may be associated with neuron survival

after seizures, we hypothesize that MT-I/II expression is altered in

TLE and can be associated with the preservation of neuronal

density in the hippocampus of TLE patients. Therefore, in this

study we evaluated the immunoexpression of MT-I/II and its

correlation with hippocampal neuron density in hippocampi of

patients with chronic TLE.

Materials and Methods

Patients and clinical data
Patients with drug-resistant epilepsy were evaluated at the

University of São Paulo Epilepsy Surgical Centre in Ribeirão

Preto (Brazil), according to standard protocols published elsewhere

[40]. The presurgical evaluation protocol included interviews for

epilepsy history, neurological examination, EEG recording, video-

EEG assessment, T1- and T2-weighted MRI, ictal and interictal

single-photon emission computed tomography (SPECT) scans and

neuropsychological tests. Drug resistance was defined according to

previous published literature [41].

TLE patients were divided in two groups: (i) mesial TLE

(MTLE) and (ii) TLE associated with extrahippocampal tumor or

dysplasia (TLE-TD). MTLE group (n = 69) were patients with

hippocampal atrophy or with normal hippocampal volume at

MRI without other lesions associated with TLE. TLE-TD (n = 17)

were TLE patients with tumor or cortical dysplasia in temporal

lobe structures other than the hippocampus. From all TLE-TD

patients, 4 had non-Taylor focal cortical dysplasia and the

remaining had tumors. The tumors observed were grade I

ganglioglioma (n = 3), grade I dysembryoplastic neuroepithelial

tumor (n = 3), hamartoma (n = 3), teratoma (n = 2), grade III

astrocytoma (n = 1) and angioma (n = 1).

For comparison purposes in the neuropathology studies,

autopsy controls (Ctrl, n = 19) were obtained from autopsy cases

without history of neurological diseases, with no sign of CNS

pathologies in post mortem pathological evaluation and no history of

hypoxic episodes during agony. Post mortem time (i.e., time between

death and hippocampal fixation) was of 5.1561.43 hours, ranging

from 3.16 to 9 hours. The causes of death were pulmonary

insuficiency (n = 6), cardiomyopathy (n = 3), cardiogenic shock

(n = 2), sepsis (n = 3), hepatic failure (n = 3), acute lymphoblastic

leukemia (n = 1) and gastric adenocarcinoma (n = 1).

Medical records of all evaluated patients were assessed for

clinical data analysis. The clinical variables investigated were age

at death and cause of death for Ctrl patients and age at surgery,

epilepsy duration, age at the first recurrent seizure, seizure

frequency per month, presence of secondary generalized seizures,

and neuropathological evaluation for TLE patients. This study

followed the principles of the Declaration of Helsinki, was

registered in Brazilian’s Health Ministry and was approved by

the Research Ethics Committee of the Hospital das Clı́nicas,

where this study was performed (process HCRP 2634/2008).

Written informed consent was obtained from all patients used in

this study, and the Research Ethics Committee also approved the

Consent Term. Tissue from autopsy cases came from a Brain

Bank approved by the Research Ethics Committee of Hospital das

Clı́nicas (process HCRP 9370/2003).

Tissue collection and histological techniques
Hippocampi from surgery or autopsy were cut in coronal

sections and placed in 10% (vol/vol) buffered formaldehyde for

one week, followed by paraffin embedding. Immunohistochemis-

try was performed in 8 mm sections at the level of hippocampal

body for evaluation of neuronal, astroglial and activated microglial

populations and for MT-I/II expression with antibodies against,

respectively, NeuN, GFAP, HLA-DR and MT-I/II. The sections

were submitted to endogenous peroxidase blocking with 4.5%

H2O2 in 50 mM phosphate-saline buffer (PSB) pH 7.4, for

15 minutes, followed by microwave antigenic retrieval in 10 mM

sodium citrate buffer pH 6.0 (for GFAP) or 50 mM Tris-HCl

pH 9.6 (for NeuN, HLA-DR and MT-I/II). After achieving room

temperature, the sections went through blocking free aldehyde

groups with Tris-glycine 0.1 M pH 7.4 for 45 minutes, followed

by blocking buffer with 5% defatted milk and 15% goat serum

(#S-1000, Vector) in Triton buffer (PTB, 20 mM phosphate

+0.45 M NaCl, pH 7.4, with 0.3% Triton X-100) for four hours.

The sections were then incubated with primary antibodies in

blocking buffer for 16 hours. We used primary monoclonal

antibodies raised in mouse anti-human GFAP (clone 6F2,

#M0761, Dako), anti-murine NeuN (clone A60, #MAB377,

Chemicon), anti-human HLA-DR (clone TAL.1B5, #M0746,

Dako) and anti-equine MT-I/II (clone E9, #M0639, Dako),

diluted in blocking buffer at concentrations of 1:500, 1:500, 1:100

and 1:500, respectively. The primary antibodies were detected

using biotinylated rabbit anti-murine IgG (#E0354, Dako), at

1:200 dilution in blocking buffer, for one hour, followed by

revelation with avidin-biotin-peroxidase system (Vectastain Elite

ABC kit, #PK6100, Vector) and diaminobenzidine as chromogen

(DAB, #34001, Pierce Biotechnology). The development times in

DAB solution were 12 minutes for HLA-DR, 10.5 minutes for

NeuN and 8 minutes for MT-I/II and GFAP. In order to assure

that the different times of fixation of autopsy hippocampi and

surgical tissue were comparable, an additional experiment was

performed with temporal cortical tissue from one TLE patient.

Briefly, a cortical sample was removed during surgery, sectioned in

5 fragments which were kept at room temperature for 1, 2, 4, 6

and 8 hours before immersion-fixation in 10% buffered formal-

dehyde. Sections of these cortical fragments with different pre-

fixation times were mounted on slides and processed in the same

manner as the surgical and autopsy hippocampi.

Vesicular Zn2+ was evaluated in a subset of cases by neo-Timm

histochemistry [19]. Briefly, a fresh hippocampal section was

placed in buffered fixative solution (4% glutaraldehyde and 0.1%

sodium sulfite) at 4uC for one week, followed by water removal

with 20% buffered saccarose for one day. The fragment was dried

and frozen in cryostat. Thirty mm sections were utilized for neo-

Timm technique, according to previously published protocols

[19], [42], [43].

Immunofluorescence
Colocalization of MT-I/II with neuronal and astroglial markers

was performed with the same protocol described above. Endog-

enous peroxidase blocking and the revelation procedure were

omitted. Primary antibodies were raised in mouse anti-equine for

MT-I/II (clone E9, #M0639, Dako), in rabbit anti-cow for GFAP

(#Z0334, Dako) and anti-human for MAP2 (#sc-20172, Santa

Cruz Biotechnology). Sections were submitted to MT-I/II plus

GFAP or MT-I/II plus MAP2 incubation, with antibodies diluted

in blocking buffer at 1:100 for MT-I/II, 1:1000 for GFAP and

1:50 for MAP2, for 20 hours. The primary antibodies were

detected using goat anti-mouse IgG conjugated with Alexa Fluor

488 (#A11001, Molecular Probes) and goat anti-rabbit IgG

conjugated with Texas Red (#T2767, Molecular Probes), diluted

in blocking buffer, at 1:300 each, for 2 hours. Following

incubation, the sections were submitted to Hoechst 33342 staining

(#H1399, Molecular Probes) for 4 minutes, and were mounted in

Fluoromount-G (#17984-25, EMS). With this procedure, GFAP

and MAP2 were observed in red, MT-I/II in green and cell

Metallothioneins I/II Expression in TLE
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nucleus in blue. All images were captured in Leica SP5 confocal

microscope.

Histological analysis
Images of all hippocampal regions were obtained with a video

monochrome charge-coupled device camera (CCD; Hamamatsu

Photonics Model 2400, Japan) attached to an Olympus micro-

scope (Model BX60, Melville, NY), and captured, averaged, and

digitized using a frame grabber (Scion Corporation, Frederick,

MD) on a Macintosh computer (Model G3, Cupertino, CA).

Illumination exposure was uniformly maintained and regularly

checked using optical density standards (Kodak, Rochester, NY) in

order to prevent any distortion of measurements (immunopositive

area, gray level) between the samples. After captured, the image

was analyzed using image system software (ImageJ, version 1.37c).

Quantification of the immunohistochemistry was performed

with threshold tool, with the investigator blind to the group

allocation. After the selection of the region of interest (ROI), the

software calculated the immunopositive area by counting all pixels

with gray intensity equal or superior to the threshold of staining. A

complete protocol for threshold tool can be found at rsbweb.nih.-

gov/ij/docs/examples/stained-sections/index.html. The thresh-

old was defined for each protein evaluated, based on the mean

immunopositivity of all control cases. The evaluated regions were

the fascia dentata (outer molecular layer, inner molecular layer,

granule cell layer, subgranular zone), the hilus and the stratus

piramidale of CA4, CA3, CA2, CA1, prosubiculum and subicu-

lum (Figure 1). The characterization of hippocampal regions was

based on the Lorente de Nó’s classification [44]. Results were

shown as percentage of immunopositive area/total area.

Additionally, neuronal density was evaluated in the NeuN

stained sections. Neuronal count was processed in ImageJ 1.37c

software with a 5206 magnification for granule cell layer and

2606 for pyramidal neurons of CA4, CA3, CA2, CA1,

prosubiculum and subiculum. Neuronal densities were estimated

with the correction of Abercrombie [45], which permits to

estimate the neuronal density through mathematical method,

and the results were shown as thousands of cells per cubic

millimeter.

Quantification of neo-Timm sections was done by measurement

of mean gray value, which varied from 0 to 255, of the

hippocampal regions in ImageJ software. The evaluated regions

comprised outer molecular layer, inner molecular layer, granule

cell layer, subgranule zone and hilus/CA4.

Statistical analysis
Statistics were carried out in SigmaStat 3.1 software for all tests

except for simple regression models, which were performed with

SPSS 20. Tests for normality and homogeneity of variances were

performed to define data distribution. For parametric variables,

One Way ANOVA with Bonferroni post hoc or t-test was

performed. For the non-parametric variables, Kruskal-Wallis with

Dunn post hoc or Mann-Whitney tests were used. Fisher’s exact test

was performed to evaluate categorical data. Correlation between

MT expression and cellular populations was performed using the

Spearman’s test, when n#30, or Pearson’s test, for n.30. Multiple

linear regressions were used to define associations between age,

neuronal and astroglial populations over MT-I/II expression. All

results were considered significant at p,0.05.

Results

Clinical data
The clinical characteristics of study participants are summarized

in Table 1. The mean age at evaluation was significantly lower in

TLE-TD group than Ctrl and MTLE groups (Kruskal-Wallis,

p = 0.001). Epilepsy duration was lower in TLE-TD group than in

MTLE group (Mann-Whitney, p = 0.002). Recurrent seizures

onset (t-test, p = 0.651), minimal seizure frequency in a month

(Mann-Whitney, p = 0.397) and frequency of secondary general-

ized seizures per month (Mann-Whitney, p = 0.557) were similar

in MTLE and TLE-TD groups. Fisher’s exact test showed that the

prevalence of secondary generalized seizures was similar between

MTLE and TLE-TD (p = 1.0).

Changes in immunoreactivity in different fixation times
Quantification of MT-I/II, NeuN, GFAP and HLA-DR

immunostaining in sections of cortical fragment in different

fixation times revealed that a delay on fixation time was not

associated with a decrease of immunoreactivity for all antibodies

evaluated (Figure S1).

Neuronal density
NeuN immunopositive cells (Figure 2) were counted to

estimate the neuronal density in the hippocampal subfields. The

quantification studies (Figure 3) revealed reduced neuronal

density in granule cell layer (Kruskal-Wallis, p,0.001), CA4

(Kruskal-Wallis, p,0.001), CA1 (Kruskal-Wallis, p,0.001) and

prosubiculum (ANOVA, p,0.001) of the MTLE group, when

compared to Ctrl and TLE-TD groups. In CA2 subfield, the

neuronal densities of MTLE and TLE-TD groups were reduced

when compared to Ctrl (ANOVA, p,0.001). In CA3, MTLE and

TLE-TD had reduced neuronal density when compare to each

other and to the Ctrl group (ANOVA, p,0.001). No differences in

Figure 1. Subfields in the hippocampal formation under NeuN
immunohistochemistry. In A can be seen: the granule cell layer of
fascia dentata (GCL, composed by granular neurons) and the hilus (HIL,
composed by several types of interneurons); pyramidal neuronal layers
of the hippocampus (CA4-CA1); the subicular formation, composed by
prosubiculum (PRO) and subiculum (SUB). In B, a higher magnification
of the fascia dentate (marked as a black square in A), composed by
subgranule zone (SGZ), granule cell layer (GCL), inner molecular layer
(IML) and outer molecular layer (OML). Bar in A indicates 1 millimeter
and in B indicates 50 micrometers.
doi:10.1371/journal.pone.0044709.g001
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neuronal density were found in the subiculum (ANOVA, p = 0.08).

All hippocampal regions of MTLE group showed reduced NeuN

immunopositive area when compared with Ctrl, in agreement with

neuron density measurements (Data not shown).

Vesicular Zn2+ evaluation
Vesicular Zn2+ content (Figures 2 and 4), estimated by gray

value of neo-Timm staining, was increased only in the inner

molecular layer of MTLE patients, compared to Ctrl (p,0.001).

No differences were observed between Ctrl, MTLE and TLE-TD

in the outer molecular layer (p = 0.275), granule cell layer

(p = 0.196), subgranule zone (p = 0.467) or hilus/CA4 (p = 0.843).

Reactive astroglial population
GFAP immunopositive area, shown in Figures 2 and 5,

indicated increased GFAP immnunoreactivity labeling in the outer

and inner molecular layers, granule cell layer, subgranule zone,

hilus and CA4 of MTLE and TLE-TD, when compared to Ctrl

(ANOVA for granule cell layer and Kruskal-Wallis for the

remaining regions, p,0.001). In CA2, Sommer sector (CA1 and

prosubiculum) and the subiculum, there was increased GFAP

immnunoreactivity labeling of the MTLE group, when compared

to Ctrl and TLE-TD (Kruskal-Wallis, p,0.001). Increased

reactive astrogliosis was also observed in CA3 of MTLE

(Kruskal-Wallis, p,0.001), when compared to Ctrl.

Activated microglial population
HLA-DR immunopositive area, shown in Figures 2 and 6,

indicated increased labeling in subgranule zone (Kruskal-Wallis,

p = 0.002), hilus (Kruskal-Wallis, p = 0.017), CA3 (Kruskal-Wallis,

p,0.001), CA2 (Kruskal-Wallis, p,0.001), prosubiculum (Krus-

kal-Wallis, p,0.001) and subiculum (Kruskal-Wallis, p = 0.009) of

MTLE group, when compared to Ctrl. In outer molecular layer,

granule cell layer and CA4 (Kruskal-Wallis, p,0.001) HLA-DR

immunopositivity was increased in MTLE and TLE-TD groups,

when compared to Ctrl. MTLE group showed increased staining

in the inner molecular layer and CA1 when compared to both

TLE-TD and Ctrl groups (Kruskal-Wallis, p,0.001).

Metallothionein I/II immunoreactivity
MT-I/II staining revealed both cellular and neuropil staining

(Figure 7A–F). MT-I/II-positive cells had astrocyte morphology,

with small round soma and radial processes (Figure 7A–D). The

staining was present in nucleus, cytoplasm and the proximal

portion of the cytoplasmic processes. In two individuals of the Ctrl

group and in one MTLE patient, some cells with neuronal

morphology and size were also stained for MT-I/II (Figure 7E,
F). No microglia-like cells were stained for MT-I/II. Neuropil

staining showed a granular pattern in all hippocampal subfields

(Figure 7A–F). Confocal microscopy confirmed the expression of

MT-I/II in astrocytes by GFAP-positive labeling (Figure 8). A

comparison between MT-I/II expression in Ctrl, TLE-TD and

MTLE groups is shown in Figure 9.

Higher MT-I/II immunoreactivity area (Figure 10) was

observed in both TLE groups, when compared to Ctrl group.

The increase in MT-I/II immunoreactivity area observed in TLE

was due to an increased number of MT-I/II-positive cells and to

increased neuropil staining. MTLE group showed increased

immunopositive area when compared to Ctrl in granule cell layer

(Kruskal-Wallis, p = 0.028), hilus (Kruskal-Wallis, p,0.001), CA3

Table 1. Clinical history of patients with TLE (MTLE and TLE-TD) and Ctrl cases.

Group Ctrl MTLE TLE-TD P value

Age at evaluation1 (years) 42616# 38610# 26612 0. 001

Epilepsy duration (years) ____ 25610# 15612 0.002

Age at epilepsy onset (years) ____ 1369 1267 0.651

Minimal seizure frequency (per month) ____ 16623 25636 0.397

Number of secondary generalizations (per month) ____ 467 469 0.557

Frequency of secondary generalization (%) ____ 59 63 1.000

1age of death for Ctrl and age at surgery for TLE.
# = statistical difference to TLE-TD; Ctrl = control; MTLE = mesial temporal lobe epilepsy; TLE-TD = temporal lobe epilepsy associated with tumor or dysplasia.
doi:10.1371/journal.pone.0044709.t001

Figure 2. Representative images of NeuN, neo-Timm, GFAP and
HLA-DR staining in the Fascia dentata of Ctrl, TLE-TD and MTLE
patients. The pattern of NeuN staining is the same in Ctrl (A), TLE-TD
(B) and MTLE (C) groups, but MTLE shows reduced neuronal population
in this subfield. Compared to Ctrl (D), increased neo-Timm staining was
observed in the inner molecular layer of fascia dentata in MTLE patients
(F), but not in TLE-TD (E). As for the astroglial population, both
hyperplasia and hypertrophy are observed in MTLE (I) and TLE-TD (H),
compared to Ctrl (G). Hyperplasia is also observed in microglial cells in
TLE-TD (K) and, more notable, in MTLE (L), compared to Ctrl (J). Bar in L
indicates 100 micrometers.
doi:10.1371/journal.pone.0044709.g002

Metallothioneins I/II Expression in TLE
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(ANOVA, p = 0.003), CA2 (Kruskal-Wallis, p,0.001) and subic-

ulum (Kruskal-Wallis, p,0.001) and in CA4 when compared to

TLE-TD (Kruskal-Wallis, p = 0.041). Both MTLE and TLE-TD

groups had increased MT-I/II immunopositive area when

compared to Ctrl in outer molecular layer (Kruskal-Wallis,

p = 0.002), inner molecular layer (Kruskal-Wallis, p = 0.023), and

subgranule zone (Kruskal-Wallis, p,0.001). In CA1 and the

prossubiculum, the immunopositive area was increased in MTLE

when compared with both TLE-TD and Ctrl (ANOVA,

p,0.001).

MT-I/II immunoreactivity and seizures
In MTLE group, patients without secondary generalized

seizures (SGS) had increased MT-I/II immunopositivity, when

compared with patients with SGS, in the inner molecular layer (t-

test, p = 0.037), granule cell layer (t-test, p = 0.018), subgranule

zone (t-test, p = 0.004), CA2 (Mann-Whitney, p = 0.039) and CA1

(t-test, p = 0.043) (Figure 11). No differences in neuronal,

astroglial or microglial populations were observed between MTLE

patients with or without SGS. In TLE-TD patients, no differences

in hippocampal MT-I/II immunopositivity, neuronal, astroglial or

microglial populations were observed between patients with and

without SGS. Frequency of seizures did not correlate with MT-I/

II immunopositivity in all hippocampal subfields.

Correlations between MT-I/II immunoreactivity, cellular
populations and vesicular Zn2+

Considering all TLE patients, correlation analysis revealed that

MT-I/II immunoreactivity correlated with GFAP immunoreac-

tivity in CA4 (r = 0.312; p = 0.012; n = 65), CA2 (r = 0.275;

p = 0.038; n = 57) and CA1 (r = 0.319; p = 0.004; n = 78) and with

NeuN in CA1 (r = 20.241; p = 0.034; n = 78). No correlation was

found between MT-I/II immunoreactivity and HLA-DR immu-

noreactivity or neo-Timm staining. In CA4, multiple linear

regression revealed a trend to association between MT-I/II

expression and GFAP immunopositivity (r = 0.347; p = 0.061,

with p = 0.753 for NeuN, p = 0.02 for GFAP and p = 0.111 for

age; n = 53). In CA2, multiple regression model revealed that MT

expression was significantly explained by GFAP and age

(r = 0.574; p,0.001, with p = 0.533 for NeuN, p = 0.018 for

GFAP, p,0.001 for age; n = 55). In CA1, MT-I/II expression has

a trend to be explained by increased GFAP immunoreactivity

(r = 0.364 ; p = 0.015, with p = 0.817 for NeuN, p = 0.069 for

GFAP and p = 0.107 for age; n = 77). In summary, in some

hippocampal subfields (CA4, CA2, and CA1) there was a positive

correlation between MT-I/II immunoreactivity and GFAP

immunoreactivity. Different regressions models did not provided

a best fit for any of the variables evaluated.

In TLE-TD, there was a positive correlation between NeuN

and MT-I/II expression in CA4 (r = 0.543; p = 0.0353; n = 15). No

correlation was observed between MT-I/II expression and GFAP,

HLA-DR area or neo-Timm density in TLE-TD. Multiple linear

Figure 3. Neuronal density in hippocampal subfields of Ctrl, MTLE and TLE-TD groups. MTLE (dark gray boxplots) had reduced neuronal
density (showed as thousands of cells per cubic millimeter), when compared to Ctrl (white boxplots) and TLE-TD (light gray boxplots), in granule cell
layer (GCL), CA4, CA3, CA1 and prosubiculum, and in CA2, when compared to Ctrl (p,0.001). TLE-TD presented decreased neuronal density only in
CA3 and CA2, compared to Ctrl (p,0.001). The * indicate difference from Ctrl and # difference from TLE-TD. The dark circles indicate mean.
doi:10.1371/journal.pone.0044709.g003

Figure 4. Vesicular zinc staining in the Fascia dentata of Ctrl,
MTLE and TLE-TD groups. MTLE (dark gray boxplots) had increased
neo-Timm staining (showed as gray level intensity), when compared to
Ctrl (white boxplots), in the inner molecular layer (IML, p,0.001). No
difference was observed between TLE-TD (light gray boxplots) and Ctrl
or MTLE. The * indicate difference from Ctrl. The dark circles indicate
mean.
doi:10.1371/journal.pone.0044709.g004
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regression model was not significant in CA4 (r = 0.590; p = 0.179;

n = 15), but NeuN was significantly associated with MT-I/II in this

region (p = 0.046 for NeuN, p = 0.662 for GFAP and p = 0.486 for

age). For the relation between neuronal population and MT-I/II

expression in CA4, the quadratic model provided a better fit, when

compared to the linear model (r2 = 0.48 and p = 0.014 for the

quadratic model versus r2 = 0.333 and p = 0.019 for the linear

model)

In MTLE, MT-I/II immunoreactivity area correlated with

GFAP area in CA4 (Pearson’s test; r = 0.319; p = 0.0241; n = 50).

No correlations were observed between MT expression and

NeuN, HLA-DR or neo-Timm in MTLE. Multiple linear

regression revealed no significance in CA4, although GFAP

expression was significantly associated with MT expression

(r = 0.332; p = 0. 175, with p = 0.703 for NeuN, p = 0.042 for

GFAP and p = 0.269 for age; n = 46). No other regression model

than the linear provided a best fit for the variables evaluated.

Discussion

In the present study, we found an increased MT-I/II expression

in all hippocampal subfields of MTLE patients and in the fascia

dentata of patients with TLE-TD. In MTLE patients, MT-I/II

expression correlated with astroglial population but not with

neuronal population. In TLE-TD group, MT-I/II expression

correlated positively with neuronal population only in CA4. In the

CNS, MT-I/II are expressed mainly by astrocytes [46] and, when

the tissue suffers an injury, increased MT-I/II expression is

observed in astrocytes and microglias [46], [32]. In our study, an

increased expression of MT-I/II was observed in astrocytes and

Figure 5. GFAP immunopositive area in hippocampal subfields of Ctrl, MTLE and TLE-TD groups. Compared to Ctrl (white boxplots),
MTLE (dark gray boxplots) and TLE-TD (light gray boxplots) groups had increased GFAP immunoreactivity (showed as percentage of immunopositive
area) in outer molecular layer (OML), inner molecular layer (IML), granule cell layer (GCL), subgranule zone (SGZ), hilus, CA4 and CA3 (p,0.001), and
MTLE groups had increased GFAP immunopositivity in CA2, CA1, prosubiculum (PRO) and subiculum (SUB), compared to Ctrl and TLE-TD (p,0.001).
In the subiculum (SUB), TLE-TD had increased GFAP immunoreactivity, compared to Ctrl (p,0.001). The * indicate difference from Ctrl and #

difference from TLE-TD.
doi:10.1371/journal.pone.0044709.g005

Figure 6. HLA-DR immunopositive area in hippocampal subfields of Ctrl, MTLE and TLE-TD groups. Compared to Ctrl (white boxplots),
TLE groups had increased HLA-DR immunoreactivity (showed as percentage of immunopositive area) in outer molecular layer (OML), granule cell
layer (GCL), CA4, and CA1 subfields (p,0.001). MTLE (dark gray boxplots) had increased HLA-DR immunoreactivity in inner molecular layer (IML),
subgranule zone (SGZ), hilus, CA3, CA2, prosubiculum (PRO) and subiculum (SUB) (p,0.01). In IML, MTLE also presented increased HLA-DR
immunoreactivity when compared to TLE-TD (p,0.001). The * indicate difference from Ctrl and # difference from TLE-TD.
doi:10.1371/journal.pone.0044709.g006
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occasionally in neurons of autopsy and TLE patients. Confocal

microscopy in our TLE patients corroborated the finding that

MT-I/II are expressed by astrocytes. We also observed an

increased expression of MT-I/II in the neuropil of TLE patients.

Studies in tissue obtained from animal models of CNS injury have

shown that increased MT-I/II expression in the neuropil is most

likely the result of higher release of MT-I/II from the astrocytes

[47], [48]. Therefore, our data support the notion that MT-I/II

changes are essentially related to astroglial population.

Gliosis is a common finding in TLE [21], [22], [23], [24] and is

associated with the degree of neuronal death [22], [49], [23], [24].

Similarly with MT-I/II expression, gliosis was more intense and

widespread in MTLE than in TLE-TD groups. Furthermore,

correlations between the degree of astrogliosis and the expression

of MT-I/II observed in TLE patients indicate that MT-I/II

expression in TLE is a phenomenon associated with the

astrogliosis and, consequently, with the degree of tissue damage.

In agreement with this hypothesis, an association between the

severity of tissue damage and the increase in MT-I/II expression

has been reported in mice subjected to soman-induced SE [35].

Studies in rodents with kainic acid-induced SE showed an

association between MT-I/II expression and neuronal survival.

Transgenic mice over-expressing MT-I/II have reduced neuronal

death, compared to wild type animals [38]. In addition, mice with

reduced MT-I/II expression [36] or in knockouts for MT-I/II

[37] had increased neuronal death following SE, compared to wild

type mice. In our study, MT-I/II expression correlated positively

with neuronal population only in CA4 of TLE-TD patients. In

MTLE group, where neuronal death and MT-I/II expression are

more pronounced, no correlation between neuronal death and

MT-I/II was observed. These findings contradict the hypothesis

that an increased MT-I/II expression could be related with

Figure 7. Representative images of MT-I/II staining in several
hippocampal subfields. Almost all stained cells have astrocyte
morphology (indicated by small arrows in A–F), while neurons remained
unstained (white cells pointed by large arrows in B). Only in few cases
from Ctrl (E and F) and in one region of one case of TLE were observed
cells with neuron morphology (large arrows in E and F). No stained
neuron presented the strong staining of astrocytes. In Ctrl, neuropil
presented a weak staining (indicated by black circle in F). In TLE the
neuropil staining level was heterogeneous, as can be seen in CA1
sections depicted in C and D (indicated by white circles). The
representative images shown are from the fascia dentate (A), subiculum
(B and E), CA1 (C and D) and hilus (F) of Ctrl (E and F) and TLE cases (A–
D). Bar in F indicates 100 micrometers.
doi:10.1371/journal.pone.0044709.g007

Figure 8. Confocal images of astrocytes expressing MT-I/II in
Ctrl and TLE cases. TLE (E–H) patients presented more astrocytes
(GFAP immunoreactive cells, red in B, F, D, H and I) expressing MT-I/II
(green in C, G, D, H and I, indicated by white arrows in D and H) than
Ctrl (A–D). In a detailed view of H (I), MT-I/II expression can be observed
in radial branches (large arrow), soma (small arrow) and nucleus
(Hoeschst 33342 staining, white circle) of astrocytes. Astrocytes are
GFAP immunoreactivity) Bars in H and I indicate 50 micrometers.
doi:10.1371/journal.pone.0044709.g008

Figure 9. Representative sections of MT-I/II immunohistochem-
istry in hippocampal subfields from Ctrl, TLE-TD and MTLE
patients. MTLE patients had widespread increase in MT-I/II when
compared to Ctrl, demonstrated by increased cellular and neuropil
staining in C, F and I. In TLE-TD patients, increased MT-I/II expression
was observed only in the fascia dentata (B) outer molecular layer (small
black arrow) and subgranule zone (small white arrow), the entry point
of the hippocampus. The representative images shown are from the
fascia dentata (A–C), CA1 (D–F) and subiculum (G–I). Bar in I indicates
100 micrometers.
doi:10.1371/journal.pone.0044709.g009
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neuronal survival. Different mechanisms contribute to neuronal

death that occurs in the hippocampus of MTLE and TLE-TD

patients. In TLE-TD patients, evidence has been shown that

neuronal death is a consequence of the recurrent seizures [50].

Although neuronal death in MTLE can also be caused by

recurrent seizures [50], the bulk of neuronal death is rather a

consequence of an initial precipitating insult (IPI), which usually

occurs several years before the epilepsy onset [50], [51]. The

neuronal death is also severe in MTLE, often resulting in

hippocampal sclerosis, while TLE-TD patients generally have

preserved neuronal density [18], [52]. In addition, data indicate

that hippocampal atrophy may be determined by a strong genetic

predisposition and occur in individuals who never had seizures

[53]. Therefore, it is possible that the differential increase in MT-

I/II expression in TLE-TD and MTLE is also the result of the

different mechanisms associated with neuronal death in such

epileptic syndromes.

According to other studies, MTs could also be responsible to

neuronal damage and death following SE. In mice knockout for

ZnT3, a protein responsible to stock Zn2+ in synaptic vesicles, SE

increases damage in CA1 [39], [28], [29] and other cerebral

regions [29], when compared to wild type mice. In these knockout

mice lacking vesicular Zn2+, damage in CA1 can be prevented by

chelating extracellular Zn2+ [28], [29] or by knocking out MT-III

gene [39], [29]. However, knocking out MT-III gene in mice with

[54] or without vesicular Zn2+ [29] increases damage in CA3 after

SE. Since all studies that associated MT-I/II with neuronal

survival after SE studied mainly the CA3 region, where MT-III is

also known to protect from damage [54], [29], one could argue

that, in CA1 and other hippocampal regions, MT-I/II could cause

damage, similarly to MT-III. We did not find any positive

association between increased MT-I/II expression and reduced

neuronal population in all hippocampal subfields. Furthermore,

mice with reduced levels of MT-I/II [36] have increased damage

in CA1 after SE. It is known that MT-I/II binds Zn2+ more

Figure 10. MT-I/II immunopositive area in hippocampal subfields of Ctrl, MTLE and TLE-TD groups. Compared to Ctrl (white boxplots),
TLE groups had higher MT-I/II immunopositive area (showed as percentage of immunopositive area) in outer molecular layer (OML), inner molecular
layer (IML) and subgranule zone (SGZ) (p,0.01). MTLE (dark gray boxplots) had increased MT-I/II immunoreactivity in granule cell layer (GCL), hilus,
CA4, CA3, CA2, CA1, prosubiculum (PRO) and subiculum (SUB) (p,0.05), compared to Ctrl, and also in CA1 when compared to TLE-TD (p,0.001). The
* indicate difference from Ctrl and #difference from TLE-TD.
doi:10.1371/journal.pone.0044709.g010

Figure 11. MT-I/II immunopositive area in MTLE patients without and with secondary generalized seizures. Patients without secondary
generalization (white boxplots) present increased MT-I/II immunopositivity (p,0.05) in the inner molecular layer (IML), granule cell layer (GCL),
subgranule zone (SGZ), CA2 and CA1, when compared with patients that present secondary generalization (light gray boxplots). The + indicates
difference between the groups.
doi:10.1371/journal.pone.0044709.g011
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strongly that MT-III [55], [56]. These observations make us

believe that MT-I/II do not contribute to the neuronal damage

observed in the hippocampus of TLE patients. Further studies

must be performed to better address this issue.

Several developmental studies have indicated that MT-I/II

levels increase with the age, [57], [58], [59], [60], [61], [62], [63],

[64]. On the other hand, reduced MT-I/II expression has also

been reported in the adult rat brain when compared to young

brain [65], and no differences were observed in aged and adult

brain specimens of rat [66] and calf [67]. Also, it is already known

that longer epilepsy duration can increase the neuronal death

observed in hippocampal sclerosis and is associated with the

neuronal death in non-sclerosis cases [50]. Therefore, we must also

account for age and epilepsy duration as factors for the changes

observed in MT-I/II expression. We did not see relation between

epilepsy duration and MT expression in our multivariate analysis.

However, in some regions, age at evaluation was significantly

associated with MT-I/II expression. For example, in CA2 of all

TLE patients and in CA4 of TLE-TD age at evaluation predicted

MT-I/II expression. Although our findings indicate that age can

contribute to the increased MT-I/II expression observed in TLE,

the pathological changes associated to the epileptic condition (i.e.,

gliosis and neuronal death) are still the main factors related to the

increased MT-I/II expression in the hippocampus of TLE

patients.

Reorganization of vesicular Zn2+ in the hippocampus is often

observed in TLE [19], [20], and Zn2+ can trigger MT-I/II

expression [59]. Then, it is also important to consider the effect of

the Zn2+ pool over MT-I/II expression. In agreement with other

studies [68], [69], [19], we only observed significant increase in

vesicular Zn2+ in the inner molecular layer of MTLE patients. No

correlation was observed between MT-I/II expression and

vesicular Zn2+ in our TLE cases. This does not exclude an

association between MT-I/II expression and Zn2+, provided that

only 10% of all Zn2+ in the brain is located in vesicles [70], [7] and

only a small fraction of the Zn2+ released during neurotransmis-

sion will reach the astrocytes to induce MT-I/II expression.

Data have shown that the increased MT-I/II immunoreactivity

observed in animal models of TLE can also be a factor associated

with the seizure generation process. Transgenic mice over-

expressing MT-I, have increased seizure duration, a tendency to

reduced latency, but similar number of seizures after kainic acid

administration [38]. Since MT-I/II act chelating free Zn2+ [31],

[14] and Zn2+ chelation increases tissue excitability and facilitates

seizure generation [71], excessive MT-I/II levels can reduce free

Zn2+ in the synaptic cleft, increasing neuronal excitability and

affecting seizure generation. Our data showed a similar frequency

of seizure between MTLE and TLE-TD patients. In agreement

with previous studies, we found no correlation between seizure

frequency and MT-I/II expression in TLE [38].

In MTLE, we found increased levels of MT-I/II expression in

patients without SGS, when compared with those with SGS. This

could indicate that MT-I/II expression is associated with different

seizure spread patterns from the epileptogenic hippocampus to

other brain regions. It is important to point out that no difference

in neurons or glial cells was observed between MTLE with and

without SGS. Studies from different groups also observed no

association between changes in the hippocampus and SGS [72],

[73], [74]. These observations suggest that the increased MT-I/II

expression in patients without SGS is not an effect of gliosis, but it

is independently associated with SGS. Further studies with animal

models of TLE should evaluate more closely the relationship

between MT-I/II expression and seizure susceptibility.

The differential pattern of increase in MT-I/II expression in

MTLE and TLE-TD patients may also be associated with the site

of seizure generation. Seizures are known to induce MT-I/II

expression in the epileptic hippocampus [75]. In MTLE patients,

where MT-I/II increase was widespread, most focal seizures are

generated within the hippocampus [76]. In TLE-TD, the seizures

are generally generated in the cerebral cortex surrounding the

tumor or in the cortical dysplasia and hence propagate to the

hippocampus [18], [77], [78]. The main area of input entry in the

hippocampus is the molecular layer of the fascia dentata [10], where

increased MT-I/II expression was observed in the TLE-TD

patients of our study.

Some limitations of our study must be pointed out. So far,

studies about MT-I/II expression in animal models of TLE only

evaluated the acute period following SE. Considering that our

study was performed in patients with chronic epilepsy, it is difficult

to establish comparisons between human and animal data.

Besides, the reduced number of patients in the TLE-TD group

can be the reason why only in one hippocampal subfields the

neuronal density correlated with MT-I/II expression. The lack of

correlation between seizure frequency and MT-I/II expression

does not exclude an association between seizures and MT-I/II

expression. Other seizure characteristics, such as seizure duration

and time between the last seizure and the surgery, could better

correlate with MT-I/II expression than isolated seizure frequency.

Finally, our study may have translational implications in the

future. The role of MTs in antiinflamatory response, neurotrophic

factor expression, and protection against ROS and heavy metals

make those proteins interesting for clinical applications. Studies

have shown that EmtinB, a syntethic peptide that mimics the

actions of MTs, attenuates kainic acid-induced seizures and

protects neurons from excitotoxic death [34]. Further studies with

EmtinB and MTs in acute and chronic models of epilepsy might

assess, in more detail, the role of these proteins in neuronal

survival and seizure susceptibility.

In summary, our data indicate that increased MT-I/II

expression is a plastic alteration of chronic TLE, primarily related

to the astrogliosis, a common finding in chronic TLE. In

opposition to other studies, MT-I/II expression was not associated

with significant neuronal survival in TLE. Nevertheless, our

findings suggest that increased MT-I/II expression may contribute

to the control of the brain hyperexcitability.

Supporting Information

Figure S1 Representative images of immunohistochem-
istries in the temporal cortex from a MTLE patient. After

surgery, tissue fragments were maintained in saline solution during

1 hour (A, F, K and P), 4 hours (B, G, L and Q) and 8 hour (C, H,

M and R) prior to fixation in formaline. Note that no difference

can be seen regardless of waiting time prior to fixation for MT-I/II

(A–C), GFAP (F–H), HLA-DR (K–M) and NeuN (P–R)

immunoreactivities. Statistical analyses did not revealed difference

in immunopositive area (D, I, N and S) or gray level (E, J, O and

T) between tissues fixed after 1 (white boxplot), 2 (very light gray

boxplot), 4 (light gray boxplot), 6 (medium gray boxplot) or 8 (dark

gray boxplot) hours post surgery for MT-I/II (D and E), GFAP (I

and J), HLA-DR (N and O) or NeuN (S and T). Bar in R indicates

100 micrometers.
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