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Korotkoff sounds (K-sounds) have been around for over 100 years and are

considered the gold standard for blood pressure (BP) measurement. K-sounds

are also unique for the diagnosis and treatment of cardiovascular diseases;

however, their efficacy is limited. The incidences of heart failure (HF) are

increasing, which necessitate the development of a rapid and convenient pre-

hospital screening method. In this review, we propose a deep learning (DL)

method and the possibility of using K-methods to predict cardiac function

changes for the detection of cardiac dysfunctions.
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Introduction

Blood pressure (BP) measurement using Korotkoff sounds (K-sounds), which are
considered the gold standard for BP measurement, has been performed for over
100 years (1). When done by a trained clinical practitioner, the K-sounds approach may
yield more accurate results than the automated oscillometric method (2). Accurate BP
measurement facilitates daily monitoring of an individual’s vital signs, while inaccurate
results can cause unnecessary panic, as a 5-mmHg error can halve or double the number
of hypertensive patients (2, 3).

Accurate BP monitoring is clinically important. Prolonged inappropriate elevations
of BP can lead to a series of adverse cardiovascular events that eventually result in
cardiovascular end-stage heart failure (HF) (4, 5). HF is a slow myocardial remodeling
process, and as a complex group of clinical symptoms, clinical guidelines emphasize
its prevention (6–11). Thus, various prediction models for HF have emerged, and they
have substantially improved in the last decade. These predictive models are generally
based on patients’ laboratory findings, with some accessible clinical features that enrich
model heterogeneity and quantify the risk score, but they are more cumbersome and
complex in their operationalization (12). Moreover, they do not reflect dynamic changes
in cardiac functions.
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Heart failure involves the deterioration of cardiac functions.
The onset of acute HF is attributed to various triggers (11,
13, 14). It is difficult to predict at which point HF will
occur; however, it is still feasible to stabilize cardiac functions,
thereby preventing the onset of HF through reasonable
monitoring. However, currently, the assessment of cardiac
functions is challenging.

The K-sounds are not limited to BP measurements, and
some clinical treatments have long been noted. In 1972, Cotoi
et al. evaluated the possibility of using K-sounds to assess
ventricular performance (15). As a result of the limitations of
relevant equipment in that era, the theory was not well accepted.
Due to widespread awareness of BP measurements and the
high prevalence of hypertension and HF, Cotoi’s vision using
K-sounds can still be used to monitor cardiac functions. The
five temporal phases of K-sounds are complex, and currently,
the intrinsic mechanisms have not been fully established (16).

Technological advances have introduced the use of artificial
intelligence (AI) algorithms in various fields. The medical field
is also benefiting from the advances in AI algorithms, which
have increased collaborations in medical–industrial crossover
projects (17–19). Deep learning (DL) algorithms have been
developed (20, 21). These algorithms can mine informative data
features from massive data, and they only need to give good
data annotations to obtain satisfactory training results. Based
on the characteristics of DL, it may be challenging to establish
signal differences between K-sounds in patients suffering from
HF and patients with normal cardiac functions. It is reasonable
to perform data labeling of actual clinical outcomes, which will
enable the use of DL-based approaches to dynamically monitor
cardiac functions with K-sounds and to predict the onset and
progression of HF.

We hypothesized that HF occurrence involves alterations
of K-sounds signals, and the use of the K-sounds approach
to assessing cardiac functions will aid clinical decisions. Based
on this idea, we propose a feasible means of early screening
with respect to the cardiac function. We present a review of
the rational use of K-sounds to evaluate changes in cardiac
functions in real-time for rapid detection of patients with
cardiac dysfunction roughly. Currently, the diagnosis of HF with
preserved ejection fraction (HFpEF) is clinically demanding and
inaccurate, necessitating the need for suitable alternatives in a
follow-up study.

Origin and mechanisms of
Korotkoff-sounds

During the Russo-Japanese War, the Russian surgeon
(Nikolai Korotkoff) aimed at using reliable clinical signs to
predict the feasibility of plasmatic flow after vascularization of
traumatic aneurysms. He found that when fully compressing the
distal end of a patient with a brachial aneurysm and gradually

relaxing the cuff pressure, a series of sounds could be heard
with a stethoscope under the compressed distal artery. This was
found to be applicable in the normal population (22–24). He
made detailed notes and analysis of the audio (Table 1) (1, 16,
25, 26).

In simple terms, K-sounds are based on the opening and
closing of the brachial artery wall due to changes in external
pressure. Many hypotheses and theoretical mechanisms have
been proposed for the occurrence of K-sounds (22, 23, 27–34).

I) The water hammer mechanism: Water hammer usually
occurs in a pressurized line. When some inappropriate
external forces are applied, they result in changes in the
water flow. However, due to inertia, the water flow creates
a shock wave, resulting in the water strike phenomenon.

The brachial artery acts as a “pressure conduit,” the pressure
exerted by the cuff can be seen as an external factor that alters
the blood flow and its velocity in the brachial artery, resulting in
K-sounds.

II) The pistol shot mechanism: It is like a process where a
bullet is loaded and then fired. Rapid motions of arterial
walls result in disturbances in downstream flow. These
transient changes in the flow are thought to produce the
K-sounds.

III) “Jet” theory: Partially constricted vessels result in the
formation of downstream fluid jets, even with constant
inlet and outlet pressures. The K-sounds are thought to be
produced by the impact of jet force on the blood vessels.

Recently, Babbs et al. replicated the three mechanisms
mentioned above and combined them with the numerical
model. They proposed that the spring–mass–damper model
faithfully reproduces the time-domain waveforms of actual
K-sounds in humans (16). Although opinions vary, the core
idea was that arterial walls’ oscillation produces sound based
on the turbulence theory of the blood flow. The K-sounds
triggered by dynamic changes in the blood flow provide good
evidence for subsequent prediction of cardiac functions; after

TABLE 1 The phases of Korotkoff sounds (K-sounds) and
related properties.

The phase of
Korotkoff sound

Qualitative

I Appearance: The first loud tapping sound heard,
systolic pressure

II Softening: Weakened clapping sound and soft
wind-like murmur

III Sharpening: Blowing wind-like murmur disappears

IV Muffling: The tone is suddenly dull

V Disappearance: Loss of sound, diastolic pressure
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FIGURE 1

Part A reproduces the “core” theory of the Korotkoff sounds (K-sounds) mechanism and compares the changes in K-sounds produced by
normal and abnormal cardiac function. Part B reasonably reproduces the three hypothese.

all, the fundamental power for blood flow originates from
the cardiac system. We specifically mapped the production of
K-sounds related mechanisms, as shown in Figure 1. Figure 1A
reproduces the “core” theory of the K-sounds mechanism and
compares the changes in K-sounds produced by normal and
abnormal cardiac function. Figure 1B reasonably reproduces
the three hypotheses.

Past and current states of
Korotkoff-sounds in clinical
applications

Blood pressure measurement using the auscultation method
of K-sounds has become an essential clinical skill.

Usually, the patient’s upper arm is positioned at the level
of the heart. The examiner first palpates the brachial artery
pulsation at the elbow fossa and then places the stethoscope
at the strongest pulsation point of the brachial artery. Then,
the cuff is inflated and auscultation is performed at the same
time. When brachial pulsation disappears, the mercury column
is raised by 20–30 mmHg and then deflation is started at a rate
of 2–3 mmHg/s. The moment at which the K-sounds appear and
disappear is used to determine the patient’s systolic and diastolic
BP levels (25, 35).

However, in rapid pre-hospital consultations, this
cumbersome K-sounds measurement of BP has too many
limitations. First, although it is a simple process, it is also slow.
Moreover, it may exhibit errors that arise from interferences
in cuff pressure, surrounding environment, the position of the

stethoscope, clinical experience or hearing or concentration
of the observer during measurement, and the patient’s muscle
tension, age, and respiratory rate among other factors (36–
41). The efficacy of the use of the K-sounds method for BP
measurements in children and pregnant women has not
been conclusively determined, especially with regard to the
use of IV or V phases of K-sounds for diastolic BP. In the
adolescent population, the II and III phases of K-sounds are
differentially altered (42, 43). The use of K-sounds methods for
BP measurement in patients with persistent atrial fibrillation is
further limited because their pulse rate is less than their heart
rate (35, 44, 45).

The above-mentioned limitations should not hinder the
clinical applications of K-sounds. Currently, efforts have been
made to enhance the accuracy of BP measurements using the
principle of K-sounds. This promotes the clinical applications
of K-sounds and informs on clinical treatment. Moreover,
it provides the basis for subsequent dynamic monitoring of
cardiac function changes using K-sounds.

Advances in artificial intelligence (AI) have benefited the use
of K-sounds for BP measurements. AI is essential for reducing
errors and has the potential for achieving accuracy with
greater precision. The convolutional neural network (CNN)
based on the DL module has been applied for accurate BP
measurements via K-sounds (2, 46, 47). There is a need for good
labeling and correct training of data, and the K-sounds can be
accurately mined.

The CNN was initially proposed for processing images,
speech, and time series (2). Guided by the CNN, BP
measurements using K-sounds have better accuracy, compared
to the automatic oscillometric method. Pan et al. used a
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DL method to assess variations in K-sounds (46). Chang
et al. improved on the former and added the ResNet module
for automatic identification of the association between pulse
oscillation waves and K-sounds (2). The filtered signal stack
can also be used as a picture input. This is important
for enhancing the robustness of K-sounds and achieving
accurate recognition.

In summary, differences in K-sound signals, which are
attributed to the experience of the healthcare provider,
the environment, or the individual state of the patient,
should not be a matter of significant concern. Moreover,
pulse signals in time phases II and III can be adequately
read. Currently, it is challenging to determine frequency
changes in phases II and III among cardiac insufficiency
patients. However, a follow-up study using the idea of
DL on the basis of K-sounds should be performed to
establish differences in the acoustic spectrum on the brachial
artery in healthy individuals and patients with abnormal
cardiac functions.

In addition, on the basis of K-sounds, other novel BP
measurement techniques have been evaluated. For instance, the
light volume method for measuring systolic blood pressure has
been proposed by Shalom E (48). Given hearing differences
among examiners, Celler et al. developed visualized a non-
invasive BP measurement approach (49) while Zhang et al.
developed a smart application for accurate BP measurements
(50). However, these approaches only enhance the accuracy
of systolic and diastolic measurements and do not promote
information mining as DL does.

A unique advantage of CNN is that the signal can
be accurately obtained. The traditional manual K-sounds
method for BP measurement has been largely eliminated
in modern diagnostic medicine. In its place, non-invasive
blood pressure (NIBP) monitoring methods have been
introduced. Celler et al. recorded optimal K-sounds
in their experiments using the multiparameter clinical
monitoring unit (CMU) from Telemedcare Pty Ltd.1 and
a National Instruments 16-bit A/D converter (cRIO-
9215) (49). Considering the characterization of weaker
cardiac output in HF, we are full of concerns about the
extraction of feature signals of K-sounds in these populations.
However, the instrument of Celler BG’s team seems to have
allayed our concerns.

Biological signals that originate from the cardiac are
adequately recorded at the brachial artery and entirely analyzed
using DL methods relatively. However, in terms of data
acquisition for follow-up study, there is a need to improve
on BP devices, including cuff and data logging to obtain
massive amounts of data in a more convenient way to cater to
the needs of DL.

1 http://www.telemedcare.com

Korotkoff sounds-associated
clinical applications

Korotkoff-sounds are not limited to BP measurements in
clinical practice. In 1967, Libanoff and Rodbard found that
K-sounds can reflect the ability of cardiac electrical activity,
left bundle branch block (51). In 1979, Bercu et al. elucidated
the QKd (the interval between the onset of QRS of the
electrocardiogram and the arrival of the pulse wave at the
brachial artery, as detected by the appearance of Korotkoff
sounds at diastolic pressure) theory (52). By that time, these
authors had prospectively proposed that the QKd-based theory
is appropriate for assessing cardiovascular disease, thyroid
functions, and catecholamine levels. In 2001, Abassade et al.
fully investigated the QKd theory, suggesting that QKd is not
only an index for arterial dilation but also to some extent it
reflects related functions of the left ventricle (53). This was in
tandem with Cotoi’s proposal in 1972, which suggested the use
of K-sounds to reflect the left ventricular systolic functions.
However, the theory that QKd reflects cardiac functions was
shelved. Therefore, the application of K-sounds to dynamically
predict changes in cardiac functions is not far-fetched. Its
feasibility has not been scientifically established due to various
limitations, including inadequate technical equipment.

Korotkoff-sound measurements are mediated by
the brachial artery, and these sounds highly reflect the
atherosclerotic capacity. The correlation between brachial
artery wall and frequency of K-sounds was proposed as early
as 1970 by Brookman et al. (54). The ability of K-sounds to
reflect atherosclerosis was suggested by Sánchez Torres et al.
in 1974 (55). In 1994, Gosse et al. evaluated the effects of QKd
arterial distensibility on blood pressure measurements (56).
In 2013, by performing the K-sounds BP measurements, they
proved that atherosclerotic events are independently predictive
in hypertensive patients (57). In 2015, El Tahlawi et al. showed
that K-sounds can be used to predict the lesions associated
with cardiac coronary arteries (58). In 2016, Ramakrishnan
et al. used K-sounds methods to assess vascular compliance in
different age groups (59).

The early stages of hypertension and coronary artery disease
do not manifest any subjective clinical symptoms. However, at
this time, normal body structures are altered, leading to spasms
and contraction of small arteries, which is attributed to early
hypertension, ischemia, and remodeling of the myocardium as
a result of coronary artery sclerosis (4, 60). When the normal
structure is “occupied” by some fatty or fibrous tissues, some
fatal chest pain or headache symptoms are manifested, and
damage to ventricles or blood vessels is often irreversible. Early
detection, early diagnosis, and early treatment enhance recovery
from various diseases. The K-sounds approach can be used for
the early screening of cardiovascular diseases by monitoring
dynamic cardiac functions.
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The K-sounds are excellent for the evaluation of
cardiovascular status and endocrinology. Keller et al.
evaluated the use of K-sounds for simple screening tests
of hyperthyroidism (61). This mechanism is a derivation of
the QKd theory. In 1983, Osburne et al. noted that T3 levels
can be roughly reflected using K-sounds (62). Climie et al.
used the brachial-to-radial systolic pressure theory to assess
hemodynamics in patients with diabetes (63).

The above-mentioned endocrine system disorders are
inextricably linked to cardiovascular diseases. Clinically, the
most common arrhythmia of the hyperthyroid heart is atrial
fibrillation (64, 65). The efficacy of K-sounds for the assessment
of BP in patients with atrial fibrillation has not been conclusively
established. Due to the characteristics of atrial fibrillation and
inconsistency between pulse rate and heart rate, K-sounds often
result in significant measurement errors, which contradict the
suggestion for the use of K-sounds to treat cardiovascular
diseases, while proving the generalization ability of K-sounds
for diagnosis. Based on the precise mapping of CNN,
K-sounds are capable of overcoming the above-mentioned
limitations while maximizing their advantages. Diabetes is also
an independent risk factor for cardiovascular disease—blood
vessels are immersed in “sugar water” for a long time, and the
brachial artery is no exception (66, 67). Therefore, it is not
surprising that K-sounds can assess vascular functions.

The advantages of K-sounds treatment have already been
established; however, dynamic prediction of changes in cardiac
functions using the K-sounds method is yet to be fully
elucidated. The suggestion for the use of K-sounds for
clinical diagnosis and treatment may be inextricably linked to
cardiac functions. The end-stage for all cardiovascular diseases
is heart failure, and insufficient coronary blood supply to
the myocardium and diminished arterial compliance among
others are early warning signs for deterioration of cardiac
functions. This supports our use of K-sounds to determine
cardiac functions.

The epidemiology of heart failure
and clinical limitations for its
diagnosis

Heart failure refers to abnormal changes in the structure
or function of the heart, resulting in impaired ventricular
systolic or diastolic functions, which leads to various complex
pathophysiological changes in the body, including fluid
retention, difficulties in breathing, limited physical activities,
and severe cognitive impairment among others (11, 13, 68, 69).
Weakening of cardiac functions affects peripheral blood supply.
The blood flow in the brachial artery is also affected by cardiac
output. This implies that K-sound dynamics can be used to
predict changes in cardiac functions.

TABLE 2 Current diagnostic criteria for heart failure (HF).

Type of HF Diagnostic criteria

HFrEF Signs
and/or

symptoms
of HF

LVEF < 40%

HFmrEF LVEF 40–49% Elevated natriuretic peptide
and meet at least one of the
following:
Left ventricular hypertrophy
and/or left ventricular
enlargement;
Abnormal diastolic function
of the cardiac.HFpEF LVEF ≥ 50%

Currently, the diagnosis of HF relies on clinical symptoms
combined with relevant ancillary tests. The left ventricle ejection
fraction (LVEF), which is dependent on cardiac ultrasound,
remains the “gold standard” for assessing cardiac functions.
Based on LVEF, the HF population is divided into three (Table 2)
(11, 68, 69).

As guidelines are updated and HF therapies are optimized,
prognostic outcomes for patients with HF are improving.
However, the prevalence of HF is increasing. HF is silently
affecting 1–3% of the global population, and in developed
countries, the prevalence is ≥2% (70, 71). Thus, to reduce the
prevalence of HF, various predictive and prognostic models
of HF have been developed. However, these models are not
available for some clinical practical implications (12). The
reasons for their inability include:

i) The construction of these clinical models is guided by
combining mathematics and science. Therefore, they are
susceptible to influences of sample sizes and population
characteristics.

ii) Determination of some serological markers [including
BNP, NT-proBNP, mid-regional pro-adrenomedullin (MR-
proADM), cardiac troponins, soluble ST2 (sST2), and
growth differentiation factors (GDF)-15, galectin-3] is
easily influenced by the laboratory criteria (9).

Clinically, based on the urgency of its occurrence, HF can be
divided into acute heart failure (AHF) and chronic heart failure
(CHF). Most acute patients progress to the chronic phase as
their HF symptoms (such as chest tightness, shortness of breath,
and edema) are able to be relieved due to timely treatment. They
may remain in CHF after prompt treatment due to their primary
cardiovascular disease. With some inappropriate HF triggers,
CHF patients require hospitalization due to symptomatic
deterioration (11, 72–74). The phase of AHF and CHF states
may be so cyclical.

Regrettably, patients with cardiovascular disease are
unaware of changes in their functional status, and they may
even have quietly progressed from the compensated phase
to the decompensated phase of cardiac functions. Often, the
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compensatory phase allows the “ventricular remodeling” phase
to proceed long enough, and the fibrotic myocardial structure
often makes “HF” a ticking time bomb. Therefore, there is a
need to develop effective approaches for the timely prediction
of cardiac functions to reduce HF incidences. The K-sounds can
be used for these predictions because:

1) Heart failure is the endpoint for all cardiovascular diseases,
of which hypertension and coronary artery disease are
high-risk factors. To reduce the prevalence of HF, it is
important to monitor disease progression from an early
stage. This can be achieved by frequently monitoring
various indicators, including the use of electrocardiogram
(ECG) monitors, which are not advisable for out-of-
hospital applications. Patients who are at risk of cardiac
dysfunction are not very diligent about going to the
hospital to complete some serologic tests; therefore,
serologically relevant HF prediction models are like
“a clever woman cannot cook without rice.” The late
presentation of HF-associated symptoms is not ideal
for its diagnosis.

2) Korotkoff-sounds hold great potential for monitoring
changes in atherosclerosis and cardiac functions. While
taking antihypertensive medications, hypertensive patients
require regular monitoring of their BP so that adjustment
of their medications can be done in a timely manner.
We are confident that prevention can be achieved if the
K-sounds theory is utilized and the measurement method
is appropriately modified.

Applications of the K-sounds approach to monitoring
cardiac functions are associated with convenience and low costs.
In the future, patients with impaired cardiac functions may
need to have their BP taken once a day to assess their health
status. Aggressive screening slows down cardiovascular disease
progression and improves the patients’ quality of life.

Heart failure diagnosis and
treatment using deep learning

In the era of big data and relative maturity of Intelligent
Medical, DL has long been introduced in the diagnosis and
treatment of cardiovascular diseases, and a majority of advanced
techniques are based on related auxiliary examinations (75).
These techniques include:

Electrocardiogram

Kwon et al. developed and validated a deep learning
algorithm for ECG-based HF identification (76). Jahmunah et al.
developed a system to assist in the diagnosis of congestive

HF using ECG signals, and they subsequently improved the
technique by adding the automatic assessment of coronary
artery disease and myocardial infarction to the single ECG shape
(77, 78). Akbilgic et al. used CNNs to identify ECG signals and
verified that ECG-AI-based models rely solely on information
extracted from ECG to independently predict HF (79). Cho
et al. used a short-time Fourier transform (STFT) and CNN
to sequentially detect left ventricular systolic dysfunction from
ECG results (80). Sun et al. demonstrated that a well-trained
CNN algorithm may be used as a low-cost and non-invasive
method to identify patients with left ventricular dysfunction
(81). Khurshid et al. used the arithmetic power of AI to complete
the mass assessment of the left ventricle by ECG (82).

Heart sound

Yang et al. proposed a deep convolutional generative
adversarial network (DCGAN) model-based data augmentation
(DA) method to expand the heart sound (HS) database of left
ventricular diastolic dysfunction for model training (83). Gao
et al. used the gated recurrent unit (GRU) network to refine heart
sound analysis for HF screening (84).

Chest X-ray

Matsumoto et al. showed that diagnosing HF from chest
X-ray images using DL achieved satisfactory results (85).

Cardiac ultrasound

Pandey A explored a deep neural network (DNN) model
that interprets multidimensional echocardiographic data to
identify distinct patient subgroups with heart failure and
preserved ejection fractions (HFpEF) (86). Kwon et al. derived
and validated an echocardiography-based mortality prediction
model for HD via deep learning (DL) (87).

Various novel algorithms and treatment approaches have
been developed, and DL has become more attractive than the
traditional algorithms, with the receiver operating characteristic
(ROC) curves for DL exhibiting superior outcomes in various
studies. However, whether ECG or HS, their results require
professional apparatus integrated with specialized interpretation
to obtain a reasonable explanation. In addition, diverse ancillary
tests have their corresponding limitations. For instance, the
connection of the lead ECG may be easily affected by the state
of the patient’s skin, and if too dry, it is easy to result in drifts
in the baseline of ECG, which affects result interpretation. The
whole procedure is tedious, and patients admitted with acute
HF are not able to cooperate well with the examination process.
Moreover, HS is easily influenced by the patient’s physical
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condition. If a person has a BMI of over 28 and a thicker layer of
skin fat, then HS will be weaker. At this point, the heart sound
signal should be distinguished from obesity. Chest X-ray for HF
is less common. If ambient noise is complex, the robustness of
the results will be seriously affected. But no so with K-sounds,
where a intelligent audio-acquired cuff is wrapped around the
arm and an appropriate DL algorithm is use, cardiac function
could be easily monitored.

In some remote areas, economic conditions and knowledge
base are far less than those in developed areas; therefore, patients
with cardiovascular disease in these areas do not routinely
present themselves for screening and physical examination of
related diseases. Over time, under long-term neurohumoral
regulation mechanisms, HF occurrence and development will
be natural. The convenience of the BP monitor is much easier
than ECG, chest X-ray, and other routine screening approaches;
thus, the K-sounds method combined with the DL theory
can be used to predict cardiac functions, so as to reduce the
prevalence of HF.

Combining Korotkoff-sounds with
deep learning to predict changes
in cardiac functions

Korotkoff-sounds exhibited various advantages in the
assessment of cardiac functions (15). In a previous study,
we found that brachial artery blood flow and cardiac
output essentially maintained a constant value of 1.23%
in the resting state (88). In this study, which had a
small sample size, the value of 1.23% was not found to
be significant in patients with abnormal cardiac functions
due to insufficiency of HF patients. Moreover, this value
only represents the level of a population and cannot be
applied for individualization, but it does provide a theoretical
basis for the use of K-sounds to assess cardiac functions.
By combining the mechanism of K-sounds generation and
peripheral blood volume characteristics of HF, it is not difficult
to deduce that the frequency and signals of K-sounds in
patients with HF differ from those of the normal population.
However, capture and analysis of these signals cannot be
conventionally achieved.

Clinically, DL plays a distinct role in accurate BP
measurements and screening of HF patients. Accurate BP
measurements using CNN based on K-sounds have been able
to exclude external interference, and map the corresponding
systolic and diastolic BP in the time phases I and V. Therefore,
we do not have to worry about the environment of the ward
or the interference of external noise affecting the quality of
K-sounds. Moreover, the PVDF membrane pressure sensors
can be used while collecting K-sounds, which can reduce
the loss of available signals (89). Celler et al. optimized

the collection of K-sounds (49). In patients with HF, the
frequency and nature of K-sounds may change as blood
flow impinges on the brachial artery due to changes in the
vascular endothelium or reduction in cardiac output per beat.
Therefore, when training the network, data from patients with
HF should be well labeled, which makes it possible for the
CNN to identify K-sound frequencies that are specific to
patients with HF.

However, CNNs alone are not efficient at identifying
patients with HF. Patients with HF are often prone to a fast
heart rate, which is attributed to a diminished pumping capacity
of the heart and associated compensatory mechanisms.
Therefore, to complete the K-sounds measurement, it
is difficult to establish how many cardiac cycles are
included, but errors from CNNs alone exponentially grow
with time, which may lead to the failure of identifying
characteristic signals of HF.

The K-sounds that have a great similarity to HS have been
reported. They can be seen as a “migration” of HS signals and
can be realized in the brachial artery as biological signals. The
unique gating mechanisms of long short-term memory (LSTM)
prevent the signal from disappearing; therefore, we propose the
use of a multimodal composite network for the HF recognition
function of K-sounds (90, 91).

The acoustic spectrogram is directly obtained for K-sound
variations using the CNN, and image features are extracted
using a convolutional structure. This reduces the number of
parameters and computation, but also makes the network
deeper and enhances the non-linearity as well as the fitting
ability of the network and dropout structure to avoid the
overfitting phenomenon of the network. The recurrent neural
network (RNN) uses a cyclic cell structure, where each cell
accepts as input the current time step and the processed state
of the previous time step. The LSTM has a gating unit to adjust
the delivery process of information flow, solving the challenge
associated with gradient disappearance and gradient explosion
that is inherent in RNN, ensuring that information can be shared
at multiple time steps. Such a network has fast convergence and
greater generalization abilities. CNN performs feature analysis
on the frequency domain of K-sounds, while RNN performs
analysis on the time domain of K-sounds, and finally, the vector
features obtained from these two networks are spliced together
into “the little black box” to complete signal interpretation of
K-sounds. A schematic presentation of this process is shown in
Figure 2.

This network is only an HS-based reference and needs
constant debugging to be put into practice. The output of
the network may be a dichotomous variable about cardiac
functions—normal or abnormal. But it can also reflect changes
in cardiac functions to some extent. Audio processing involves
many techniques, including short-time Fourier transform,
using hidden Markov modeling, etc (91). The formation
of multilayer networks requires various DL-specific output

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2022.940615
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-940615 August 22, 2022 Time: 18:42 # 8

Lin et al. 10.3389/fcvm.2022.940615

FIGURE 2

Schematic diagram of a proposed neural network.

structures, which are not described in this review. It is
desirable to use DL to monitor cardiac functions by the
K-sounds.

Discussion, limitations, and future
perspectives

Heart failure is the end-stage outcome for patients with
cardiovascular disease (11, 68, 69). Although treatments and
diagnostic guidelines for HF are constantly being updated,
there is a continuous increase in HF cases. Therefore, there
is a need to develop appropriate methods for reducing the
incidences of preclinical HF. The brachial artery-mediated
K-sounds BP measurement is one of the most intimately
used methods for obtaining preclinical vital signs for patients;
however, it has a single use and only a limited number
of clinically available parameters. There is a possibility of
combining these two variables using DL, so as to determine
cardiac function status using simple BP measurements. LVEF
covariates can be used as the criterion for assessing cardiac
functions. Further, the prediction of cardiac outputs by
measuring BP has the potential for becoming the “heart failure
meter” prototype.

The advantages of DL in determining patients with HF have
been reported. Hypertension, a common cause of HF, is a severe

cardiovascular disease that is associated with high mortality
rates (5). The process from the onset of symptoms to clinically
confirmed hypertension is long. Hypertensive patients may not
present any clinical symptoms, and clinical characteristics for
BP vary, such as the “spoon” and “reverse spoon” mechanisms,
the circadian rhythms of which can quietly affect the clinical
status of patients. Patients do not notice abnormalities during
the occasional BP measurements. In this case, hypertension
is detected via some routine medical examinations, such as
taking 24 h ambulatory BP to find the time points of elevated
BP or by finding abnormal urine microprotein levels, which
indicates kidney damage due to hypertension. When the
myocardium is slowly compensating for its pumping function,
and myocardial cells and related vascular endothelial functions
are changing, these outcomes lay a “solid foundation” for
HF. This is also the reason for the high prevalence of HF.
Therefore, K-sounds make sense as an early screening tool for
cardiovascular diseases.

Korotkoff-sounds can also be used for the diagnosis
and treatment of atherosclerosis, coronary blood flow, and
arrhythmia. These are the invisible “poisonous hands” that lead
to HF. Therefore, the success of the heart failure meter will go
far beyond measuring BP.

This review has various limitations:

1. The use of K-sounds for early screening of cardiac
dysfunction in a sick population is a variant of a
widely known risk prediction model. The primary goal
of risk prediction models is to accurately quantify
risks in the general population using readily available
clinical variables. Our use of K-sounds alone as a
covariate to predict changes in cardiac functions is
one-sided, and it may need to be combined with
additional clinical data covariates to produce more
convincing outcomes. Our idea is novel, but since there
is no clinical data to support it, to make the initial
practice more desirable, we just want to make a crude
determination of the presence of cardiac dysfunction
in patients with cardiovascular disease based purely
on a dichotomous approach (with LVEF < 50% as
the cutoff). Based on the theory proposed by Cotoi,
using the property that K-sounds can assess changes
in cardiac function and do not take into account the
heterogeneity of the population with HFpEF, our work is
still full of challenges.

2. Although DL has achieved promising results in
the recognition of subtle signals, its accuracy is
supported by algorithms and large amounts of data.
The algorithms for DL in this review are based
on published literature and are only combined
at the theoretical level; subsequent practice will
require improvement of the algorithms to meet
real-world needs.
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FIGURE 3

Schematic diagram of operation mode of future intelligent sphygmomanometer.

3. In terms of data collection, (i) given that the popular
preclinical BP measurement method is still the electronic
oscillometric cuff method, which did not affect our
audio acquisition, Celler et al. had promising results
in the collection and analysis of K-sounds. Our initial
intention was not to reproduce the original K-sounds
during blood pressure measurements, but only to acquire
K-sound audio data from HF. The PVDF membrane
technique by Xiong et al. can minimize the loss of audio
signals during the acquisition process (89). We modified
the cuff of the electronic oscilloscope by adding PVDF
membranes, but the actual effect is yet to be further
tested. In addition, the definition of a patient with HF
requires a cardiologist. (ii) The article has also previously
mentioned: HF is silently affecting 1–3% of the global
population (70, 71). In clinical practice, however, there do
not seem to be that many typical patients with HF, and the
preliminary data collection is necessarily time-consuming
and laborious. The lack of typical characteristic data can
make the screening ability of our model substantially
weaker. The reduction of positive data can cause a
substantial increase in false-negative results in subsequent
models.

Here, we offer a small vision of the future for this purpose:
Our early screening model is more suitable for some

rural areas (some places where advanced medical equipment
is inaccessible) or some countries with less-developed medical
care. The use of a “heart failure meter” can also be
promoted in primary hospitals or daily life. If successful,
patients will not have to go through the tedious process
of cardiac ultrasound and blood tests for the assessment
of cardiac function (however, there may be false-negative
or false-positive results), so that they can actively treat the
primary disease or intervene in time, which will make the
evolution to end-stage for patients with cardiovascular disease
significantly longer as far as possible, thus improving their
survival outcomes.

Figure 3 shows our proposed pre-desired and more
ideal way of data model acquisition. The heart failure
meter will detect instantaneous changes in cardiac functions
and transmit the results to the cloud for correction by
an experienced internist. We hope to use this way to
improve the specificity ability of the model. Furthermore,
our idea will be more clinically useful when we develop an
automated K-sounds collection and judgment system suitable
for this review.
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