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Abstract

Background

Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The draw-

backs of direct isolation and serological tests have led to the increased development of

nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was per-

formed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptos-

pira in clinical samples.

Methodology and principle findings

A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations

(via Ovid) by using suitable keyword combinations. Studies evaluating the performance of

nucleic acid assays targeting leptospire genes in human or animal clinical samples against a

reference test were included. Of the 1645 articles identified, 42 eligible studies involving

7414 samples were included in the analysis. The diagnostic performance of nucleic acid

assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the

genetic markers analyzed, the secY gene showed the highest diagnostic accuracy mea-

sures, with a pooled sensitivity of 0.56 (95% CI: 0.50–0.63), a specificity of 0.98 (95% CI:

0.97–0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20–343.49), and an area under the

curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high

degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings

here should be interpreted with caution.

Conclusion

The diagnostic accuracies of the studies examined for each genetic marker showed a signif-

icant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures com-

pared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not

significant. Thus, these genetic markers had no significant difference in diagnostic accuracy

for leptospirosis. Further research into these genetic markers is warranted.
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Author summary

Leptospirosis is a globally important zoonotic disease is caused by Leptospira spp. This

disease is often difficult to diagnose because its clinical manifestations resemble those of

other diseases, such as dengue and malaria. Leptospirosis is often misdiagnosed, leading

to improper medical management of patients. Accurate and timely diagnosis of the dis-

ease is important because antibiotic therapy is the most effective during the early stage.

Nucleic acid assays are superior to most currently available diagnostics because they pro-

vide a definitive diagnosis during the acute stage of the disease even before antibodies are

detectable. Nevertheless, the choice of genetic markers for these assays remains perplex-

ing. Hence, this study evaluated the diagnostic accuracy of these genetic markers by pool-

ing and analyzing them simultaneously. Results revealed that nucleic acid assays targeting

the secY gene of leptospires had better diagnostic accuracy with the three other genetic

markers coming close with good diagnostic performance. With the heterogeneity

observed, there is no clear cut answer as to which of these markers is the best for diagnos-

ing leptospirosis. Nevertheless, the analyses in this study suggested that all four markers

exhibited good diagnostic measures and are promising targets for the future development

of nucleic acid-based diagnostics.

Introduction

Leptospirosis is a worldwide zoonotic disease recognized as an important emerging infectious

disease in the past few decades. This disease occurs in diverse epidemiological settings, espe-

cially in tropical or subtropical regions of the world but imparts the greatest burden on

resource-limited populations [1]. Leptospirosis was estimated to cause a million cases and

close to 60,000 deaths annually [2]. Leptospirosis affects risk groups that are exposed to animal

reservoirs or contaminated environments but exerts a broader health impact on impoverished

farmers from the tropical regions [3]. This disease has also emerged as a health threat in new

settings due to the influence of globalization and climate change, where natural disasters and

extreme weather events are now recognized to precipitate epidemics [4, 5].

This disease is caused by spirochetes belonging to the genus Leptospira, comprising of both

saprophytic and pathogenic species. The clinical manifestations of human leptospirosis are

diverse, ranging from mild, flu-like illness to a more severe form of the disease known as

Weil’s syndrome, which is characterized by jaundice, acute renal and hepatic failure, pulmo-

nary distress, and hemorrhage, which can lead to death. These symptoms are similar to those

of other infectious diseases, such as dengue fever and malaria, often causing misdiagnosis.

Early diagnosis of this disease is crucial because antibiotic therapy provides the greatest benefit

and is the most efficacious when initiated early in the course of an illness [3].

Dark-field microscopy is a conventional method for leptospirosis diagnosis through direct

microscopic observation of clinical specimens. However, the sensitivity of this method is low,

and the result is affected by the timing of sample collection and the skill of laboratory person-

nel [1]. Leptospira can be isolated from clinical specimens through inoculation into an appro-

priate culture medium, but its application in the field is hampered by the long doubling time

and the need for special media in addition to its low sensitivity [6]. Microscopic agglutination

test (MAT) is the current reference standard serological diagnostic test in leptospirosis. How-

ever, MAT requires the maintenance of live leptospires. As a minimum, the panel of live lepto-

spires should include all locally circulating serovars; otherwise, an incomplete panel could lead
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to a false negative result [7]. Therefore, although MAT is considered as the gold standard test

for leptospirosis diagnosis, it is laborious and its requirement for a large panel of live Leptos-
pira culture hinders its standardization [8]. Other serological tests also have been developed

with the likes of ELISA, complement fixation, indirect hemagglutination, latex bead agglutina-

tion, and indirect immunofluorescence [1, 3, 9], but all have been hampered by their low sensi-

tivities for the initial management of acute leptospirosis [8].

These drawbacks have led to the increased development and use of nucleic acid-based diag-

nostics, such as conventional and real-time polymerase chain reaction (PCR) and isothermal

amplification methods, which feature high sensitivity [10]. The advantage of nucleic acid-

based diagnostics lies in their ability to obtain a definitive diagnosis during the acute stage of

the disease even before antibodies are detectable [8]. Hence, these methods tend to replace the

serological methods in endemic zones. They are normally based on the detection of a certain

gene present in Leptospira. Genes such as rrs, secY, lipL32, flaB, lfb1, ligA, and ligB2 have all

been used as targets of nucleic acid-based diagnosis [11–14] and have been detected from

blood, urine, cerebrospinal fluid, and tissue samples [15].

However, little is known about the diagnostic accuracy of each genetic marker. In addition,

most studies had a low number of samples, which limited the statistical power and scientific

reliability of the results. This meta-analysis was conducted to pool and analyze simultaneously

all studies that used nucleic acid techniques to detect Leptospira in clinical samples of humans

and animals. This pooled analysis aimed to provide a precise estimation of the diagnostic accu-

racy of nucleic acid techniques to detect Leptospira.

Methods

Literature search

A systematic review of nucleic acid techniques in detecting Leptospira was conducted based on

the principles recommended in the Preferred Reporting Items for Systematic Reviews and

Meta-analyses (PRISMA) statements (S1 Checklist).

Data sources. Relevant studies were identified by systematic search of electronic databases

Scopus, PubMed, MEDLINE (from 1946 until present; via Ovid). and non-indexed citations

(via Ovid).

Search strategy. The search of relevant studies was carried out up to December 2018

by using subject headings and free text terms. The search was carried out with the keywords

“(leptospirosis OR leptospira�) AND (human OR patient OR animal OR clinical) AND (sensi-

tivity OR specificity OR “true positive” OR “true negative” OR “false positive” OR “false

negative”)”.

Inclusion criteria

Cross-sectional and cohort studies that assessed nucleic acid techniques for the detection of

Leptospira in human or animal clinical samples against at least one reference test were

included, regardless of publication year. Laboratory diagnoses of leptospirosis are usually

based on several methods or a combination of these methods due to the temporal nature of the

disease progression and the absence of a satisfactory universal reference test [8]. Studies with

reference tests such as MAT, any PCR-based tests, isolation of leptospires through culture, or

the detection of antibodies to the bacteria, were considered for inclusion. Studies must directly

or indirectly provide at least four values, which are number of true positives (TPs), false posi-

tives (FPs), true negatives (TNs), and false negatives (FNs), to construct or reconstruct a two-

by-two table. Only articles published in English were evaluated.
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Exclusion criteria

The relevance of each study was determined based on their types. Reviews that do not contain

original data and proceedings that did not employ any peer-review process were excluded. In

addition, letters, editorials, and case reports were excluded. The objectives and methods were

assessed, and studies were excluded if (1) samples were not tested by at least one reference test;

(2) they involved spiked samples; (3) they involved experimentally infected animals; (4) data to

derive a two-by-two table were insufficient; and (5) multiple genes were targeted in the index

test.

Data abstraction

Study selection. The titles and abstracts of potentially relevant studies from the literature

search were screened by one reviewer in accordance with the eligibility criteria and further

confirmed by a second reviewer. After the exclusion of duplicated records, studies without

abstract, and apparently irrelevant studies, the full-text articles of remaining studies were

screened by two reviewers. Disagreements about study inclusion and exclusion were resolved

between the reviewers by consensus.

Data extraction and quality assessment. Data were extracted primarily by one reviewer

and cross-checked by a second reviewer. Data collected from eligible studies included the first

author name, publication year, characteristics of study population, number of samples, type of

samples, type of method used as index test and reference test, and number of TPs, FPs, TNs,

and FNs. Any disagreements between the two reviewers were documented and resolved

through discussion with a third reviewer.

Data analysis

The extracted data were compiled in a summary table, and the numbers of TPs, FPs, TNs, and

FNs were used to calculate the sensitivity and specificity in each study. The pooled sensitivity,

specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic

odds ratio (DOR) were determined for each group. For each statistic, the corresponding 95%

confidence intervals (95% CI) were also calculated. The DOR is a single measure of diagnostic

test performance that describes the odds of having a positive result in participants with a posi-

tive reference test compared against the odds in those with a negative reference test [16]. The

DORs were evaluated using the DerSimonian-Laird method (random effects model) [17].

Summary receiver operating characteristic (SROC) curves that show the relationship between

sensitivity and false positives rate (1 –specificity) were constructed to summarize the results.

The area under the curve (AUC) of the SROC was calculated and proposed as a means to assess

diagnostic data in the context of meta-analysis [18].

Heterogeneity was assessed by using I2 statistics and was interpreted as follows: an I2 value

of less than 50% indicates homogeneity among the studies in the analysis, whereas an I2 value

of more than 50% represents substantial heterogeneity among the studies [19]. One of the

causes for heterogeneity observed in the meta-analysis of diagnostics is the threshold effect,

which occurs if the studies use different thresholds to define a positive test result. In the pres-

ent analysis, the presence of the threshold effect was determined by calculating the Spearman

correlation coefficient between the sensitivity and specificity of the included studies [20]. In

the absence of the threshold effect, meta-regression and subgroup analyses were performed to

explore the contribution of individual factors on the heterogeneity observed, where a p value

of less than 0.05 indicates a contribution to heterogeneity. All statistical analyses were carried

out using Meta-DiSc software (version 1.4) [21].
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Results

Literature search and study characteristics

The study selection process is presented in Fig 1. The search for literature was completed in

December 2018 and identified 1645 records, of which 128 full-text articles were retrieved to

assess for eligibility. Of these full-text articles, 86 were excluded after further scrutiny. Forty-

two studies involving 7414 samples met the inclusion criteria and were included in the meta-

analysis. Detail and characteristics of each included study are presented in Table 1. The studies

included were conducted in different countries and were published from 1992 to 2018. Some

of the included studies used different methods; thus, the data were reported as separate inde-

pendent studies [12, 22–32].

Accuracy of nucleic acid techniques targeting the rrs gene

The pooled sensitivity of techniques targeting the rrs gene was 0.51 (95% CI: 0.48–0.54),

whereas the pooled specificity was 0.90 (95% CI: 0.89–0.91). Fig 2 shows the detailed forest

plot of the sensitivities and specificities of the included studies. The pooled DOR was 13.58

(95% CI: 6.66–27.67), as shown in Fig 3. Fig 4 shows the SROC curve; the AUC and the pooled

diagnostic accuracy (Q�) were 0.88 and 0.81, respectively. Significant heterogeneity was

observed among the studies (sensitivity, I2 = 95.3%; specificity, I2 = 96.6%; DOR, I2 = 84.0%).

Fig 1. Flow chart of study selection process.

https://doi.org/10.1371/journal.pntd.0008074.g001
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Table 1. Characteristics of studies included in the meta-analysis.

Study Country Study population Number of

samples

Sample type Index test Gene

target

Reference test TP FP FN TN

[10] Brazil Suspected leptospirosis patients 478 Human—DNA

from serum

Taqman qRT-PCR rrs MAT 3 32 30 413

[11] Netherlands Suspected leptospirosis patients 133 Human—DNA

from serum or

blood

SYBR Green qPCR secY Culture 15 8 0 110

[12] Pacific

Islands

Suspected leptospirosis patients 51 Human—DNA

from serum

SYBR Green qPCR lfb1 MAT 12 13 6 20

Pacific

Islands

Suspected leptospirosis patients 51 Human—DNA

from serum

Nested PCR rrs MAT 12 13 6 20

[22] Sri Lanka Febrile patients 105 Human—DNA

from blood

Taqman qPCR rrs MAT 9 1 40 55

Sri Lanka Febrile patients 105 Human—DNA

from serum

Taqman qPCR rrs MAT 25 1 24 55

[23] Brazil Suspected leptospirosis patients 521 Human—DNA

from serum

Conventional PCR rrs MAT 4 0 24 493

Brazil Suspected leptospirosis patients 521 Human—DNA

from serum

Nested PCR rrs MAT 24 0 4 493

[24] Brazil Clinically confirmed leptospirosis

patients, patients of other febrile

diseases and healthy individuals

77 Human—DNA

from blood or

urine

Conventional PCR LP1 MAT 11 0 22 44

Brazil Clinically confirmed leptospirosis

patients, patients of other febrile

diseases and healthy individuals

77 Human—DNA

from blood or

urine

Conventional PCR secY MAT 19 0 14 44

[25] NR Stray and household cats (healthy,

non-vaccinated)

63 Animal—DNA

from serum or

urine

LAMP lipL32 Taqman qPCR

(lipL32)

22 0 2 39

NR Stray and household cats (healthy,

non-vaccinated)

63 Animal—DNA

from serum or

urine

Nested PCR lipL32 Taqman qPCR

(lipL32)

17 3 7 36

NR Stray and household cats (healthy,

non-vaccinated)

63 Animal—DNA

from serum or

urine

Conventional PCR rrs Taqman qPCR

(lipL32)

1 0 23 39

NR Stray and household cats (healthy,

non-vaccinated)

63 Animal—DNA

from serum or

urine

Conventional PCR secY Taqman qPCR

(lipL32)

3 0 21 39

[26] Philippines Clinically confirmed leptospirosis

patients

113 Human—DNA

from urine

pellet

SYBR Green qPCR flaB MAT 3 4 74 32

Philippines Clinically confirmed leptospirosis

patients

113 Human—DNA

from plasma or

urine pellet

LAMP rrs MAT 2 3 75 33

[27] Japan Stray rats 18 Animal—Boiled

urine sample

Nested PCR flaB Culture 6 0 6 6

Japan Stray rats 16 Animal—Urine

pellet sample

Nested PCR flaB Culture 9 1 2 4

Japan Stray rats 18 Animal—Boiled

urine sample

LAMP rrs Culture 11 2 1 4

Japan Stray rats 16 Animal—Urine

pellet sample

LAMP rrs Culture 10 2 1 3

[28] Thailand Clinically confirmed leptospirosis

patients

266 Human—DNA

from blood

LAMP lipL41 Culture, MAT 50 13 83 120

Thailand Clinically confirmed leptospirosis

patients

266 Human—DNA

from blood

LAMP rrs Culture, MAT 58 22 75 111

(Continued)
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Table 1. (Continued)

Study Country Study population Number of

samples

Sample type Index test Gene

target

Reference test TP FP FN TN

[29] Brazil Suspected leptospirosis patients 332 Human—DNA

from serum

Taqman qPCR lipL32 Culture, MAT 37 3 90 202

Brazil Suspected leptospirosis patients 332 Human—DNA

from whole

blood

Taqman qPCR lipL32 Culture, MAT 77 12 50 193

[30] Thailand Febrile patients 266 Human—DNA

from blood

Taqman qPCR lipL32 Culture, MAT 57 9 76 124

Thailand Febrile patients 266 Human—DNA

from blood

Taqman qPCR rrs Culture, MAT 74 14 59 119

[31] Argentina Clinically confirmed leptospirosis

patients and non-cases

234 Human—DNA

from serum or

blood

Conventional PCR lipL32 Culture, MAT 26 2 81 125

Argentina Clinically confirmed leptospirosis

patients and non-cases

234 Human—DNA

from serum or

blood

Taqman qPCR lipL32 Culture, MAT 47 9 60 118

[32] Denmark Suspected leptospirosis patients 51 Human—DNA

from urine

Taqman qPCR lipL32 MAT 3 1 0 47

Denmark Suspected leptospirosis patients 51 Human—DNA

from urine

Taqman qPCR rrs MAT 3 1 0 47

[33] Sri Lanka Suspected leptospirosis patients 40 Human—DNA

from serum

Taqman qPCR rrs MAT 5 5 11 19

[34] NR Suspected leptospirosis patients 63 Human—DNA

from serum or

blood

Recombinase

polymerase

amplification

lipL32 Culture 18 1 1 43

[35] Brazil Suspected leptospirosis patients 46 Human—RNA

from blood

Taqman qRT-PCR rrs Culture, MAT, qPCR 14 0 8 24

[36] Sri Lanka Suspected leptospirosis patients 170 Human—DNA

from blood

Nested PCR rrs MAT 7 7 54 102

[37] Thailand Febrile patients 418 Human—DNA

from blood

Nested PCR rrs Culture 37 81 2 298

[38] Barbados Post-mortem samples 13 Human—DNA

from organ

Conventional PCR secY Culture, MAT 2 0 6 5

[39] USA Random 34 Animal—Urine

pellet sample

Conventional PCR IS1500 MAT 23 3 7 1

[40] Czech

Republic

Suspected leptospirosis patients 852 Human—DNA

from plasma,

urine or CSF

Conventional PCR secY MAT 14 1 21 816

[41] Sri Lanka Suspected leptospirosis patients 95 Human—DNA

from blood

SYBR Green qPCR secY MAT 44 3 21 27

[42] Uruguay Suspected leptospirosis patients 183 Human—DNA

from serum

SYBR Green qPCR lipL32 MAT 26 0 59 98

[43] Turkey Suspected leptospirosis patients

and animals

133 Human and

animal—DNA

from serum

Nested PCR rrs MAT 90 2 0 41

[44] NR Suspected leptospirosis dogs 135 Animal—DNA

from serum

Nested PCR rrs MAT 47 23 4 61

[45] Thailand Wild rodents 36 Animal—DNA

from kidney

Taqman qPCR lipL32 Conventional PCR

(gyrB)

4 0 0 32

[46] NR Suspected leptospirosis patients

and healthy controls

28 Human—DNA

from urine, CSF

or blood

Conventional PCR rrs MAT 4 0 2 22

[47] Malaysia Suspected leptospirosis patients 65 Human—DNA

from blood

Taqman qPCR rrs Commercial

GenoAmp qPCR

leptospirosis kit

10 1 0 54

(Continued)
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The Spearman correlation coefficient was calculated to be 0.273 with p = 0.160 (> 0.05),

indicating that the significant heterogeneity was not due to the threshold effect. Hence meta-

regression and subgroup analyses were performed to explore the overall heterogeneity and

identify the source of heterogeneity, including the type of index test and type of sample

(human or animal). The meta-regression analysis did not demonstrate that these two covari-

ates contributed to the heterogeneity (p> 0.05 for both covariates). Subgroup analyses were

performed on the basis of these covariates, and the results are shown in Table 2. Only one

study dealt with human and animal samples; thus, analysis was not performed for this sample

category.

Accuracy of nucleic acid techniques targeting the lipL32 gene

The pooled sensitivity and specificity of techniques using the lipL32 gene as the target of detec-

tion were 0.42 (95% CI: 0.39–0.46) and 0.95 (95% CI: 0.94–0.97), respectively. The detailed for-

est plots of the sensitivities and specificities of the included studies are shown in Fig 5. The

pooled DOR was 19.71 (95% CI: 10.15–38.29), as shown in Fig 6. The SROC curve is presented

in Fig 7 with an AUC of 0.92 and Q� value of 0.85. Significant heterogeneity was observed

among the studies (sensitivity, I2 = 91.1%; specificity, I2 = 75.9%; DOR, I2 = 72.4%).

Table 1. (Continued)

Study Country Study population Number of

samples

Sample type Index test Gene

target

Reference test TP FP FN TN

[48] India Suspected leptospirosis patients 207 Human—DNA

from serum

Taqman qPCR lipL32 MAT 84 10 77 36

[49] India Suspected leptospirosis patients 134 Human—NR Conventional PCR secY MAT 34 4 1 95

[50] NR Suspected leptospirosis patients 42 Human—DNA

from blood or

urine

Conventional PCR flaB MAT 39 0 0 3

[51] Brazil Suspected leptospirosis patients 92 Human—DNA

from serum

Conventional PCR secY MAT 17 13 30 32

[52] India Suspected leptospirosis patients 207 Human—DNA

from blood

Nested PCR lipL32 Culture 21 3 79 104

[53] Nicaragua Febrile patients 85 Human—DNA

from blood

Taqman qPCR lipL32 MAT 11 6 27 41

[54] Brazil Patients with meningeal

abnormalities

39 Human—DNA

from CSF

Conventional PCR rrs MAT 10 13 2 14

[55] India Suspected leptospirosis patients 100 Human—DNA

from serum

Conventional PCR rrs MAT 2 4 16 78

[56] India Asymptomatic participants 196 Human—DNA

from urine

Taqman qPCR rrs MAT 37 67 22 70

[57] NR Suspected leptospirosis patients 231 Human—DNA

from serum or

blood

Taqman qPCR rrs Culture 27 1 1 202

[58] NR Wild animals 220 Animal—DNA

from serum

Taqman qPCR rrs MAT 0 1 14 205

[59] Brazil Suspected leptospirosis patients 55 Human—DNA

from serum or

plasma

Taqman qRT-PCR rrs MAT 6 47 0 2

[60] Laos Febrile patients 787 Human—DNA

from blood or

urine

Taqman qPCR rrs Culture, MAT 7 69 26 685

NR represents information not reported

https://doi.org/10.1371/journal.pntd.0008074.t001
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The Spearman correlation coefficient was -0.077 with p = 0.794 (> 0.05), indicating that sig-

nificant heterogeneity was not due to the threshold effect. Meta-regression and subgroup anal-

yses were then performed to explore the heterogeneity and identify the source of

heterogeneity. The meta-regression analysis did not demonstrate that the two covariates (type

of index test and type of sample) contributed to the heterogeneity (p> 0.05 for both). Sub-

group analyses were performed on the basis of these covariates, and the results are shown in

Table 3. The AUC for the subgroup of index test (nested PCR) was not computed because of

the low number of studies (n = 2). Analysis for the following index tests could not be per-

formed because only one study was present in each category: conventional PCR, LAMP, and

recombinase polymerase amplification.

Accuracy of nucleic acid techniques targeting the secY gene

Fig 8 shows the forest plots of the sensitivities and specificities of techniques targeting the secY
gene. The pooled sensitivity and specificity were 0.56 (95% CI: 0.50–0.63) and 0.98 (95% CI:

0.97–0.98), respectively. The pooled DOR was valued at 46.16 (95% CI: 6.20–343.49) and is

presented in Fig 9. Fig 10 shows the SROC curve with the AUC at 0.94 and the pooled diagnos-

tic accuracy (Q�) at 0.88. Among these studies, significant heterogeneity was observed (sensi-

tivity, I2 = 92.0%; specificity, I2 = 92.4%; DOR, I2 = 88.3%).

The Spearman correlation coefficient was 0.000 with p = 1.000 (> 0.05), indicating that the

heterogeneity was not due to the threshold effect. Thus, meta-regression and subgroup analy-

ses were performed to explore the source of heterogeneity. The meta-regression analysis did

not demonstrate that the two covariates contributed to the heterogeneity (p> 0.05 for both

covariates). Subgroup analyses based on these covariates were performed, and the results are

shown in Table 4. The AUC for the subgroup of index test (qPCR) was not determined because

of the low number of studies (n = 2). Analysis for animal samples was not performed because

only one study was present in this category.

Fig 2. Forest plots of sensitivity and specificity of studies using rrs as the target gene for the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g002
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Accuracy of nucleic acid techniques targeting the flaB gene

For techniques targeting the flaB gene, the pooled sensitivity and specificity of the included

studies were 0.41 (95% CI: 0.33–0.50) and 0.90 (95% CI: 0.78–0.97), respectively. The forest

plots of the sensitivities and specificities are shown in Fig 11. The pooled DOR was 10.42 (95%

CI: 0.44–244.84), as shown in Fig 12. The SROC curve is presented in Fig 13, with the AUC at

0.92 and pooled diagnostic accuracy (Q�) at 0.86. Significant heterogeneity was observed when

computing the pooled sensitivity (I2 = 97.8%) and DOR (I2 = 82.1%).

The Spearman correlation coefficient was 0.600 with p = 0.400 (> 0.05), eliminating the

possibility of the threshold effect. The meta-regression analysis did not demonstrate that the

two covariates contributed to the heterogeneity (p> 0.05 for both covariates). Subgroup analy-

ses were not performed because of the limited number of studies in each subgroup.

Fig 3. Forest plot of DOR of targeting the rrs gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g003

Diagnostic accuracy of genetic markers of Leptospira

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008074 February 12, 2020 10 / 22

https://doi.org/10.1371/journal.pntd.0008074.g003
https://doi.org/10.1371/journal.pntd.0008074


Fig 4. SROC curve of targeting the rrs gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g004

Table 2. Meta-analysis results of studies targeting the rrs gene for the detection of Leptospira.

Sensitivity (95% CI) Specificity (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC

All studies 0.51 (0.48–0.54) 0.90 (0.89–0.91) 4.36 (2.80–6.79) 0.56 (0.44–0.70) 13.58 (6.66–27.67) 0.88

Subgroup (Type of index test)

Conventional PCR 0.24 (0.15–0.34) 0.97 (0.96–0.98) 7.09 (1.27–39.72) 0.86 (0.70–1.05) 11.61 (2.43–55.45) 0.78

Nested PCR 0.76 (0.70–0.80) 0.89 (0.87–0.91) 4.62 (2.32–9.21) 0.13 (0.01–2.20) 53.18 (6.83–413.92) 0.95

qPCR 0.50 (0.45–0.55) 0.90 (0.89–0.92) 8.14 (3.00–22.09) 0.62 (0.42–0.90) 17.21 (5.19–57.05) 0.92

qRT-PCR 0.38 (0.26–0.51) 0.85 (0.81–0.88) 2.82 (0.15–53.67) 0.68 (0.23–2.04) 3.80 (0.21–67.78) 0.68

LAMP 0.35 (0.29–0.41) 0.84 (0.78–0.89) 2.01 (1.04–3.91) 0.64 (0.34–1.18) 3.57 (0.70–18.23) 0.83

Subgroup (Type of sample)

Human samples 0.44 (0.41–0.48) 0.90 (0.89–0.91) 4.45 (2.67–7.40) 0.61 (0.49–0.77) 11.09 (5.17–23.79) 0.83

Animal samples 0.62 (0.52–0.71) 0.92 (0.88–0.94) 3.22 (2.34–4.45) 0.39 (0.17–0.92) 20.90 (8.55–51.08) 0.89

https://doi.org/10.1371/journal.pntd.0008074.t002
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Discussion

In this meta-analysis, 42 studies involving 7414 samples were included to investigate the diag-

nostic accuracy of various nucleic acid techniques. Many nucleic acid diagnostics for leptospi-

rosis have been developed and designed to either target housekeeping genes that are common

to all species of Leptospira or pathogenic species-specific genes. Here, from the literature

searched, we pooled and analyzed the diagnostic performance of nucleic acid assays targeting

Fig 5. Forest plots of sensitivity and specificity of studies using lipL32 as the target gene for the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g005

Fig 6. Forest plot of DOR of targeting the lipL32 gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g006

Diagnostic accuracy of genetic markers of Leptospira

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008074 February 12, 2020 12 / 22

https://doi.org/10.1371/journal.pntd.0008074.g005
https://doi.org/10.1371/journal.pntd.0008074.g006
https://doi.org/10.1371/journal.pntd.0008074


the rrs, lipL32, secY and flaB genes. The IS1500, LP1, lfb1, and lipL41 genes were not pooled

and analyzed because only one study included each of these genes [12, 24, 28, 39].

The rrs gene is a housekeeping gene found ubiquitously among leptospires. The present

meta-analysis showed that assays targeting the rrs gene have been well-established and largely

Fig 7. SROC curve of targeting the lipL32 gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g007

Table 3. Meta-analysis results of studies targeting the lipL32 gene for the detection of Leptospira.

Sensitivity (95% CI) Specificity (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC

All studies 0.42 (0.39–0.46) 0.95 (0.94–0.97) 9.42 (5.64–15.75) 0.61 (0.51–0.71) 19.71 (10.15–38.29) 0.92

Subgroup (Type of index test)

Nested PCR 0.31 (0.23–0.40) 0.96 (0.91–0.98) 8.35 (3.71–18.79) 0.52 (0.17–1.65) 15.31 (4.93–47.52) NA

qPCR 0.44 (0.41–0.48) 0.95 (0.93–0.96) 7.83 (4.21–14.56) 0.62 (0.54–0.72) 13.64 (6.52–28.54) 0.75

Subgroup (Type of sample)

Human samples 0.40 (0.37–0.44) 0.95 (0.94–0.96) 8.33 (4.82–14.37) 0.65 (0.57–0.75) 14.65 (7.57–28.32) 0.86

https://doi.org/10.1371/journal.pntd.0008074.t003
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used for diagnostics. Targeting the rrs gene can allow the detection of pathogenic or sapro-

phytic Leptospira species [59]. The rrs gene is also present in two copies per Leptospira, which

could consequently increase its chance of being amplified [61, 62]. Meanwhile, the secY gene

encodes for preprotein translocase for Leptospira and is located within the S10-spc-α locus

containing genes for ribosomal proteins [63]. Similar to the rrs gene, it is a housekeeping gene

that is also common to all leptospires [11]. The secY gene consists of alternating conserved and

variable regions, making it suitable to design primers that can generate amplicons across the

Leptospira genus and enable phylogenetic interpretation through the variable regions [64].

The lipL32 gene encodes a major lipoprotein located in the outer membrane of leptospires.

The lipL32 gene is present in all species from both pathogenic and intermediate strains but

absent in saprophytic strains, suggesting its critical role in infection [65, 66]. The sequence of

the lipL32 gene is highly conserved across the pathogenic species of Leptospira, with more than

94% amino acid sequence identities [67]. Thus, the absence of lipL32 in saprophytic Leptospira
makes it a specific and appropriate gene target for diagnosing leptospirosis [25]. Another gene

that can be used to differentiate between pathogenic and saprophytic leptospires is the flaB
gene. This gene encodes for flagellin, a class B polypeptide subunit of the periplasmic flagella.

The sequence of flaB is also highly conserved among pathogenic serovars of Leptospira [68].

Fig 8. Forest plots of sensitivity and specificity of studies using secY as the target gene for the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g008

Fig 9. Forest plot of DOR of targeting the secY gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g009
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Similar to the lipL32 gene, the absence of flaB in the saprophytic strains allows this gene to be a

good target for detecting pathogenic leptospires [50, 69].

As shown in Table 5, nucleic acid techniques targeting the secY gene exhibited better pooled

sensitivity and specificity when compared against assays targeting the rrs, lipL32, or flaB gene.

Fig 10. SROC curve of targeting the secY gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g010

Table 4. Meta-analysis results of studies targeting the secY gene for the detection of Leptospira.

Sensitivity (95% CI) Specificity (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC

All studies 0.56 (0.50–0.63) 0.98 (0.97–0.98) 12.94 (3.74–44.72) 0.49 (0.30–0.82) 46.16 (6.20–343.49) 0.94

Subgroup (Type of index test)

Conventional PCR 0.49 (0.41–0.56) 0.98 (0.97–0.99) 15.63 (2.04–119.78) 0.60 (0.37–0.97) 39.57 (2.44–642.05) 0.91

qPCR 0.74 (0.63–0.83) 0.93 (0.87–0.96) 10.50 (4.65–23.71) 0.13 (0.00–6.15) 65.78 (3.37–1284.84) NA

Subgroup (Type of index test)

Human samples 0.61 (0.54–0.67) 0.97 (0.96–0.98) 13.17 (3.52–49.33) 0.45 (0.27–0.77) 54.70 (5.97–501.49) 0.94

https://doi.org/10.1371/journal.pntd.0008074.t004
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Sensitivity and specificity are true performance statistics of the test, where sensitivity measures

for the proportion of samples tested positive among those tested positive using a reference test

while specificity measures the proportion of samples tested negative among those tested nega-

tive in a reference test [70]. The PLR of assays targeting secY is also the highest among others

and is the only one with a value more than 10. This result indicates that the positive results

obtained from assays targeting secY are useful for the confirmation of leptospirosis [71]. Sensi-

tivity and specificity play important roles in determining the DOR of a test. For example, tests

with high sensitivity and specificity with low FPs and FNs result in a high DOR [16]. In our

analysis, the pooled DOR of assays targeting secY was the highest among other genes. Collec-

tively, the pooled sensitivity, specificity, DOR, likelihood ratio, and AUC data all support that

assays targeting the secY gene are highly discriminatory for the detection of Leptospira.

Stratified analyses were performed for each gene analyzed according to the type of index

test. For the rrs gene, subgroup analysis revealed that nested PCR assays targeting the gene are

superior over other tests and slightly better than qPCR, as exhibited by the higher DOR and

AUC of the SROC curve. In a previous study, qRT-PCR assay targeting the rrs gene was com-

pared against nested PCR assay of the same gene, and the diagnostic performance was compa-

rable between the two [72]. Another study on the detection of Strongyloides stercoralis also

found that nested PCR shows better diagnostic sensitivity than real-time PCR [73]. However

superior nested PCR is, real-time PCR methods are usually preferred over the former because

they provide an accurate diagnosis faster than nested PCR assays [74]. By contrast, qPCR assay

targeting the lipL32 gene showed slightly better performance than nested PCR assay, but this

finding is inconclusive because AUC data for nested PCR assay was not computed due to the

lack of studies. As for the secY gene, although AUC data for qPCR were not determined, the

sensitivity and DOR of qPCR were significantly higher than those of conventional PCR. When

Fig 11. Forest plots of sensitivity and specificity of studies using flaB as the target gene for the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g011

Fig 12. Forest plot of DOR of targeting the flaB gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g012
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the data were stratified according to the type of samples, assays targeting the rrs gene showed

slightly better diagnostic performance on animal than human samples. Meanwhile, the diag-

nostic performance of the other genes on animal samples was not computed because of the

lack of studies. As for human samples, assays targeting the secY gene showed the best diagnos-

tic performance in terms of DOR, followed by those targeting lipL32, rrs, and flaB.

Fig 13. SROC curve of targeting the flaB gene in the detection of Leptospira.

https://doi.org/10.1371/journal.pntd.0008074.g013

Table 5. Summary of diagnostic accuracy measures of genetic markers for the detection of Leptospira in clinical samples.

Gene Sensitivity (95% CI) Specificity (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC

rrs 0.51 (0.48–0.54) 0.90 (0.89–0.91) 4.36 (2.80–6.79) 0.56 (0.44–0.70) 13.58 (6.66–27.67) 0.88

lipL32 0.42 (0.39–0.46) 0.95 (0.94–0.97) 9.42 (5.64–15.75) 0.61 (0.51–0.71) 19.71 (10.15–38.29) 0.92

secY 0.56 (0.50–0.63) 0.98 (0.97–0.98) 12.94 (3.74–44.72) 0.49 (0.30–0.82) 46.16 (6.20–343.49) 0.94

flaB 0.41 (0.33–0.50) 0.90 (0.78–0.97) 2.43 (0.44–13.52) 0.36 (0.11–1.18) 10.42 (0.44–244.84) 0.92

https://doi.org/10.1371/journal.pntd.0008074.t005

Diagnostic accuracy of genetic markers of Leptospira

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008074 February 12, 2020 17 / 22

https://doi.org/10.1371/journal.pntd.0008074.g013
https://doi.org/10.1371/journal.pntd.0008074.t005
https://doi.org/10.1371/journal.pntd.0008074


However, the findings of this meta-analysis should be interpreted with caution, considering

the significant unexplained heterogeneity. The heterogeneity of the analyzed studies could be

due to the vastly different sample sizes among the included studies. Moreover, the low number

of studies in assays targeting the flaB gene and in some subgroups might have also biased the

results. Another possible contribution to the heterogeneity of the studies was the variability in

the DNA sample extraction approach, reference test, and the stage of the disease when samples

were collected from the patients and animals. The timing of sample collection is crucial for the

detection of Leptospira DNA because it is present in the blood of the patient in the first 5 to 10

days after the onset of the disease [11]. As mentioned previously, although MAT has been the

gold standard for the diagnosis of leptospirosis, its application is limited by its difficulty to be

standardized [8], suggesting that this limitation also contributed to the heterogeneity observed.

In these nucleic acid assays, the different targeting regions within each gene would represent a

major factor influencing the sensitivity and specificity of a diagnostic test. These limitations

could have negatively influenced the overall results of this work.

In short, current evidence suggests that the secY gene has better diagnostic accuracy mea-

sures with lipL32, flaB, and rrs coming close as promising genetic markers for leptospirosis

diagnosis. However, the high degree of heterogeneity observed in this meta-analysis mitigates

any conclusions drawn from the combined data. Nevertheless, future studies evaluating the

nucleic acid-based diagnostic assays should consider the timing and stage of the disease for

sample collection, the choice of reference test to be compared with, or the statistical methods

to optimize the imperfect reference tests, in an effort to reduce the heterogeneity between the

studies while increasing the comparability of results.
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