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Background: In a previous nationwide survey in the Lebanese broiler production, multidrug-resistant CTX-M- 
producing E. coli were found to carry the mobile colistin resistance gene mcr-1.

Objectives: To investigate the mobile genetic supports responsible for the spread of these resistance genes 
among E. coli in healthy broilers in Lebanon.

Methods: Thirty-three blaCTX-M and mcr-1 positive E. coli of various sequence types from 17 broilers farms were 
subjected to conjugation assays. Long-read sequencing (Oxford Nanopore Technologies) and hybrid assembly 
were performed to determine complete plasmid sequences and their phylogenetic diversity.

Results: Twenty-nine conjugative IncFII plasmids harboured the extended-spectrum β-lactamase genes 
blaCTX-M-3 (n = 25) or blaCTX-M-55 (n = 4). Highly related IncF2:A-:B-/blaCTX-M-3 plasmids differing only through 
IS-mediated genetic rearrangements in antibiotic resistance gene clusters were found in genetically diverse 
E. coli strains isolated from distant farms. The mobile colistin resistance genes mcr-1.1 and mcr-1.26 were car-
ried by IncX4 and IncI2 plasmids. Worryingly, in one isolate, the ISEcp1-blaCTX-M-55 transposable unit was found 
integrated in a mcr-1.26-carrying IncX4 plasmid. Beside expanded cephalosporins and colistin resistances, all 
E. coli isolates were multidrug-resistant with different additional resistances against aminoglycosides, (fluoro) 
quinolones, fosfomycin, phenicols, sulphonamides, tetracycline and trimethoprim.

Conclusions: Closely related blaCTX-M-3/55-borne IncF2:A-:B- plasmids harbouring variable MDR regions and 
mcr-1 carrying IncX4 plasmids are widely disseminated in the E. coli population of healthy broilers in 
Lebanon. Further surveillance programmes of antimicrobial resistance and interventions to reduce the abusive 
use of medically important antibiotics are necessary to limit the spread of resistances in food-producing animals 
in Lebanon.
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Introduction
Among food-producing animals, the industrial broiler production 
has been incriminated for its high prevalence of ESBL and/or plasmi-
dic AmpC Cephalosporinase (pAmpC) producing Enterobacterales 
as well as mobile colistin resistance (mcr) encoding genes in inten-
sive farms.1,2 The epidemiology of these critically important resis-
tances is rather complex, since they are conferred by numerous 
resistance gene variants and families located on various mobile 
genetic elements.3 Plasmids are recognized to play a crucial role 

in antimicrobial resistance spread among Gram-negative bacteria.3

Plasmids of the IncC, IncF, IncH, IncI, IncN and IncX replicon types 
are the most frequently described carriers of ESBL/pAmpC, and mcr 
genes in isolates from food-producing animals.3–5 Among ESBL 
genes, the blaCTX-M gene families predominate in food and food- 
producing animals.6

We recently described a worrying prevalence of ESC-resistant 
E. coli in healthy broilers in Lebanon.7 The most prevalent ESBL 
gene was blaCTX-M-3, distributed in numerous broiler farms in dif-
ferent poultry-associated E. coli STs (sequence types). Moreover, a 
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significant part of these ESBL-producing E. coli isolates also har-
boured the colistin resistance gene mcr-1. The important diver-
sity of E. coli genetic backgrounds found in this previous study 
suggested that the blaCTX-M and mcr-1 genes are largely spread-
ing among E. coli in the Lebanese broiler production through hori-
zontal transfer.7

Therefore, the aim of the present study was to investigate the 
mobile genetic supports responsible of mcr-1 and ESBL genes dis-
semination among Escherichia coli isolated from healthy broilers 
in Lebanon.

Materials and methods
Bacterial collection, culture and antimicrobial 
susceptibility testing
Thirty E. coli strains carrying ESBL/pAmpC and mcr-1 genes and three 
additional strains harbouring only ESBL/pAmpC genes were selected 
from a national survey previously published (Table S1, available as 
Supplementary data at JAC-AMR Online).7 Antibiotic Susceptibility and 
the production of ESBLs were determined by the discs diffusion method 
on Mueller–Hinton agar and using the double-disc synergy test, respect-
ively, as recommended by EUCAST (http://www.eucast.org/) using 31 
discs (BioRad, Marne-la-Coquette, France), and the E. coli control strain 
ATCC 25922, as previously described.8 Colistin resistance of mcr-1 positive 
isolates was confirmed by MIC using a broth microdilution method.

Conjugation experiments
Conjugative mating experiments were carried out in liquid cultures using so-
dium azide resistant E. coli K-12 J5-3 (F- proB22 metF63) as recipient strain 
and field strains as donors, as previously described.8 Transconjugants were 
selected on BHI solid media containing either cefotaxime at 2 mg/L or colis-
tin at 4 mg/L and sodium azide at 250 mg/L. Transconjugants were screened 
by PCR for blaCTX-M, mcr-1 and Inc replicons, using primers previously 
described.2,8,9

Plasmid sequencing and bioinformatic analysis
Plasmidic DNA extraction and Oxford Nanopore sequencing

AMR plasmids were extracted from selected transconjugants using 
Macherey–Nagel NucleoBond Xtra Midi plasmid purification kit (Hoerdt, 
France) following the manufacturer’s recommendations for high molecu-
lar weight plasmids. Conjugative AMR plasmids were sequenced using the 
Oxford Nanopore Technologies. Briefly, plasmidic DNAs (40–80 ng) were 
barcoded and multiplexed using the rapid-barcoding kit SQK-RBK110.96 
following the manufacturer’s recommendations. Long-read sequencing 
was performed using the MinION sequencing device with FLO-FLG001 
flongle flow cells (R9.4.1) for 16 h. Two sequencing runs were realized 
producing 62 486 and 47 376 raw reads that were base-called and de-
multiplexed using the super-accurate algorithm (Guppy v.6.0.1), with 
read lengths N50 of 20 048 and 25 245 bp, respectively.

Plasmid hybrid assembly and comparative analysis

Oxford Nanopore raw reads were quality-filtered at >Q10 and as-
sembled using the FullForce Plasmid assembler (https://github.com/ 
NorwegianVeterinaryInstitute/FullForcePlasmidAssembler) followed 
by polishing with short Illumina reads using polypolish.10 The 
Illumina pair-end, 150-bp-long raw reads were generated from gen-
omic DNAs of the corresponding field donor isolates in the previous 
study.7 Complete plasmid sequences have been deposited in the 
European Nucleotide Archive under BioProject accession number 
PRJEB74339. All 40 complete AMR plasmids were analysed using 

various tools with default threshold parameters (ResFinder v.4.1, 
PlasmidFinder v.2.1, pMLST and COPLA) to determine their resistance 
genes content and genetic characteristics (incompatibility group, FAB 
formula, pTUs, relaxase, conjugative systems).4,5,11 Genetic maps 
and comparative genomic analysis of plasmids were performed using 
GenoFig v.1.1.0 with blastN homologies (https://forgemia.inra.fr/ 
public-pgba/genofig). In addition, a SNP phylogenetic tree of IncF plas-
mids was produced using the parSNP tool.12,13 The phylogenetic tree 
was visualized and annotated with the iTOL web interface tool v.6.14

Results and discussion
We previously identified 14 out of 102 ESC-resistant E. coli iso-
lates also carrying the mobile colistin resistance gene mcr-1.7

The screening of 111 additional sequenced ESC-resistant E. coli 
isolates from the same sampling campaign increased the bacter-
ial collection to 30 isolates co-harbouring mcr-1 and blaCTX-M 
genes (Table S1). Three blaCTX-M-positive only isolates were also 
included in the present study for comparison purpose. These iso-
lates belong to 15 different STs and were distributed in 17 farms 
across the whole Lebanese territory. The main ESBL genes were 
blaCTX-M-3 (25/33) and blaCTX-M-55 (5/33). Two distinct variants of 
the mcr-1 gene were present in these isolates: mcr-1.1 and 
mcr-1.26 in 19 and 11 isolates, respectively. The 33 MDR field E. 
coli isolates contained a large diversity of replicon types, with 
up to 14 replicon families per isolate (Table S1).

Conjugative mating and complete plasmid sequencing
All field isolates except those carrying blaCTX-M-14b (S34CTX and 
S35CTX) and blaCTX-M-27 (S25CTX) transferred their ESC-resistance 
phenotype by conjugative mating experiments using cefotaxime 
selection. On the other hand, conjugative transfer of the colistin re-
sistance phenotype was successful for fewer than half (14/30) 
(Table S1). Interestingly, eight field isolates (A17FEP, B30FEP, 
B31CTX, B34FEP, B40FEP, N11CTX, N12CTX, N15CTX) could co- 
transfer both genes, i.e. blaCTX-M and mcr-1, in repeated conjugative 
mating experiments regardless of the antibiotic selection (cefotax-
ime or colistin) (Table S2). In all other matings, tranconjugants were 
positive for blaCTX-M or mcr-1 gene only according to the respective 
antibiotic selection. PCR-based replicon typing indicated that all but 
two blaCTX-M positive transconjugants were found IncFII-positive 
and those also positive for mcr-1 were all positive for IncX4 
(Table S2). The two transconjugants from A17FEP (TC-CTX and 
TC-COL) were only positive for IncX4 suggesting that blaCTX-M-55 
and mcr-1.26 genes were probably located on the same IncX4 plas-
mid (Table S2).

Complete circular sequences from 40 conjugative plasmids of 
34 transconjugants were obtained after hybrid assembly (Tables 
S2 and S3). These assemblies confirmed (i) that A17FEP-TC-CTX 
harboured a single 36 546-bp plasmid and (ii) that all other 
blaCTX-M/mcr-1/IncFII/IncX4-positive transconjugants contained 
two distinct plasmids of ∼33 kb and 71–98 kb, respectively 
(Table S3). All other blaCTX-M or mcr-1 only positive transconju-
gants harboured a single plasmid (Tables S2 and S3).

blaCTX-M-3/55-carrying IncFII plasmids
IncFII plasmids carrying blaCTX-M-3/55 genes range in size from 61  
959 to 100 908 bp, and show the same pMLST formula F2:A-:B-, 
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Figure 1. (a) Phylogenetic relationship of 28 IncF2:A-:B-/blaCTX-M-3/55 plasmids. The tree was built with a maximum likelihood algorithm from 1458 bp 
SNPs present in the core plasmid alignment using IncFII plasmid pB38CTX-TC-CTX as internal reference for SNP calling. The tree was rooted using the 
IncF33:A-:B- plasmid pB6CTX-TC-CTX as outgroup, subsequently removed to improve branch length visibility (see also Figure S3). Local branching sup-
port values are based on the Shimodaira−Hasegawa test. Values of 1, indicating maximum support, are not displayed. Columns 1 to 4 on the right side 
of the tree correspond to plasmid name, sequence type of the E. coli donor strain, region and farm of origin, respectively. Sequence types are colour- 
coded according to the E. coli phylotype: cyan, A; green, D; blue, E; orange, F and brown, G. Presence of resistance genes [blaCTX-M-3 or −55, fosA3, floR, 
erm(42)] are indicated with a filled box. (b) Schematic map and genomic comparisons of 12 representative IncF2:A-:B-/blaCTX-M-3/55 plasmids of dif-
ferent clonal groups generated using Genofig v.1.1.0 (see also Figure S2 showing all IncFII plasmids). Nucleotide identities are displayed for homolo-
gous regions >1500 bp. ORF functions are colour-coded according to the panel legend.
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except for the F33:A-:B- plasmid pB6CTX-TC-CTX (100 879 bp) 
(Figures S1 and S2, Table S3). They belong to the plasmid taxonom-
ic unit pTU-FE and harbour a MOB-F type relaxase as well as a mat-
ing pair formation system of type F.11 A phylogenetic tree was 
inferred from the core 1458 SNP positions shared between all 
IncFII plasmids (Table S4). The F33:A-:B- plasmid pB6CTX-TC-CTX 
carrying blaCTX-M-55 clearly branches outside of a large cluster con-
taining all F2:A-:B- plasmids (Figure S3). To gain into resolution, 
plasmid pB6CTX-TC-CTX was removed from the phylogenetic tree 

(Figure 1a). Apart from two distantly related F2:A-:B- plasmids 
(pND24FEP-TC-CTX and pB18CTX-TC-CTX), all other plasmids share 
between 0 and 23 SNPs (Figure 1a, Table S4). Among them, several 
clonal plasmid groups showing no SNP difference are found in E. 
coli strains of different STs and phylogroups carrying from 2 to 
10 replicons and isolated in distinct farms from distant regions in 
Lebanon (Figure 1a, Table S4).

Antibiotic resistance genes are gathered in complex genetic clus-
ters including different insertion sequences (IS15, IS26, ISCR2, …) 

Figure 2. (a) Genomic comparison of the eight IncX4 plasmids carrying mcr-1-like genes generated using Genofig v.1.1.0. Plasmid pUMNF18-32 re-
presents a reference IncX4 plasmid without antibiotic resistance gene. Nucleotide identities are displayed for homologous regions >1000 bp. ORF func-
tions are colour-labelled according to the panel legend. (b) Schematic map and genomic comparisons of the three IncI2 plasmids carrying the mcr-1.1 
gene generated using Genofig v.1.1.0. Plasmids pHNSHP45 and R721 represent reference IncI2 plasmids carrying or not the mcr-1.1 gene, respectively. 
Nucleotide identities are displayed for homologous regions >1000 bp. ORF functions are colour-coded according to the panel legend.
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and/or partial transposons of the Tn3 family (Tn5403, Tn3, Tn2). 
Genomic comparisons highlighted various genetic rearrangements 
between and within clonal groups that probably occurred by trans-
position, homologous recombination or co-integrate formation 
(Figure 1b). Several examples of nearly identical plasmids strongly 
suggested that these plasmids are spreading horizontally by con-
jugation between different E. coli STs in broilers at the country level 
(Figure 1). It is worth noting that most (22 out of 29) of these 
blaCTX-M-3/55-carrying IncFII plasmids also harboured the fosfomy-
cin resistance gene fosA3 representing an additional critically im-
portant resistance gene for human medicine (Figures 1, Figures S2 
and S3). Since 2012, such plasmids have been sporadically 
described in clinical isolates of Salmonella and E. coli of worldwide 
origins.15,16 A search for blaCTX-M-3/55-carrying F2:A-:B- plasmids in 
the PLSDB database (59 895 entries, 18 March 2024) retrieved only 
26 complete plasmids. Nine of them, mainly from E. coli of various 
origins (humans and animals from Asia, Russia and Switzerland), 
strongly clustered with the poultry-associated blaCTX-M-3/55-
-carrying F2:A-:B-plasmids described here (data not shown).

mcr-1-carrying IncX4 and IncI2 plasmids

Colistin resistance gene variants mcr-1.1 and mcr-1.26 were car-
ried by IncX4 plasmids (n = 8) and IncI2 plasmids (n = 3) 
(Table S3). Five nearly identical 33 304-bp IncX4 plasmids (0–1 
SNP) carried the mcr-1.26 gene variant linked to the pap2 gene 
but not flanked by insertion sequences (Figure 2a). The 
mcr-1.26 gene is located ∼3.4 kb upstream of a single IS26 elem-
ent, showing 8-bp target site duplication (CTGTGTGA) suggesting 
a distinct acquisition event (Figure 2a). Interestingly, the IncX4 
plasmid pA17FEP-TC-CTX co-harbours the mcr-1.26 gene and 
the ESBL gene blaCTX-M-55 (Figure 2). The ISEcp1-blaCTX-M-55 trans-
posable unit is inserted in the 3′ end of the IS26 and is flanked by 
5-bp target site duplication (TCAAA), consistent with the known 
mobilization of blaCTX-M by ISEcp1 (Figure 2a). The last two 
IncX4 plasmids carried the mcr-1.1 gene and a novel IS1 family 
element, 96% identical to IS1X2, is found inserted at the 3′ end 
of the mcr-1.1-pap2 mobilizable unit (Figure 2a). Finally, all 
IncI2 plasmids are highly related to each other and carry the 
mcr-1.1 gene variant (Figure 2b). Comparisons of the insertion 
site of mcr-1.1 with those of reference IncI2 plasmids 
pHNSHP45 and R721 carrying or not mcr-1.1, respectively, re-
vealed a distinct acquisition in Lebanese IncX4 plasmids 
(Figures 2b and Figure S4). How this acquisition happened is still 
unclear since no mobile element could be detected in the vicinity 
of mcr1.1.

Numerous studies have described the occurrence of mcr-1 
positive Enterobacterales in various settings in Lebanon (human 
clinical isolates, carriage in healthy community, food-producing 
animals and the environment).17–20 These studies also found 
the mcr-1.1/1.26-carrying IncX4 plasmids followed by IncI2 plas-
mids as main drivers of the colistin resistance dissemination.21,22

A recent report described a mcr-1.26-carrying IncX4 plasmid in E. 
coli from fresh chicken wings collected from a retail meat market 
in Beirut,23 highlighting the exposure risk of consumers.

In conclusion, the massive spread of blaCTX-M-3/55-carrying 
IncF2:A-:B- plasmids and mcr-1-carrying IncX4 and IncI2 plas-
mids occurred in the E. coli population of healthy broilers at the 

entire Lebanese territory level. Identical plasmids differing only 
by IS-mediated genetic rearrangements in antibiotic resistance 
gene clusters confirmed their horizontal transfer in genetically di-
verse E. coli strains from distant farms. The routine use of colistin 
(9 out 17 farms in the present study) and other medically import-
ant antibiotics for prophylactic and therapeutic purposes prob-
ably participates in the persistence of these MDR plasmids in 
poultry farm.10
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